xref: /linux/arch/x86/mm/kmmio.c (revision c4c11dd160a8cc98f402c4e12f94b1572e822ffd)
1 /* Support for MMIO probes.
2  * Benfit many code from kprobes
3  * (C) 2002 Louis Zhuang <louis.zhuang@intel.com>.
4  *     2007 Alexander Eichner
5  *     2008 Pekka Paalanen <pq@iki.fi>
6  */
7 
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9 
10 #include <linux/list.h>
11 #include <linux/rculist.h>
12 #include <linux/spinlock.h>
13 #include <linux/hash.h>
14 #include <linux/init.h>
15 #include <linux/module.h>
16 #include <linux/kernel.h>
17 #include <linux/uaccess.h>
18 #include <linux/ptrace.h>
19 #include <linux/preempt.h>
20 #include <linux/percpu.h>
21 #include <linux/kdebug.h>
22 #include <linux/mutex.h>
23 #include <linux/io.h>
24 #include <linux/slab.h>
25 #include <asm/cacheflush.h>
26 #include <asm/tlbflush.h>
27 #include <linux/errno.h>
28 #include <asm/debugreg.h>
29 #include <linux/mmiotrace.h>
30 
31 #define KMMIO_PAGE_HASH_BITS 4
32 #define KMMIO_PAGE_TABLE_SIZE (1 << KMMIO_PAGE_HASH_BITS)
33 
34 struct kmmio_fault_page {
35 	struct list_head list;
36 	struct kmmio_fault_page *release_next;
37 	unsigned long page; /* location of the fault page */
38 	pteval_t old_presence; /* page presence prior to arming */
39 	bool armed;
40 
41 	/*
42 	 * Number of times this page has been registered as a part
43 	 * of a probe. If zero, page is disarmed and this may be freed.
44 	 * Used only by writers (RCU) and post_kmmio_handler().
45 	 * Protected by kmmio_lock, when linked into kmmio_page_table.
46 	 */
47 	int count;
48 
49 	bool scheduled_for_release;
50 };
51 
52 struct kmmio_delayed_release {
53 	struct rcu_head rcu;
54 	struct kmmio_fault_page *release_list;
55 };
56 
57 struct kmmio_context {
58 	struct kmmio_fault_page *fpage;
59 	struct kmmio_probe *probe;
60 	unsigned long saved_flags;
61 	unsigned long addr;
62 	int active;
63 };
64 
65 static DEFINE_SPINLOCK(kmmio_lock);
66 
67 /* Protected by kmmio_lock */
68 unsigned int kmmio_count;
69 
70 /* Read-protected by RCU, write-protected by kmmio_lock. */
71 static struct list_head kmmio_page_table[KMMIO_PAGE_TABLE_SIZE];
72 static LIST_HEAD(kmmio_probes);
73 
74 static struct list_head *kmmio_page_list(unsigned long page)
75 {
76 	return &kmmio_page_table[hash_long(page, KMMIO_PAGE_HASH_BITS)];
77 }
78 
79 /* Accessed per-cpu */
80 static DEFINE_PER_CPU(struct kmmio_context, kmmio_ctx);
81 
82 /*
83  * this is basically a dynamic stabbing problem:
84  * Could use the existing prio tree code or
85  * Possible better implementations:
86  * The Interval Skip List: A Data Structure for Finding All Intervals That
87  * Overlap a Point (might be simple)
88  * Space Efficient Dynamic Stabbing with Fast Queries - Mikkel Thorup
89  */
90 /* Get the kmmio at this addr (if any). You must be holding RCU read lock. */
91 static struct kmmio_probe *get_kmmio_probe(unsigned long addr)
92 {
93 	struct kmmio_probe *p;
94 	list_for_each_entry_rcu(p, &kmmio_probes, list) {
95 		if (addr >= p->addr && addr < (p->addr + p->len))
96 			return p;
97 	}
98 	return NULL;
99 }
100 
101 /* You must be holding RCU read lock. */
102 static struct kmmio_fault_page *get_kmmio_fault_page(unsigned long page)
103 {
104 	struct list_head *head;
105 	struct kmmio_fault_page *f;
106 
107 	page &= PAGE_MASK;
108 	head = kmmio_page_list(page);
109 	list_for_each_entry_rcu(f, head, list) {
110 		if (f->page == page)
111 			return f;
112 	}
113 	return NULL;
114 }
115 
116 static void clear_pmd_presence(pmd_t *pmd, bool clear, pmdval_t *old)
117 {
118 	pmdval_t v = pmd_val(*pmd);
119 	if (clear) {
120 		*old = v & _PAGE_PRESENT;
121 		v &= ~_PAGE_PRESENT;
122 	} else	/* presume this has been called with clear==true previously */
123 		v |= *old;
124 	set_pmd(pmd, __pmd(v));
125 }
126 
127 static void clear_pte_presence(pte_t *pte, bool clear, pteval_t *old)
128 {
129 	pteval_t v = pte_val(*pte);
130 	if (clear) {
131 		*old = v & _PAGE_PRESENT;
132 		v &= ~_PAGE_PRESENT;
133 	} else	/* presume this has been called with clear==true previously */
134 		v |= *old;
135 	set_pte_atomic(pte, __pte(v));
136 }
137 
138 static int clear_page_presence(struct kmmio_fault_page *f, bool clear)
139 {
140 	unsigned int level;
141 	pte_t *pte = lookup_address(f->page, &level);
142 
143 	if (!pte) {
144 		pr_err("no pte for page 0x%08lx\n", f->page);
145 		return -1;
146 	}
147 
148 	switch (level) {
149 	case PG_LEVEL_2M:
150 		clear_pmd_presence((pmd_t *)pte, clear, &f->old_presence);
151 		break;
152 	case PG_LEVEL_4K:
153 		clear_pte_presence(pte, clear, &f->old_presence);
154 		break;
155 	default:
156 		pr_err("unexpected page level 0x%x.\n", level);
157 		return -1;
158 	}
159 
160 	__flush_tlb_one(f->page);
161 	return 0;
162 }
163 
164 /*
165  * Mark the given page as not present. Access to it will trigger a fault.
166  *
167  * Struct kmmio_fault_page is protected by RCU and kmmio_lock, but the
168  * protection is ignored here. RCU read lock is assumed held, so the struct
169  * will not disappear unexpectedly. Furthermore, the caller must guarantee,
170  * that double arming the same virtual address (page) cannot occur.
171  *
172  * Double disarming on the other hand is allowed, and may occur when a fault
173  * and mmiotrace shutdown happen simultaneously.
174  */
175 static int arm_kmmio_fault_page(struct kmmio_fault_page *f)
176 {
177 	int ret;
178 	WARN_ONCE(f->armed, KERN_ERR pr_fmt("kmmio page already armed.\n"));
179 	if (f->armed) {
180 		pr_warning("double-arm: page 0x%08lx, ref %d, old %d\n",
181 			   f->page, f->count, !!f->old_presence);
182 	}
183 	ret = clear_page_presence(f, true);
184 	WARN_ONCE(ret < 0, KERN_ERR pr_fmt("arming 0x%08lx failed.\n"),
185 		  f->page);
186 	f->armed = true;
187 	return ret;
188 }
189 
190 /** Restore the given page to saved presence state. */
191 static void disarm_kmmio_fault_page(struct kmmio_fault_page *f)
192 {
193 	int ret = clear_page_presence(f, false);
194 	WARN_ONCE(ret < 0,
195 			KERN_ERR "kmmio disarming 0x%08lx failed.\n", f->page);
196 	f->armed = false;
197 }
198 
199 /*
200  * This is being called from do_page_fault().
201  *
202  * We may be in an interrupt or a critical section. Also prefecthing may
203  * trigger a page fault. We may be in the middle of process switch.
204  * We cannot take any locks, because we could be executing especially
205  * within a kmmio critical section.
206  *
207  * Local interrupts are disabled, so preemption cannot happen.
208  * Do not enable interrupts, do not sleep, and watch out for other CPUs.
209  */
210 /*
211  * Interrupts are disabled on entry as trap3 is an interrupt gate
212  * and they remain disabled throughout this function.
213  */
214 int kmmio_handler(struct pt_regs *regs, unsigned long addr)
215 {
216 	struct kmmio_context *ctx;
217 	struct kmmio_fault_page *faultpage;
218 	int ret = 0; /* default to fault not handled */
219 
220 	/*
221 	 * Preemption is now disabled to prevent process switch during
222 	 * single stepping. We can only handle one active kmmio trace
223 	 * per cpu, so ensure that we finish it before something else
224 	 * gets to run. We also hold the RCU read lock over single
225 	 * stepping to avoid looking up the probe and kmmio_fault_page
226 	 * again.
227 	 */
228 	preempt_disable();
229 	rcu_read_lock();
230 
231 	faultpage = get_kmmio_fault_page(addr);
232 	if (!faultpage) {
233 		/*
234 		 * Either this page fault is not caused by kmmio, or
235 		 * another CPU just pulled the kmmio probe from under
236 		 * our feet. The latter case should not be possible.
237 		 */
238 		goto no_kmmio;
239 	}
240 
241 	ctx = &get_cpu_var(kmmio_ctx);
242 	if (ctx->active) {
243 		if (addr == ctx->addr) {
244 			/*
245 			 * A second fault on the same page means some other
246 			 * condition needs handling by do_page_fault(), the
247 			 * page really not being present is the most common.
248 			 */
249 			pr_debug("secondary hit for 0x%08lx CPU %d.\n",
250 				 addr, smp_processor_id());
251 
252 			if (!faultpage->old_presence)
253 				pr_info("unexpected secondary hit for address 0x%08lx on CPU %d.\n",
254 					addr, smp_processor_id());
255 		} else {
256 			/*
257 			 * Prevent overwriting already in-flight context.
258 			 * This should not happen, let's hope disarming at
259 			 * least prevents a panic.
260 			 */
261 			pr_emerg("recursive probe hit on CPU %d, for address 0x%08lx. Ignoring.\n",
262 				 smp_processor_id(), addr);
263 			pr_emerg("previous hit was at 0x%08lx.\n", ctx->addr);
264 			disarm_kmmio_fault_page(faultpage);
265 		}
266 		goto no_kmmio_ctx;
267 	}
268 	ctx->active++;
269 
270 	ctx->fpage = faultpage;
271 	ctx->probe = get_kmmio_probe(addr);
272 	ctx->saved_flags = (regs->flags & (X86_EFLAGS_TF | X86_EFLAGS_IF));
273 	ctx->addr = addr;
274 
275 	if (ctx->probe && ctx->probe->pre_handler)
276 		ctx->probe->pre_handler(ctx->probe, regs, addr);
277 
278 	/*
279 	 * Enable single-stepping and disable interrupts for the faulting
280 	 * context. Local interrupts must not get enabled during stepping.
281 	 */
282 	regs->flags |= X86_EFLAGS_TF;
283 	regs->flags &= ~X86_EFLAGS_IF;
284 
285 	/* Now we set present bit in PTE and single step. */
286 	disarm_kmmio_fault_page(ctx->fpage);
287 
288 	/*
289 	 * If another cpu accesses the same page while we are stepping,
290 	 * the access will not be caught. It will simply succeed and the
291 	 * only downside is we lose the event. If this becomes a problem,
292 	 * the user should drop to single cpu before tracing.
293 	 */
294 
295 	put_cpu_var(kmmio_ctx);
296 	return 1; /* fault handled */
297 
298 no_kmmio_ctx:
299 	put_cpu_var(kmmio_ctx);
300 no_kmmio:
301 	rcu_read_unlock();
302 	preempt_enable_no_resched();
303 	return ret;
304 }
305 
306 /*
307  * Interrupts are disabled on entry as trap1 is an interrupt gate
308  * and they remain disabled throughout this function.
309  * This must always get called as the pair to kmmio_handler().
310  */
311 static int post_kmmio_handler(unsigned long condition, struct pt_regs *regs)
312 {
313 	int ret = 0;
314 	struct kmmio_context *ctx = &get_cpu_var(kmmio_ctx);
315 
316 	if (!ctx->active) {
317 		/*
318 		 * debug traps without an active context are due to either
319 		 * something external causing them (f.e. using a debugger while
320 		 * mmio tracing enabled), or erroneous behaviour
321 		 */
322 		pr_warning("unexpected debug trap on CPU %d.\n",
323 			   smp_processor_id());
324 		goto out;
325 	}
326 
327 	if (ctx->probe && ctx->probe->post_handler)
328 		ctx->probe->post_handler(ctx->probe, condition, regs);
329 
330 	/* Prevent racing against release_kmmio_fault_page(). */
331 	spin_lock(&kmmio_lock);
332 	if (ctx->fpage->count)
333 		arm_kmmio_fault_page(ctx->fpage);
334 	spin_unlock(&kmmio_lock);
335 
336 	regs->flags &= ~X86_EFLAGS_TF;
337 	regs->flags |= ctx->saved_flags;
338 
339 	/* These were acquired in kmmio_handler(). */
340 	ctx->active--;
341 	BUG_ON(ctx->active);
342 	rcu_read_unlock();
343 	preempt_enable_no_resched();
344 
345 	/*
346 	 * if somebody else is singlestepping across a probe point, flags
347 	 * will have TF set, in which case, continue the remaining processing
348 	 * of do_debug, as if this is not a probe hit.
349 	 */
350 	if (!(regs->flags & X86_EFLAGS_TF))
351 		ret = 1;
352 out:
353 	put_cpu_var(kmmio_ctx);
354 	return ret;
355 }
356 
357 /* You must be holding kmmio_lock. */
358 static int add_kmmio_fault_page(unsigned long page)
359 {
360 	struct kmmio_fault_page *f;
361 
362 	page &= PAGE_MASK;
363 	f = get_kmmio_fault_page(page);
364 	if (f) {
365 		if (!f->count)
366 			arm_kmmio_fault_page(f);
367 		f->count++;
368 		return 0;
369 	}
370 
371 	f = kzalloc(sizeof(*f), GFP_ATOMIC);
372 	if (!f)
373 		return -1;
374 
375 	f->count = 1;
376 	f->page = page;
377 
378 	if (arm_kmmio_fault_page(f)) {
379 		kfree(f);
380 		return -1;
381 	}
382 
383 	list_add_rcu(&f->list, kmmio_page_list(f->page));
384 
385 	return 0;
386 }
387 
388 /* You must be holding kmmio_lock. */
389 static void release_kmmio_fault_page(unsigned long page,
390 				struct kmmio_fault_page **release_list)
391 {
392 	struct kmmio_fault_page *f;
393 
394 	page &= PAGE_MASK;
395 	f = get_kmmio_fault_page(page);
396 	if (!f)
397 		return;
398 
399 	f->count--;
400 	BUG_ON(f->count < 0);
401 	if (!f->count) {
402 		disarm_kmmio_fault_page(f);
403 		if (!f->scheduled_for_release) {
404 			f->release_next = *release_list;
405 			*release_list = f;
406 			f->scheduled_for_release = true;
407 		}
408 	}
409 }
410 
411 /*
412  * With page-unaligned ioremaps, one or two armed pages may contain
413  * addresses from outside the intended mapping. Events for these addresses
414  * are currently silently dropped. The events may result only from programming
415  * mistakes by accessing addresses before the beginning or past the end of a
416  * mapping.
417  */
418 int register_kmmio_probe(struct kmmio_probe *p)
419 {
420 	unsigned long flags;
421 	int ret = 0;
422 	unsigned long size = 0;
423 	const unsigned long size_lim = p->len + (p->addr & ~PAGE_MASK);
424 
425 	spin_lock_irqsave(&kmmio_lock, flags);
426 	if (get_kmmio_probe(p->addr)) {
427 		ret = -EEXIST;
428 		goto out;
429 	}
430 	kmmio_count++;
431 	list_add_rcu(&p->list, &kmmio_probes);
432 	while (size < size_lim) {
433 		if (add_kmmio_fault_page(p->addr + size))
434 			pr_err("Unable to set page fault.\n");
435 		size += PAGE_SIZE;
436 	}
437 out:
438 	spin_unlock_irqrestore(&kmmio_lock, flags);
439 	/*
440 	 * XXX: What should I do here?
441 	 * Here was a call to global_flush_tlb(), but it does not exist
442 	 * anymore. It seems it's not needed after all.
443 	 */
444 	return ret;
445 }
446 EXPORT_SYMBOL(register_kmmio_probe);
447 
448 static void rcu_free_kmmio_fault_pages(struct rcu_head *head)
449 {
450 	struct kmmio_delayed_release *dr = container_of(
451 						head,
452 						struct kmmio_delayed_release,
453 						rcu);
454 	struct kmmio_fault_page *f = dr->release_list;
455 	while (f) {
456 		struct kmmio_fault_page *next = f->release_next;
457 		BUG_ON(f->count);
458 		kfree(f);
459 		f = next;
460 	}
461 	kfree(dr);
462 }
463 
464 static void remove_kmmio_fault_pages(struct rcu_head *head)
465 {
466 	struct kmmio_delayed_release *dr =
467 		container_of(head, struct kmmio_delayed_release, rcu);
468 	struct kmmio_fault_page *f = dr->release_list;
469 	struct kmmio_fault_page **prevp = &dr->release_list;
470 	unsigned long flags;
471 
472 	spin_lock_irqsave(&kmmio_lock, flags);
473 	while (f) {
474 		if (!f->count) {
475 			list_del_rcu(&f->list);
476 			prevp = &f->release_next;
477 		} else {
478 			*prevp = f->release_next;
479 			f->release_next = NULL;
480 			f->scheduled_for_release = false;
481 		}
482 		f = *prevp;
483 	}
484 	spin_unlock_irqrestore(&kmmio_lock, flags);
485 
486 	/* This is the real RCU destroy call. */
487 	call_rcu(&dr->rcu, rcu_free_kmmio_fault_pages);
488 }
489 
490 /*
491  * Remove a kmmio probe. You have to synchronize_rcu() before you can be
492  * sure that the callbacks will not be called anymore. Only after that
493  * you may actually release your struct kmmio_probe.
494  *
495  * Unregistering a kmmio fault page has three steps:
496  * 1. release_kmmio_fault_page()
497  *    Disarm the page, wait a grace period to let all faults finish.
498  * 2. remove_kmmio_fault_pages()
499  *    Remove the pages from kmmio_page_table.
500  * 3. rcu_free_kmmio_fault_pages()
501  *    Actually free the kmmio_fault_page structs as with RCU.
502  */
503 void unregister_kmmio_probe(struct kmmio_probe *p)
504 {
505 	unsigned long flags;
506 	unsigned long size = 0;
507 	const unsigned long size_lim = p->len + (p->addr & ~PAGE_MASK);
508 	struct kmmio_fault_page *release_list = NULL;
509 	struct kmmio_delayed_release *drelease;
510 
511 	spin_lock_irqsave(&kmmio_lock, flags);
512 	while (size < size_lim) {
513 		release_kmmio_fault_page(p->addr + size, &release_list);
514 		size += PAGE_SIZE;
515 	}
516 	list_del_rcu(&p->list);
517 	kmmio_count--;
518 	spin_unlock_irqrestore(&kmmio_lock, flags);
519 
520 	if (!release_list)
521 		return;
522 
523 	drelease = kmalloc(sizeof(*drelease), GFP_ATOMIC);
524 	if (!drelease) {
525 		pr_crit("leaking kmmio_fault_page objects.\n");
526 		return;
527 	}
528 	drelease->release_list = release_list;
529 
530 	/*
531 	 * This is not really RCU here. We have just disarmed a set of
532 	 * pages so that they cannot trigger page faults anymore. However,
533 	 * we cannot remove the pages from kmmio_page_table,
534 	 * because a probe hit might be in flight on another CPU. The
535 	 * pages are collected into a list, and they will be removed from
536 	 * kmmio_page_table when it is certain that no probe hit related to
537 	 * these pages can be in flight. RCU grace period sounds like a
538 	 * good choice.
539 	 *
540 	 * If we removed the pages too early, kmmio page fault handler might
541 	 * not find the respective kmmio_fault_page and determine it's not
542 	 * a kmmio fault, when it actually is. This would lead to madness.
543 	 */
544 	call_rcu(&drelease->rcu, remove_kmmio_fault_pages);
545 }
546 EXPORT_SYMBOL(unregister_kmmio_probe);
547 
548 static int
549 kmmio_die_notifier(struct notifier_block *nb, unsigned long val, void *args)
550 {
551 	struct die_args *arg = args;
552 	unsigned long* dr6_p = (unsigned long *)ERR_PTR(arg->err);
553 
554 	if (val == DIE_DEBUG && (*dr6_p & DR_STEP))
555 		if (post_kmmio_handler(*dr6_p, arg->regs) == 1) {
556 			/*
557 			 * Reset the BS bit in dr6 (pointed by args->err) to
558 			 * denote completion of processing
559 			 */
560 			*dr6_p &= ~DR_STEP;
561 			return NOTIFY_STOP;
562 		}
563 
564 	return NOTIFY_DONE;
565 }
566 
567 static struct notifier_block nb_die = {
568 	.notifier_call = kmmio_die_notifier
569 };
570 
571 int kmmio_init(void)
572 {
573 	int i;
574 
575 	for (i = 0; i < KMMIO_PAGE_TABLE_SIZE; i++)
576 		INIT_LIST_HEAD(&kmmio_page_table[i]);
577 
578 	return register_die_notifier(&nb_die);
579 }
580 
581 void kmmio_cleanup(void)
582 {
583 	int i;
584 
585 	unregister_die_notifier(&nb_die);
586 	for (i = 0; i < KMMIO_PAGE_TABLE_SIZE; i++) {
587 		WARN_ONCE(!list_empty(&kmmio_page_table[i]),
588 			KERN_ERR "kmmio_page_table not empty at cleanup, any further tracing will leak memory.\n");
589 	}
590 }
591