xref: /linux/arch/x86/mm/kmmio.c (revision e5c86679d5e864947a52fb31e45a425dea3e7fa9)
1 /* Support for MMIO probes.
2  * Benfit many code from kprobes
3  * (C) 2002 Louis Zhuang <louis.zhuang@intel.com>.
4  *     2007 Alexander Eichner
5  *     2008 Pekka Paalanen <pq@iki.fi>
6  */
7 
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9 
10 #include <linux/list.h>
11 #include <linux/rculist.h>
12 #include <linux/spinlock.h>
13 #include <linux/hash.h>
14 #include <linux/export.h>
15 #include <linux/kernel.h>
16 #include <linux/uaccess.h>
17 #include <linux/ptrace.h>
18 #include <linux/preempt.h>
19 #include <linux/percpu.h>
20 #include <linux/kdebug.h>
21 #include <linux/mutex.h>
22 #include <linux/io.h>
23 #include <linux/slab.h>
24 #include <asm/cacheflush.h>
25 #include <asm/tlbflush.h>
26 #include <linux/errno.h>
27 #include <asm/debugreg.h>
28 #include <linux/mmiotrace.h>
29 
30 #define KMMIO_PAGE_HASH_BITS 4
31 #define KMMIO_PAGE_TABLE_SIZE (1 << KMMIO_PAGE_HASH_BITS)
32 
33 struct kmmio_fault_page {
34 	struct list_head list;
35 	struct kmmio_fault_page *release_next;
36 	unsigned long addr; /* the requested address */
37 	pteval_t old_presence; /* page presence prior to arming */
38 	bool armed;
39 
40 	/*
41 	 * Number of times this page has been registered as a part
42 	 * of a probe. If zero, page is disarmed and this may be freed.
43 	 * Used only by writers (RCU) and post_kmmio_handler().
44 	 * Protected by kmmio_lock, when linked into kmmio_page_table.
45 	 */
46 	int count;
47 
48 	bool scheduled_for_release;
49 };
50 
51 struct kmmio_delayed_release {
52 	struct rcu_head rcu;
53 	struct kmmio_fault_page *release_list;
54 };
55 
56 struct kmmio_context {
57 	struct kmmio_fault_page *fpage;
58 	struct kmmio_probe *probe;
59 	unsigned long saved_flags;
60 	unsigned long addr;
61 	int active;
62 };
63 
64 static DEFINE_SPINLOCK(kmmio_lock);
65 
66 /* Protected by kmmio_lock */
67 unsigned int kmmio_count;
68 
69 /* Read-protected by RCU, write-protected by kmmio_lock. */
70 static struct list_head kmmio_page_table[KMMIO_PAGE_TABLE_SIZE];
71 static LIST_HEAD(kmmio_probes);
72 
73 static struct list_head *kmmio_page_list(unsigned long addr)
74 {
75 	unsigned int l;
76 	pte_t *pte = lookup_address(addr, &l);
77 
78 	if (!pte)
79 		return NULL;
80 	addr &= page_level_mask(l);
81 
82 	return &kmmio_page_table[hash_long(addr, KMMIO_PAGE_HASH_BITS)];
83 }
84 
85 /* Accessed per-cpu */
86 static DEFINE_PER_CPU(struct kmmio_context, kmmio_ctx);
87 
88 /*
89  * this is basically a dynamic stabbing problem:
90  * Could use the existing prio tree code or
91  * Possible better implementations:
92  * The Interval Skip List: A Data Structure for Finding All Intervals That
93  * Overlap a Point (might be simple)
94  * Space Efficient Dynamic Stabbing with Fast Queries - Mikkel Thorup
95  */
96 /* Get the kmmio at this addr (if any). You must be holding RCU read lock. */
97 static struct kmmio_probe *get_kmmio_probe(unsigned long addr)
98 {
99 	struct kmmio_probe *p;
100 	list_for_each_entry_rcu(p, &kmmio_probes, list) {
101 		if (addr >= p->addr && addr < (p->addr + p->len))
102 			return p;
103 	}
104 	return NULL;
105 }
106 
107 /* You must be holding RCU read lock. */
108 static struct kmmio_fault_page *get_kmmio_fault_page(unsigned long addr)
109 {
110 	struct list_head *head;
111 	struct kmmio_fault_page *f;
112 	unsigned int l;
113 	pte_t *pte = lookup_address(addr, &l);
114 
115 	if (!pte)
116 		return NULL;
117 	addr &= page_level_mask(l);
118 	head = kmmio_page_list(addr);
119 	list_for_each_entry_rcu(f, head, list) {
120 		if (f->addr == addr)
121 			return f;
122 	}
123 	return NULL;
124 }
125 
126 static void clear_pmd_presence(pmd_t *pmd, bool clear, pmdval_t *old)
127 {
128 	pmdval_t v = pmd_val(*pmd);
129 	if (clear) {
130 		*old = v & _PAGE_PRESENT;
131 		v &= ~_PAGE_PRESENT;
132 	} else	/* presume this has been called with clear==true previously */
133 		v |= *old;
134 	set_pmd(pmd, __pmd(v));
135 }
136 
137 static void clear_pte_presence(pte_t *pte, bool clear, pteval_t *old)
138 {
139 	pteval_t v = pte_val(*pte);
140 	if (clear) {
141 		*old = v & _PAGE_PRESENT;
142 		v &= ~_PAGE_PRESENT;
143 	} else	/* presume this has been called with clear==true previously */
144 		v |= *old;
145 	set_pte_atomic(pte, __pte(v));
146 }
147 
148 static int clear_page_presence(struct kmmio_fault_page *f, bool clear)
149 {
150 	unsigned int level;
151 	pte_t *pte = lookup_address(f->addr, &level);
152 
153 	if (!pte) {
154 		pr_err("no pte for addr 0x%08lx\n", f->addr);
155 		return -1;
156 	}
157 
158 	switch (level) {
159 	case PG_LEVEL_2M:
160 		clear_pmd_presence((pmd_t *)pte, clear, &f->old_presence);
161 		break;
162 	case PG_LEVEL_4K:
163 		clear_pte_presence(pte, clear, &f->old_presence);
164 		break;
165 	default:
166 		pr_err("unexpected page level 0x%x.\n", level);
167 		return -1;
168 	}
169 
170 	__flush_tlb_one(f->addr);
171 	return 0;
172 }
173 
174 /*
175  * Mark the given page as not present. Access to it will trigger a fault.
176  *
177  * Struct kmmio_fault_page is protected by RCU and kmmio_lock, but the
178  * protection is ignored here. RCU read lock is assumed held, so the struct
179  * will not disappear unexpectedly. Furthermore, the caller must guarantee,
180  * that double arming the same virtual address (page) cannot occur.
181  *
182  * Double disarming on the other hand is allowed, and may occur when a fault
183  * and mmiotrace shutdown happen simultaneously.
184  */
185 static int arm_kmmio_fault_page(struct kmmio_fault_page *f)
186 {
187 	int ret;
188 	WARN_ONCE(f->armed, KERN_ERR pr_fmt("kmmio page already armed.\n"));
189 	if (f->armed) {
190 		pr_warning("double-arm: addr 0x%08lx, ref %d, old %d\n",
191 			   f->addr, f->count, !!f->old_presence);
192 	}
193 	ret = clear_page_presence(f, true);
194 	WARN_ONCE(ret < 0, KERN_ERR pr_fmt("arming at 0x%08lx failed.\n"),
195 		  f->addr);
196 	f->armed = true;
197 	return ret;
198 }
199 
200 /** Restore the given page to saved presence state. */
201 static void disarm_kmmio_fault_page(struct kmmio_fault_page *f)
202 {
203 	int ret = clear_page_presence(f, false);
204 	WARN_ONCE(ret < 0,
205 			KERN_ERR "kmmio disarming at 0x%08lx failed.\n", f->addr);
206 	f->armed = false;
207 }
208 
209 /*
210  * This is being called from do_page_fault().
211  *
212  * We may be in an interrupt or a critical section. Also prefecthing may
213  * trigger a page fault. We may be in the middle of process switch.
214  * We cannot take any locks, because we could be executing especially
215  * within a kmmio critical section.
216  *
217  * Local interrupts are disabled, so preemption cannot happen.
218  * Do not enable interrupts, do not sleep, and watch out for other CPUs.
219  */
220 /*
221  * Interrupts are disabled on entry as trap3 is an interrupt gate
222  * and they remain disabled throughout this function.
223  */
224 int kmmio_handler(struct pt_regs *regs, unsigned long addr)
225 {
226 	struct kmmio_context *ctx;
227 	struct kmmio_fault_page *faultpage;
228 	int ret = 0; /* default to fault not handled */
229 	unsigned long page_base = addr;
230 	unsigned int l;
231 	pte_t *pte = lookup_address(addr, &l);
232 	if (!pte)
233 		return -EINVAL;
234 	page_base &= page_level_mask(l);
235 
236 	/*
237 	 * Preemption is now disabled to prevent process switch during
238 	 * single stepping. We can only handle one active kmmio trace
239 	 * per cpu, so ensure that we finish it before something else
240 	 * gets to run. We also hold the RCU read lock over single
241 	 * stepping to avoid looking up the probe and kmmio_fault_page
242 	 * again.
243 	 */
244 	preempt_disable();
245 	rcu_read_lock();
246 
247 	faultpage = get_kmmio_fault_page(page_base);
248 	if (!faultpage) {
249 		/*
250 		 * Either this page fault is not caused by kmmio, or
251 		 * another CPU just pulled the kmmio probe from under
252 		 * our feet. The latter case should not be possible.
253 		 */
254 		goto no_kmmio;
255 	}
256 
257 	ctx = &get_cpu_var(kmmio_ctx);
258 	if (ctx->active) {
259 		if (page_base == ctx->addr) {
260 			/*
261 			 * A second fault on the same page means some other
262 			 * condition needs handling by do_page_fault(), the
263 			 * page really not being present is the most common.
264 			 */
265 			pr_debug("secondary hit for 0x%08lx CPU %d.\n",
266 				 addr, smp_processor_id());
267 
268 			if (!faultpage->old_presence)
269 				pr_info("unexpected secondary hit for address 0x%08lx on CPU %d.\n",
270 					addr, smp_processor_id());
271 		} else {
272 			/*
273 			 * Prevent overwriting already in-flight context.
274 			 * This should not happen, let's hope disarming at
275 			 * least prevents a panic.
276 			 */
277 			pr_emerg("recursive probe hit on CPU %d, for address 0x%08lx. Ignoring.\n",
278 				 smp_processor_id(), addr);
279 			pr_emerg("previous hit was at 0x%08lx.\n", ctx->addr);
280 			disarm_kmmio_fault_page(faultpage);
281 		}
282 		goto no_kmmio_ctx;
283 	}
284 	ctx->active++;
285 
286 	ctx->fpage = faultpage;
287 	ctx->probe = get_kmmio_probe(page_base);
288 	ctx->saved_flags = (regs->flags & (X86_EFLAGS_TF | X86_EFLAGS_IF));
289 	ctx->addr = page_base;
290 
291 	if (ctx->probe && ctx->probe->pre_handler)
292 		ctx->probe->pre_handler(ctx->probe, regs, addr);
293 
294 	/*
295 	 * Enable single-stepping and disable interrupts for the faulting
296 	 * context. Local interrupts must not get enabled during stepping.
297 	 */
298 	regs->flags |= X86_EFLAGS_TF;
299 	regs->flags &= ~X86_EFLAGS_IF;
300 
301 	/* Now we set present bit in PTE and single step. */
302 	disarm_kmmio_fault_page(ctx->fpage);
303 
304 	/*
305 	 * If another cpu accesses the same page while we are stepping,
306 	 * the access will not be caught. It will simply succeed and the
307 	 * only downside is we lose the event. If this becomes a problem,
308 	 * the user should drop to single cpu before tracing.
309 	 */
310 
311 	put_cpu_var(kmmio_ctx);
312 	return 1; /* fault handled */
313 
314 no_kmmio_ctx:
315 	put_cpu_var(kmmio_ctx);
316 no_kmmio:
317 	rcu_read_unlock();
318 	preempt_enable_no_resched();
319 	return ret;
320 }
321 
322 /*
323  * Interrupts are disabled on entry as trap1 is an interrupt gate
324  * and they remain disabled throughout this function.
325  * This must always get called as the pair to kmmio_handler().
326  */
327 static int post_kmmio_handler(unsigned long condition, struct pt_regs *regs)
328 {
329 	int ret = 0;
330 	struct kmmio_context *ctx = &get_cpu_var(kmmio_ctx);
331 
332 	if (!ctx->active) {
333 		/*
334 		 * debug traps without an active context are due to either
335 		 * something external causing them (f.e. using a debugger while
336 		 * mmio tracing enabled), or erroneous behaviour
337 		 */
338 		pr_warning("unexpected debug trap on CPU %d.\n",
339 			   smp_processor_id());
340 		goto out;
341 	}
342 
343 	if (ctx->probe && ctx->probe->post_handler)
344 		ctx->probe->post_handler(ctx->probe, condition, regs);
345 
346 	/* Prevent racing against release_kmmio_fault_page(). */
347 	spin_lock(&kmmio_lock);
348 	if (ctx->fpage->count)
349 		arm_kmmio_fault_page(ctx->fpage);
350 	spin_unlock(&kmmio_lock);
351 
352 	regs->flags &= ~X86_EFLAGS_TF;
353 	regs->flags |= ctx->saved_flags;
354 
355 	/* These were acquired in kmmio_handler(). */
356 	ctx->active--;
357 	BUG_ON(ctx->active);
358 	rcu_read_unlock();
359 	preempt_enable_no_resched();
360 
361 	/*
362 	 * if somebody else is singlestepping across a probe point, flags
363 	 * will have TF set, in which case, continue the remaining processing
364 	 * of do_debug, as if this is not a probe hit.
365 	 */
366 	if (!(regs->flags & X86_EFLAGS_TF))
367 		ret = 1;
368 out:
369 	put_cpu_var(kmmio_ctx);
370 	return ret;
371 }
372 
373 /* You must be holding kmmio_lock. */
374 static int add_kmmio_fault_page(unsigned long addr)
375 {
376 	struct kmmio_fault_page *f;
377 
378 	f = get_kmmio_fault_page(addr);
379 	if (f) {
380 		if (!f->count)
381 			arm_kmmio_fault_page(f);
382 		f->count++;
383 		return 0;
384 	}
385 
386 	f = kzalloc(sizeof(*f), GFP_ATOMIC);
387 	if (!f)
388 		return -1;
389 
390 	f->count = 1;
391 	f->addr = addr;
392 
393 	if (arm_kmmio_fault_page(f)) {
394 		kfree(f);
395 		return -1;
396 	}
397 
398 	list_add_rcu(&f->list, kmmio_page_list(f->addr));
399 
400 	return 0;
401 }
402 
403 /* You must be holding kmmio_lock. */
404 static void release_kmmio_fault_page(unsigned long addr,
405 				struct kmmio_fault_page **release_list)
406 {
407 	struct kmmio_fault_page *f;
408 
409 	f = get_kmmio_fault_page(addr);
410 	if (!f)
411 		return;
412 
413 	f->count--;
414 	BUG_ON(f->count < 0);
415 	if (!f->count) {
416 		disarm_kmmio_fault_page(f);
417 		if (!f->scheduled_for_release) {
418 			f->release_next = *release_list;
419 			*release_list = f;
420 			f->scheduled_for_release = true;
421 		}
422 	}
423 }
424 
425 /*
426  * With page-unaligned ioremaps, one or two armed pages may contain
427  * addresses from outside the intended mapping. Events for these addresses
428  * are currently silently dropped. The events may result only from programming
429  * mistakes by accessing addresses before the beginning or past the end of a
430  * mapping.
431  */
432 int register_kmmio_probe(struct kmmio_probe *p)
433 {
434 	unsigned long flags;
435 	int ret = 0;
436 	unsigned long size = 0;
437 	const unsigned long size_lim = p->len + (p->addr & ~PAGE_MASK);
438 	unsigned int l;
439 	pte_t *pte;
440 
441 	spin_lock_irqsave(&kmmio_lock, flags);
442 	if (get_kmmio_probe(p->addr)) {
443 		ret = -EEXIST;
444 		goto out;
445 	}
446 
447 	pte = lookup_address(p->addr, &l);
448 	if (!pte) {
449 		ret = -EINVAL;
450 		goto out;
451 	}
452 
453 	kmmio_count++;
454 	list_add_rcu(&p->list, &kmmio_probes);
455 	while (size < size_lim) {
456 		if (add_kmmio_fault_page(p->addr + size))
457 			pr_err("Unable to set page fault.\n");
458 		size += page_level_size(l);
459 	}
460 out:
461 	spin_unlock_irqrestore(&kmmio_lock, flags);
462 	/*
463 	 * XXX: What should I do here?
464 	 * Here was a call to global_flush_tlb(), but it does not exist
465 	 * anymore. It seems it's not needed after all.
466 	 */
467 	return ret;
468 }
469 EXPORT_SYMBOL(register_kmmio_probe);
470 
471 static void rcu_free_kmmio_fault_pages(struct rcu_head *head)
472 {
473 	struct kmmio_delayed_release *dr = container_of(
474 						head,
475 						struct kmmio_delayed_release,
476 						rcu);
477 	struct kmmio_fault_page *f = dr->release_list;
478 	while (f) {
479 		struct kmmio_fault_page *next = f->release_next;
480 		BUG_ON(f->count);
481 		kfree(f);
482 		f = next;
483 	}
484 	kfree(dr);
485 }
486 
487 static void remove_kmmio_fault_pages(struct rcu_head *head)
488 {
489 	struct kmmio_delayed_release *dr =
490 		container_of(head, struct kmmio_delayed_release, rcu);
491 	struct kmmio_fault_page *f = dr->release_list;
492 	struct kmmio_fault_page **prevp = &dr->release_list;
493 	unsigned long flags;
494 
495 	spin_lock_irqsave(&kmmio_lock, flags);
496 	while (f) {
497 		if (!f->count) {
498 			list_del_rcu(&f->list);
499 			prevp = &f->release_next;
500 		} else {
501 			*prevp = f->release_next;
502 			f->release_next = NULL;
503 			f->scheduled_for_release = false;
504 		}
505 		f = *prevp;
506 	}
507 	spin_unlock_irqrestore(&kmmio_lock, flags);
508 
509 	/* This is the real RCU destroy call. */
510 	call_rcu(&dr->rcu, rcu_free_kmmio_fault_pages);
511 }
512 
513 /*
514  * Remove a kmmio probe. You have to synchronize_rcu() before you can be
515  * sure that the callbacks will not be called anymore. Only after that
516  * you may actually release your struct kmmio_probe.
517  *
518  * Unregistering a kmmio fault page has three steps:
519  * 1. release_kmmio_fault_page()
520  *    Disarm the page, wait a grace period to let all faults finish.
521  * 2. remove_kmmio_fault_pages()
522  *    Remove the pages from kmmio_page_table.
523  * 3. rcu_free_kmmio_fault_pages()
524  *    Actually free the kmmio_fault_page structs as with RCU.
525  */
526 void unregister_kmmio_probe(struct kmmio_probe *p)
527 {
528 	unsigned long flags;
529 	unsigned long size = 0;
530 	const unsigned long size_lim = p->len + (p->addr & ~PAGE_MASK);
531 	struct kmmio_fault_page *release_list = NULL;
532 	struct kmmio_delayed_release *drelease;
533 	unsigned int l;
534 	pte_t *pte;
535 
536 	pte = lookup_address(p->addr, &l);
537 	if (!pte)
538 		return;
539 
540 	spin_lock_irqsave(&kmmio_lock, flags);
541 	while (size < size_lim) {
542 		release_kmmio_fault_page(p->addr + size, &release_list);
543 		size += page_level_size(l);
544 	}
545 	list_del_rcu(&p->list);
546 	kmmio_count--;
547 	spin_unlock_irqrestore(&kmmio_lock, flags);
548 
549 	if (!release_list)
550 		return;
551 
552 	drelease = kmalloc(sizeof(*drelease), GFP_ATOMIC);
553 	if (!drelease) {
554 		pr_crit("leaking kmmio_fault_page objects.\n");
555 		return;
556 	}
557 	drelease->release_list = release_list;
558 
559 	/*
560 	 * This is not really RCU here. We have just disarmed a set of
561 	 * pages so that they cannot trigger page faults anymore. However,
562 	 * we cannot remove the pages from kmmio_page_table,
563 	 * because a probe hit might be in flight on another CPU. The
564 	 * pages are collected into a list, and they will be removed from
565 	 * kmmio_page_table when it is certain that no probe hit related to
566 	 * these pages can be in flight. RCU grace period sounds like a
567 	 * good choice.
568 	 *
569 	 * If we removed the pages too early, kmmio page fault handler might
570 	 * not find the respective kmmio_fault_page and determine it's not
571 	 * a kmmio fault, when it actually is. This would lead to madness.
572 	 */
573 	call_rcu(&drelease->rcu, remove_kmmio_fault_pages);
574 }
575 EXPORT_SYMBOL(unregister_kmmio_probe);
576 
577 static int
578 kmmio_die_notifier(struct notifier_block *nb, unsigned long val, void *args)
579 {
580 	struct die_args *arg = args;
581 	unsigned long* dr6_p = (unsigned long *)ERR_PTR(arg->err);
582 
583 	if (val == DIE_DEBUG && (*dr6_p & DR_STEP))
584 		if (post_kmmio_handler(*dr6_p, arg->regs) == 1) {
585 			/*
586 			 * Reset the BS bit in dr6 (pointed by args->err) to
587 			 * denote completion of processing
588 			 */
589 			*dr6_p &= ~DR_STEP;
590 			return NOTIFY_STOP;
591 		}
592 
593 	return NOTIFY_DONE;
594 }
595 
596 static struct notifier_block nb_die = {
597 	.notifier_call = kmmio_die_notifier
598 };
599 
600 int kmmio_init(void)
601 {
602 	int i;
603 
604 	for (i = 0; i < KMMIO_PAGE_TABLE_SIZE; i++)
605 		INIT_LIST_HEAD(&kmmio_page_table[i]);
606 
607 	return register_die_notifier(&nb_die);
608 }
609 
610 void kmmio_cleanup(void)
611 {
612 	int i;
613 
614 	unregister_die_notifier(&nb_die);
615 	for (i = 0; i < KMMIO_PAGE_TABLE_SIZE; i++) {
616 		WARN_ONCE(!list_empty(&kmmio_page_table[i]),
617 			KERN_ERR "kmmio_page_table not empty at cleanup, any further tracing will leak memory.\n");
618 	}
619 }
620