1 // SPDX-License-Identifier: GPL-2.0 2 /* Support for MMIO probes. 3 * Benfit many code from kprobes 4 * (C) 2002 Louis Zhuang <louis.zhuang@intel.com>. 5 * 2007 Alexander Eichner 6 * 2008 Pekka Paalanen <pq@iki.fi> 7 */ 8 9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 10 11 #include <linux/list.h> 12 #include <linux/rculist.h> 13 #include <linux/spinlock.h> 14 #include <linux/hash.h> 15 #include <linux/export.h> 16 #include <linux/kernel.h> 17 #include <linux/uaccess.h> 18 #include <linux/ptrace.h> 19 #include <linux/preempt.h> 20 #include <linux/percpu.h> 21 #include <linux/kdebug.h> 22 #include <linux/mutex.h> 23 #include <linux/io.h> 24 #include <linux/slab.h> 25 #include <asm/cacheflush.h> 26 #include <asm/tlbflush.h> 27 #include <linux/errno.h> 28 #include <asm/debugreg.h> 29 #include <linux/mmiotrace.h> 30 31 #define KMMIO_PAGE_HASH_BITS 4 32 #define KMMIO_PAGE_TABLE_SIZE (1 << KMMIO_PAGE_HASH_BITS) 33 34 struct kmmio_fault_page { 35 struct list_head list; 36 struct kmmio_fault_page *release_next; 37 unsigned long addr; /* the requested address */ 38 pteval_t old_presence; /* page presence prior to arming */ 39 bool armed; 40 41 /* 42 * Number of times this page has been registered as a part 43 * of a probe. If zero, page is disarmed and this may be freed. 44 * Used only by writers (RCU) and post_kmmio_handler(). 45 * Protected by kmmio_lock, when linked into kmmio_page_table. 46 */ 47 int count; 48 49 bool scheduled_for_release; 50 }; 51 52 struct kmmio_delayed_release { 53 struct rcu_head rcu; 54 struct kmmio_fault_page *release_list; 55 }; 56 57 struct kmmio_context { 58 struct kmmio_fault_page *fpage; 59 struct kmmio_probe *probe; 60 unsigned long saved_flags; 61 unsigned long addr; 62 int active; 63 }; 64 65 static DEFINE_SPINLOCK(kmmio_lock); 66 67 /* Protected by kmmio_lock */ 68 unsigned int kmmio_count; 69 70 /* Read-protected by RCU, write-protected by kmmio_lock. */ 71 static struct list_head kmmio_page_table[KMMIO_PAGE_TABLE_SIZE]; 72 static LIST_HEAD(kmmio_probes); 73 74 static struct list_head *kmmio_page_list(unsigned long addr) 75 { 76 unsigned int l; 77 pte_t *pte = lookup_address(addr, &l); 78 79 if (!pte) 80 return NULL; 81 addr &= page_level_mask(l); 82 83 return &kmmio_page_table[hash_long(addr, KMMIO_PAGE_HASH_BITS)]; 84 } 85 86 /* Accessed per-cpu */ 87 static DEFINE_PER_CPU(struct kmmio_context, kmmio_ctx); 88 89 /* 90 * this is basically a dynamic stabbing problem: 91 * Could use the existing prio tree code or 92 * Possible better implementations: 93 * The Interval Skip List: A Data Structure for Finding All Intervals That 94 * Overlap a Point (might be simple) 95 * Space Efficient Dynamic Stabbing with Fast Queries - Mikkel Thorup 96 */ 97 /* Get the kmmio at this addr (if any). You must be holding RCU read lock. */ 98 static struct kmmio_probe *get_kmmio_probe(unsigned long addr) 99 { 100 struct kmmio_probe *p; 101 list_for_each_entry_rcu(p, &kmmio_probes, list) { 102 if (addr >= p->addr && addr < (p->addr + p->len)) 103 return p; 104 } 105 return NULL; 106 } 107 108 /* You must be holding RCU read lock. */ 109 static struct kmmio_fault_page *get_kmmio_fault_page(unsigned long addr) 110 { 111 struct list_head *head; 112 struct kmmio_fault_page *f; 113 unsigned int l; 114 pte_t *pte = lookup_address(addr, &l); 115 116 if (!pte) 117 return NULL; 118 addr &= page_level_mask(l); 119 head = kmmio_page_list(addr); 120 list_for_each_entry_rcu(f, head, list) { 121 if (f->addr == addr) 122 return f; 123 } 124 return NULL; 125 } 126 127 static void clear_pmd_presence(pmd_t *pmd, bool clear, pmdval_t *old) 128 { 129 pmd_t new_pmd; 130 pmdval_t v = pmd_val(*pmd); 131 if (clear) { 132 *old = v; 133 new_pmd = pmd_mknotpresent(*pmd); 134 } else { 135 /* Presume this has been called with clear==true previously */ 136 new_pmd = __pmd(*old); 137 } 138 set_pmd(pmd, new_pmd); 139 } 140 141 static void clear_pte_presence(pte_t *pte, bool clear, pteval_t *old) 142 { 143 pteval_t v = pte_val(*pte); 144 if (clear) { 145 *old = v; 146 /* Nothing should care about address */ 147 pte_clear(&init_mm, 0, pte); 148 } else { 149 /* Presume this has been called with clear==true previously */ 150 set_pte_atomic(pte, __pte(*old)); 151 } 152 } 153 154 static int clear_page_presence(struct kmmio_fault_page *f, bool clear) 155 { 156 unsigned int level; 157 pte_t *pte = lookup_address(f->addr, &level); 158 159 if (!pte) { 160 pr_err("no pte for addr 0x%08lx\n", f->addr); 161 return -1; 162 } 163 164 switch (level) { 165 case PG_LEVEL_2M: 166 clear_pmd_presence((pmd_t *)pte, clear, &f->old_presence); 167 break; 168 case PG_LEVEL_4K: 169 clear_pte_presence(pte, clear, &f->old_presence); 170 break; 171 default: 172 pr_err("unexpected page level 0x%x.\n", level); 173 return -1; 174 } 175 176 __flush_tlb_one_kernel(f->addr); 177 return 0; 178 } 179 180 /* 181 * Mark the given page as not present. Access to it will trigger a fault. 182 * 183 * Struct kmmio_fault_page is protected by RCU and kmmio_lock, but the 184 * protection is ignored here. RCU read lock is assumed held, so the struct 185 * will not disappear unexpectedly. Furthermore, the caller must guarantee, 186 * that double arming the same virtual address (page) cannot occur. 187 * 188 * Double disarming on the other hand is allowed, and may occur when a fault 189 * and mmiotrace shutdown happen simultaneously. 190 */ 191 static int arm_kmmio_fault_page(struct kmmio_fault_page *f) 192 { 193 int ret; 194 WARN_ONCE(f->armed, KERN_ERR pr_fmt("kmmio page already armed.\n")); 195 if (f->armed) { 196 pr_warn("double-arm: addr 0x%08lx, ref %d, old %d\n", 197 f->addr, f->count, !!f->old_presence); 198 } 199 ret = clear_page_presence(f, true); 200 WARN_ONCE(ret < 0, KERN_ERR pr_fmt("arming at 0x%08lx failed.\n"), 201 f->addr); 202 f->armed = true; 203 return ret; 204 } 205 206 /** Restore the given page to saved presence state. */ 207 static void disarm_kmmio_fault_page(struct kmmio_fault_page *f) 208 { 209 int ret = clear_page_presence(f, false); 210 WARN_ONCE(ret < 0, 211 KERN_ERR "kmmio disarming at 0x%08lx failed.\n", f->addr); 212 f->armed = false; 213 } 214 215 /* 216 * This is being called from do_page_fault(). 217 * 218 * We may be in an interrupt or a critical section. Also prefecthing may 219 * trigger a page fault. We may be in the middle of process switch. 220 * We cannot take any locks, because we could be executing especially 221 * within a kmmio critical section. 222 * 223 * Local interrupts are disabled, so preemption cannot happen. 224 * Do not enable interrupts, do not sleep, and watch out for other CPUs. 225 */ 226 /* 227 * Interrupts are disabled on entry as trap3 is an interrupt gate 228 * and they remain disabled throughout this function. 229 */ 230 int kmmio_handler(struct pt_regs *regs, unsigned long addr) 231 { 232 struct kmmio_context *ctx; 233 struct kmmio_fault_page *faultpage; 234 int ret = 0; /* default to fault not handled */ 235 unsigned long page_base = addr; 236 unsigned int l; 237 pte_t *pte = lookup_address(addr, &l); 238 if (!pte) 239 return -EINVAL; 240 page_base &= page_level_mask(l); 241 242 /* 243 * Preemption is now disabled to prevent process switch during 244 * single stepping. We can only handle one active kmmio trace 245 * per cpu, so ensure that we finish it before something else 246 * gets to run. We also hold the RCU read lock over single 247 * stepping to avoid looking up the probe and kmmio_fault_page 248 * again. 249 */ 250 preempt_disable(); 251 rcu_read_lock(); 252 253 faultpage = get_kmmio_fault_page(page_base); 254 if (!faultpage) { 255 /* 256 * Either this page fault is not caused by kmmio, or 257 * another CPU just pulled the kmmio probe from under 258 * our feet. The latter case should not be possible. 259 */ 260 goto no_kmmio; 261 } 262 263 ctx = this_cpu_ptr(&kmmio_ctx); 264 if (ctx->active) { 265 if (page_base == ctx->addr) { 266 /* 267 * A second fault on the same page means some other 268 * condition needs handling by do_page_fault(), the 269 * page really not being present is the most common. 270 */ 271 pr_debug("secondary hit for 0x%08lx CPU %d.\n", 272 addr, smp_processor_id()); 273 274 if (!faultpage->old_presence) 275 pr_info("unexpected secondary hit for address 0x%08lx on CPU %d.\n", 276 addr, smp_processor_id()); 277 } else { 278 /* 279 * Prevent overwriting already in-flight context. 280 * This should not happen, let's hope disarming at 281 * least prevents a panic. 282 */ 283 pr_emerg("recursive probe hit on CPU %d, for address 0x%08lx. Ignoring.\n", 284 smp_processor_id(), addr); 285 pr_emerg("previous hit was at 0x%08lx.\n", ctx->addr); 286 disarm_kmmio_fault_page(faultpage); 287 } 288 goto no_kmmio; 289 } 290 ctx->active++; 291 292 ctx->fpage = faultpage; 293 ctx->probe = get_kmmio_probe(page_base); 294 ctx->saved_flags = (regs->flags & (X86_EFLAGS_TF | X86_EFLAGS_IF)); 295 ctx->addr = page_base; 296 297 if (ctx->probe && ctx->probe->pre_handler) 298 ctx->probe->pre_handler(ctx->probe, regs, addr); 299 300 /* 301 * Enable single-stepping and disable interrupts for the faulting 302 * context. Local interrupts must not get enabled during stepping. 303 */ 304 regs->flags |= X86_EFLAGS_TF; 305 regs->flags &= ~X86_EFLAGS_IF; 306 307 /* Now we set present bit in PTE and single step. */ 308 disarm_kmmio_fault_page(ctx->fpage); 309 310 /* 311 * If another cpu accesses the same page while we are stepping, 312 * the access will not be caught. It will simply succeed and the 313 * only downside is we lose the event. If this becomes a problem, 314 * the user should drop to single cpu before tracing. 315 */ 316 317 return 1; /* fault handled */ 318 319 no_kmmio: 320 rcu_read_unlock(); 321 preempt_enable_no_resched(); 322 return ret; 323 } 324 325 /* 326 * Interrupts are disabled on entry as trap1 is an interrupt gate 327 * and they remain disabled throughout this function. 328 * This must always get called as the pair to kmmio_handler(). 329 */ 330 static int post_kmmio_handler(unsigned long condition, struct pt_regs *regs) 331 { 332 int ret = 0; 333 struct kmmio_context *ctx = this_cpu_ptr(&kmmio_ctx); 334 335 if (!ctx->active) { 336 /* 337 * debug traps without an active context are due to either 338 * something external causing them (f.e. using a debugger while 339 * mmio tracing enabled), or erroneous behaviour 340 */ 341 pr_warn("unexpected debug trap on CPU %d.\n", smp_processor_id()); 342 goto out; 343 } 344 345 if (ctx->probe && ctx->probe->post_handler) 346 ctx->probe->post_handler(ctx->probe, condition, regs); 347 348 /* Prevent racing against release_kmmio_fault_page(). */ 349 spin_lock(&kmmio_lock); 350 if (ctx->fpage->count) 351 arm_kmmio_fault_page(ctx->fpage); 352 spin_unlock(&kmmio_lock); 353 354 regs->flags &= ~X86_EFLAGS_TF; 355 regs->flags |= ctx->saved_flags; 356 357 /* These were acquired in kmmio_handler(). */ 358 ctx->active--; 359 BUG_ON(ctx->active); 360 rcu_read_unlock(); 361 preempt_enable_no_resched(); 362 363 /* 364 * if somebody else is singlestepping across a probe point, flags 365 * will have TF set, in which case, continue the remaining processing 366 * of do_debug, as if this is not a probe hit. 367 */ 368 if (!(regs->flags & X86_EFLAGS_TF)) 369 ret = 1; 370 out: 371 return ret; 372 } 373 374 /* You must be holding kmmio_lock. */ 375 static int add_kmmio_fault_page(unsigned long addr) 376 { 377 struct kmmio_fault_page *f; 378 379 f = get_kmmio_fault_page(addr); 380 if (f) { 381 if (!f->count) 382 arm_kmmio_fault_page(f); 383 f->count++; 384 return 0; 385 } 386 387 f = kzalloc(sizeof(*f), GFP_ATOMIC); 388 if (!f) 389 return -1; 390 391 f->count = 1; 392 f->addr = addr; 393 394 if (arm_kmmio_fault_page(f)) { 395 kfree(f); 396 return -1; 397 } 398 399 list_add_rcu(&f->list, kmmio_page_list(f->addr)); 400 401 return 0; 402 } 403 404 /* You must be holding kmmio_lock. */ 405 static void release_kmmio_fault_page(unsigned long addr, 406 struct kmmio_fault_page **release_list) 407 { 408 struct kmmio_fault_page *f; 409 410 f = get_kmmio_fault_page(addr); 411 if (!f) 412 return; 413 414 f->count--; 415 BUG_ON(f->count < 0); 416 if (!f->count) { 417 disarm_kmmio_fault_page(f); 418 if (!f->scheduled_for_release) { 419 f->release_next = *release_list; 420 *release_list = f; 421 f->scheduled_for_release = true; 422 } 423 } 424 } 425 426 /* 427 * With page-unaligned ioremaps, one or two armed pages may contain 428 * addresses from outside the intended mapping. Events for these addresses 429 * are currently silently dropped. The events may result only from programming 430 * mistakes by accessing addresses before the beginning or past the end of a 431 * mapping. 432 */ 433 int register_kmmio_probe(struct kmmio_probe *p) 434 { 435 unsigned long flags; 436 int ret = 0; 437 unsigned long size = 0; 438 unsigned long addr = p->addr & PAGE_MASK; 439 const unsigned long size_lim = p->len + (p->addr & ~PAGE_MASK); 440 unsigned int l; 441 pte_t *pte; 442 443 spin_lock_irqsave(&kmmio_lock, flags); 444 if (get_kmmio_probe(addr)) { 445 ret = -EEXIST; 446 goto out; 447 } 448 449 pte = lookup_address(addr, &l); 450 if (!pte) { 451 ret = -EINVAL; 452 goto out; 453 } 454 455 kmmio_count++; 456 list_add_rcu(&p->list, &kmmio_probes); 457 while (size < size_lim) { 458 if (add_kmmio_fault_page(addr + size)) 459 pr_err("Unable to set page fault.\n"); 460 size += page_level_size(l); 461 } 462 out: 463 spin_unlock_irqrestore(&kmmio_lock, flags); 464 /* 465 * XXX: What should I do here? 466 * Here was a call to global_flush_tlb(), but it does not exist 467 * anymore. It seems it's not needed after all. 468 */ 469 return ret; 470 } 471 EXPORT_SYMBOL(register_kmmio_probe); 472 473 static void rcu_free_kmmio_fault_pages(struct rcu_head *head) 474 { 475 struct kmmio_delayed_release *dr = container_of( 476 head, 477 struct kmmio_delayed_release, 478 rcu); 479 struct kmmio_fault_page *f = dr->release_list; 480 while (f) { 481 struct kmmio_fault_page *next = f->release_next; 482 BUG_ON(f->count); 483 kfree(f); 484 f = next; 485 } 486 kfree(dr); 487 } 488 489 static void remove_kmmio_fault_pages(struct rcu_head *head) 490 { 491 struct kmmio_delayed_release *dr = 492 container_of(head, struct kmmio_delayed_release, rcu); 493 struct kmmio_fault_page *f = dr->release_list; 494 struct kmmio_fault_page **prevp = &dr->release_list; 495 unsigned long flags; 496 497 spin_lock_irqsave(&kmmio_lock, flags); 498 while (f) { 499 if (!f->count) { 500 list_del_rcu(&f->list); 501 prevp = &f->release_next; 502 } else { 503 *prevp = f->release_next; 504 f->release_next = NULL; 505 f->scheduled_for_release = false; 506 } 507 f = *prevp; 508 } 509 spin_unlock_irqrestore(&kmmio_lock, flags); 510 511 /* This is the real RCU destroy call. */ 512 call_rcu(&dr->rcu, rcu_free_kmmio_fault_pages); 513 } 514 515 /* 516 * Remove a kmmio probe. You have to synchronize_rcu() before you can be 517 * sure that the callbacks will not be called anymore. Only after that 518 * you may actually release your struct kmmio_probe. 519 * 520 * Unregistering a kmmio fault page has three steps: 521 * 1. release_kmmio_fault_page() 522 * Disarm the page, wait a grace period to let all faults finish. 523 * 2. remove_kmmio_fault_pages() 524 * Remove the pages from kmmio_page_table. 525 * 3. rcu_free_kmmio_fault_pages() 526 * Actually free the kmmio_fault_page structs as with RCU. 527 */ 528 void unregister_kmmio_probe(struct kmmio_probe *p) 529 { 530 unsigned long flags; 531 unsigned long size = 0; 532 unsigned long addr = p->addr & PAGE_MASK; 533 const unsigned long size_lim = p->len + (p->addr & ~PAGE_MASK); 534 struct kmmio_fault_page *release_list = NULL; 535 struct kmmio_delayed_release *drelease; 536 unsigned int l; 537 pte_t *pte; 538 539 pte = lookup_address(addr, &l); 540 if (!pte) 541 return; 542 543 spin_lock_irqsave(&kmmio_lock, flags); 544 while (size < size_lim) { 545 release_kmmio_fault_page(addr + size, &release_list); 546 size += page_level_size(l); 547 } 548 list_del_rcu(&p->list); 549 kmmio_count--; 550 spin_unlock_irqrestore(&kmmio_lock, flags); 551 552 if (!release_list) 553 return; 554 555 drelease = kmalloc(sizeof(*drelease), GFP_ATOMIC); 556 if (!drelease) { 557 pr_crit("leaking kmmio_fault_page objects.\n"); 558 return; 559 } 560 drelease->release_list = release_list; 561 562 /* 563 * This is not really RCU here. We have just disarmed a set of 564 * pages so that they cannot trigger page faults anymore. However, 565 * we cannot remove the pages from kmmio_page_table, 566 * because a probe hit might be in flight on another CPU. The 567 * pages are collected into a list, and they will be removed from 568 * kmmio_page_table when it is certain that no probe hit related to 569 * these pages can be in flight. RCU grace period sounds like a 570 * good choice. 571 * 572 * If we removed the pages too early, kmmio page fault handler might 573 * not find the respective kmmio_fault_page and determine it's not 574 * a kmmio fault, when it actually is. This would lead to madness. 575 */ 576 call_rcu(&drelease->rcu, remove_kmmio_fault_pages); 577 } 578 EXPORT_SYMBOL(unregister_kmmio_probe); 579 580 static int 581 kmmio_die_notifier(struct notifier_block *nb, unsigned long val, void *args) 582 { 583 struct die_args *arg = args; 584 unsigned long* dr6_p = (unsigned long *)ERR_PTR(arg->err); 585 586 if (val == DIE_DEBUG && (*dr6_p & DR_STEP)) 587 if (post_kmmio_handler(*dr6_p, arg->regs) == 1) { 588 /* 589 * Reset the BS bit in dr6 (pointed by args->err) to 590 * denote completion of processing 591 */ 592 *dr6_p &= ~DR_STEP; 593 return NOTIFY_STOP; 594 } 595 596 return NOTIFY_DONE; 597 } 598 599 static struct notifier_block nb_die = { 600 .notifier_call = kmmio_die_notifier 601 }; 602 603 int kmmio_init(void) 604 { 605 int i; 606 607 for (i = 0; i < KMMIO_PAGE_TABLE_SIZE; i++) 608 INIT_LIST_HEAD(&kmmio_page_table[i]); 609 610 return register_die_notifier(&nb_die); 611 } 612 613 void kmmio_cleanup(void) 614 { 615 int i; 616 617 unregister_die_notifier(&nb_die); 618 for (i = 0; i < KMMIO_PAGE_TABLE_SIZE; i++) { 619 WARN_ONCE(!list_empty(&kmmio_page_table[i]), 620 KERN_ERR "kmmio_page_table not empty at cleanup, any further tracing will leak memory.\n"); 621 } 622 } 623