xref: /linux/arch/x86/mm/kasan_init_64.c (revision f58f45c1e5b92975e91754f5407250085a6ae7cf)
1 // SPDX-License-Identifier: GPL-2.0
2 #define DISABLE_BRANCH_PROFILING
3 #define pr_fmt(fmt) "kasan: " fmt
4 
5 /* cpu_feature_enabled() cannot be used this early */
6 #define USE_EARLY_PGTABLE_L5
7 
8 #include <linux/memblock.h>
9 #include <linux/kasan.h>
10 #include <linux/kdebug.h>
11 #include <linux/mm.h>
12 #include <linux/sched.h>
13 #include <linux/sched/task.h>
14 #include <linux/vmalloc.h>
15 
16 #include <asm/e820/types.h>
17 #include <asm/pgalloc.h>
18 #include <asm/tlbflush.h>
19 #include <asm/sections.h>
20 #include <asm/cpu_entry_area.h>
21 
22 extern struct range pfn_mapped[E820_MAX_ENTRIES];
23 
24 static p4d_t tmp_p4d_table[MAX_PTRS_PER_P4D] __initdata __aligned(PAGE_SIZE);
25 
26 static __init void *early_alloc(size_t size, int nid, bool should_panic)
27 {
28 	void *ptr = memblock_alloc_try_nid(size, size,
29 			__pa(MAX_DMA_ADDRESS), MEMBLOCK_ALLOC_ACCESSIBLE, nid);
30 
31 	if (!ptr && should_panic)
32 		panic("%pS: Failed to allocate page, nid=%d from=%lx\n",
33 		      (void *)_RET_IP_, nid, __pa(MAX_DMA_ADDRESS));
34 
35 	return ptr;
36 }
37 
38 static void __init kasan_populate_pmd(pmd_t *pmd, unsigned long addr,
39 				      unsigned long end, int nid)
40 {
41 	pte_t *pte;
42 
43 	if (pmd_none(*pmd)) {
44 		void *p;
45 
46 		if (boot_cpu_has(X86_FEATURE_PSE) &&
47 		    ((end - addr) == PMD_SIZE) &&
48 		    IS_ALIGNED(addr, PMD_SIZE)) {
49 			p = early_alloc(PMD_SIZE, nid, false);
50 			if (p && pmd_set_huge(pmd, __pa(p), PAGE_KERNEL))
51 				return;
52 			memblock_free(p, PMD_SIZE);
53 		}
54 
55 		p = early_alloc(PAGE_SIZE, nid, true);
56 		pmd_populate_kernel(&init_mm, pmd, p);
57 	}
58 
59 	pte = pte_offset_kernel(pmd, addr);
60 	do {
61 		pte_t entry;
62 		void *p;
63 
64 		if (!pte_none(*pte))
65 			continue;
66 
67 		p = early_alloc(PAGE_SIZE, nid, true);
68 		entry = pfn_pte(PFN_DOWN(__pa(p)), PAGE_KERNEL);
69 		set_pte_at(&init_mm, addr, pte, entry);
70 	} while (pte++, addr += PAGE_SIZE, addr != end);
71 }
72 
73 static void __init kasan_populate_pud(pud_t *pud, unsigned long addr,
74 				      unsigned long end, int nid)
75 {
76 	pmd_t *pmd;
77 	unsigned long next;
78 
79 	if (pud_none(*pud)) {
80 		void *p;
81 
82 		if (boot_cpu_has(X86_FEATURE_GBPAGES) &&
83 		    ((end - addr) == PUD_SIZE) &&
84 		    IS_ALIGNED(addr, PUD_SIZE)) {
85 			p = early_alloc(PUD_SIZE, nid, false);
86 			if (p && pud_set_huge(pud, __pa(p), PAGE_KERNEL))
87 				return;
88 			memblock_free(p, PUD_SIZE);
89 		}
90 
91 		p = early_alloc(PAGE_SIZE, nid, true);
92 		pud_populate(&init_mm, pud, p);
93 	}
94 
95 	pmd = pmd_offset(pud, addr);
96 	do {
97 		next = pmd_addr_end(addr, end);
98 		if (!pmd_leaf(*pmd))
99 			kasan_populate_pmd(pmd, addr, next, nid);
100 	} while (pmd++, addr = next, addr != end);
101 }
102 
103 static void __init kasan_populate_p4d(p4d_t *p4d, unsigned long addr,
104 				      unsigned long end, int nid)
105 {
106 	pud_t *pud;
107 	unsigned long next;
108 
109 	if (p4d_none(*p4d)) {
110 		void *p = early_alloc(PAGE_SIZE, nid, true);
111 
112 		p4d_populate(&init_mm, p4d, p);
113 	}
114 
115 	pud = pud_offset(p4d, addr);
116 	do {
117 		next = pud_addr_end(addr, end);
118 		if (!pud_leaf(*pud))
119 			kasan_populate_pud(pud, addr, next, nid);
120 	} while (pud++, addr = next, addr != end);
121 }
122 
123 static void __init kasan_populate_pgd(pgd_t *pgd, unsigned long addr,
124 				      unsigned long end, int nid)
125 {
126 	void *p;
127 	p4d_t *p4d;
128 	unsigned long next;
129 
130 	if (pgd_none(*pgd)) {
131 		p = early_alloc(PAGE_SIZE, nid, true);
132 		pgd_populate(&init_mm, pgd, p);
133 	}
134 
135 	p4d = p4d_offset(pgd, addr);
136 	do {
137 		next = p4d_addr_end(addr, end);
138 		kasan_populate_p4d(p4d, addr, next, nid);
139 	} while (p4d++, addr = next, addr != end);
140 }
141 
142 static void __init kasan_populate_shadow(unsigned long addr, unsigned long end,
143 					 int nid)
144 {
145 	pgd_t *pgd;
146 	unsigned long next;
147 
148 	addr = addr & PAGE_MASK;
149 	end = round_up(end, PAGE_SIZE);
150 	pgd = pgd_offset_k(addr);
151 	do {
152 		next = pgd_addr_end(addr, end);
153 		kasan_populate_pgd(pgd, addr, next, nid);
154 	} while (pgd++, addr = next, addr != end);
155 }
156 
157 static void __init map_range(struct range *range)
158 {
159 	unsigned long start;
160 	unsigned long end;
161 
162 	start = (unsigned long)kasan_mem_to_shadow(pfn_to_kaddr(range->start));
163 	end = (unsigned long)kasan_mem_to_shadow(pfn_to_kaddr(range->end));
164 
165 	kasan_populate_shadow(start, end, early_pfn_to_nid(range->start));
166 }
167 
168 static void __init clear_pgds(unsigned long start,
169 			unsigned long end)
170 {
171 	pgd_t *pgd;
172 	/* See comment in kasan_init() */
173 	unsigned long pgd_end = end & PGDIR_MASK;
174 
175 	for (; start < pgd_end; start += PGDIR_SIZE) {
176 		pgd = pgd_offset_k(start);
177 		/*
178 		 * With folded p4d, pgd_clear() is nop, use p4d_clear()
179 		 * instead.
180 		 */
181 		if (pgtable_l5_enabled())
182 			pgd_clear(pgd);
183 		else
184 			p4d_clear(p4d_offset(pgd, start));
185 	}
186 
187 	pgd = pgd_offset_k(start);
188 	for (; start < end; start += P4D_SIZE)
189 		p4d_clear(p4d_offset(pgd, start));
190 }
191 
192 static inline p4d_t *early_p4d_offset(pgd_t *pgd, unsigned long addr)
193 {
194 	unsigned long p4d;
195 
196 	if (!pgtable_l5_enabled())
197 		return (p4d_t *)pgd;
198 
199 	p4d = pgd_val(*pgd) & PTE_PFN_MASK;
200 	p4d += __START_KERNEL_map - phys_base;
201 	return (p4d_t *)p4d + p4d_index(addr);
202 }
203 
204 static void __init kasan_early_p4d_populate(pgd_t *pgd,
205 		unsigned long addr,
206 		unsigned long end)
207 {
208 	pgd_t pgd_entry;
209 	p4d_t *p4d, p4d_entry;
210 	unsigned long next;
211 
212 	if (pgd_none(*pgd)) {
213 		pgd_entry = __pgd(_KERNPG_TABLE |
214 					__pa_nodebug(kasan_early_shadow_p4d));
215 		set_pgd(pgd, pgd_entry);
216 	}
217 
218 	p4d = early_p4d_offset(pgd, addr);
219 	do {
220 		next = p4d_addr_end(addr, end);
221 
222 		if (!p4d_none(*p4d))
223 			continue;
224 
225 		p4d_entry = __p4d(_KERNPG_TABLE |
226 					__pa_nodebug(kasan_early_shadow_pud));
227 		set_p4d(p4d, p4d_entry);
228 	} while (p4d++, addr = next, addr != end && p4d_none(*p4d));
229 }
230 
231 static void __init kasan_map_early_shadow(pgd_t *pgd)
232 {
233 	/* See comment in kasan_init() */
234 	unsigned long addr = KASAN_SHADOW_START & PGDIR_MASK;
235 	unsigned long end = KASAN_SHADOW_END;
236 	unsigned long next;
237 
238 	pgd += pgd_index(addr);
239 	do {
240 		next = pgd_addr_end(addr, end);
241 		kasan_early_p4d_populate(pgd, addr, next);
242 	} while (pgd++, addr = next, addr != end);
243 }
244 
245 static void __init kasan_shallow_populate_p4ds(pgd_t *pgd,
246 					       unsigned long addr,
247 					       unsigned long end)
248 {
249 	p4d_t *p4d;
250 	unsigned long next;
251 	void *p;
252 
253 	p4d = p4d_offset(pgd, addr);
254 	do {
255 		next = p4d_addr_end(addr, end);
256 
257 		if (p4d_none(*p4d)) {
258 			p = early_alloc(PAGE_SIZE, NUMA_NO_NODE, true);
259 			p4d_populate(&init_mm, p4d, p);
260 		}
261 	} while (p4d++, addr = next, addr != end);
262 }
263 
264 static void __init kasan_shallow_populate_pgds(void *start, void *end)
265 {
266 	unsigned long addr, next;
267 	pgd_t *pgd;
268 	void *p;
269 
270 	addr = (unsigned long)start;
271 	pgd = pgd_offset_k(addr);
272 	do {
273 		next = pgd_addr_end(addr, (unsigned long)end);
274 
275 		if (pgd_none(*pgd)) {
276 			p = early_alloc(PAGE_SIZE, NUMA_NO_NODE, true);
277 			pgd_populate(&init_mm, pgd, p);
278 		}
279 
280 		/*
281 		 * we need to populate p4ds to be synced when running in
282 		 * four level mode - see sync_global_pgds_l4()
283 		 */
284 		kasan_shallow_populate_p4ds(pgd, addr, next);
285 	} while (pgd++, addr = next, addr != (unsigned long)end);
286 }
287 
288 void __init kasan_early_init(void)
289 {
290 	int i;
291 	pteval_t pte_val = __pa_nodebug(kasan_early_shadow_page) |
292 				__PAGE_KERNEL | _PAGE_ENC;
293 	pmdval_t pmd_val = __pa_nodebug(kasan_early_shadow_pte) | _KERNPG_TABLE;
294 	pudval_t pud_val = __pa_nodebug(kasan_early_shadow_pmd) | _KERNPG_TABLE;
295 	p4dval_t p4d_val = __pa_nodebug(kasan_early_shadow_pud) | _KERNPG_TABLE;
296 
297 	/* Mask out unsupported __PAGE_KERNEL bits: */
298 	pte_val &= __default_kernel_pte_mask;
299 	pmd_val &= __default_kernel_pte_mask;
300 	pud_val &= __default_kernel_pte_mask;
301 	p4d_val &= __default_kernel_pte_mask;
302 
303 	for (i = 0; i < PTRS_PER_PTE; i++)
304 		kasan_early_shadow_pte[i] = __pte(pte_val);
305 
306 	for (i = 0; i < PTRS_PER_PMD; i++)
307 		kasan_early_shadow_pmd[i] = __pmd(pmd_val);
308 
309 	for (i = 0; i < PTRS_PER_PUD; i++)
310 		kasan_early_shadow_pud[i] = __pud(pud_val);
311 
312 	for (i = 0; pgtable_l5_enabled() && i < PTRS_PER_P4D; i++)
313 		kasan_early_shadow_p4d[i] = __p4d(p4d_val);
314 
315 	kasan_map_early_shadow(early_top_pgt);
316 	kasan_map_early_shadow(init_top_pgt);
317 }
318 
319 static unsigned long kasan_mem_to_shadow_align_down(unsigned long va)
320 {
321 	unsigned long shadow = (unsigned long)kasan_mem_to_shadow((void *)va);
322 
323 	return round_down(shadow, PAGE_SIZE);
324 }
325 
326 static unsigned long kasan_mem_to_shadow_align_up(unsigned long va)
327 {
328 	unsigned long shadow = (unsigned long)kasan_mem_to_shadow((void *)va);
329 
330 	return round_up(shadow, PAGE_SIZE);
331 }
332 
333 void __init kasan_populate_shadow_for_vaddr(void *va, size_t size, int nid)
334 {
335 	unsigned long shadow_start, shadow_end;
336 
337 	shadow_start = kasan_mem_to_shadow_align_down((unsigned long)va);
338 	shadow_end = kasan_mem_to_shadow_align_up((unsigned long)va + size);
339 	kasan_populate_shadow(shadow_start, shadow_end, nid);
340 }
341 
342 void __init kasan_init(void)
343 {
344 	unsigned long shadow_cea_begin, shadow_cea_per_cpu_begin, shadow_cea_end;
345 	int i;
346 
347 	memcpy(early_top_pgt, init_top_pgt, sizeof(early_top_pgt));
348 
349 	/*
350 	 * We use the same shadow offset for 4- and 5-level paging to
351 	 * facilitate boot-time switching between paging modes.
352 	 * As result in 5-level paging mode KASAN_SHADOW_START and
353 	 * KASAN_SHADOW_END are not aligned to PGD boundary.
354 	 *
355 	 * KASAN_SHADOW_START doesn't share PGD with anything else.
356 	 * We claim whole PGD entry to make things easier.
357 	 *
358 	 * KASAN_SHADOW_END lands in the last PGD entry and it collides with
359 	 * bunch of things like kernel code, modules, EFI mapping, etc.
360 	 * We need to take extra steps to not overwrite them.
361 	 */
362 	if (pgtable_l5_enabled()) {
363 		void *ptr;
364 
365 		ptr = (void *)pgd_page_vaddr(*pgd_offset_k(KASAN_SHADOW_END));
366 		memcpy(tmp_p4d_table, (void *)ptr, sizeof(tmp_p4d_table));
367 		set_pgd(&early_top_pgt[pgd_index(KASAN_SHADOW_END)],
368 				__pgd(__pa(tmp_p4d_table) | _KERNPG_TABLE));
369 	}
370 
371 	load_cr3(early_top_pgt);
372 	__flush_tlb_all();
373 
374 	clear_pgds(KASAN_SHADOW_START & PGDIR_MASK, KASAN_SHADOW_END);
375 
376 	kasan_populate_early_shadow((void *)(KASAN_SHADOW_START & PGDIR_MASK),
377 			kasan_mem_to_shadow((void *)PAGE_OFFSET));
378 
379 	for (i = 0; i < E820_MAX_ENTRIES; i++) {
380 		if (pfn_mapped[i].end == 0)
381 			break;
382 
383 		map_range(&pfn_mapped[i]);
384 	}
385 
386 	shadow_cea_begin = kasan_mem_to_shadow_align_down(CPU_ENTRY_AREA_BASE);
387 	shadow_cea_per_cpu_begin = kasan_mem_to_shadow_align_up(CPU_ENTRY_AREA_PER_CPU);
388 	shadow_cea_end = kasan_mem_to_shadow_align_up(CPU_ENTRY_AREA_BASE +
389 						      CPU_ENTRY_AREA_MAP_SIZE);
390 
391 	kasan_populate_early_shadow(
392 		kasan_mem_to_shadow((void *)PAGE_OFFSET + MAXMEM),
393 		kasan_mem_to_shadow((void *)VMALLOC_START));
394 
395 	/*
396 	 * If we're in full vmalloc mode, don't back vmalloc space with early
397 	 * shadow pages. Instead, prepopulate pgds/p4ds so they are synced to
398 	 * the global table and we can populate the lower levels on demand.
399 	 */
400 	if (IS_ENABLED(CONFIG_KASAN_VMALLOC))
401 		kasan_shallow_populate_pgds(
402 			kasan_mem_to_shadow((void *)VMALLOC_START),
403 			kasan_mem_to_shadow((void *)VMALLOC_END));
404 	else
405 		kasan_populate_early_shadow(
406 			kasan_mem_to_shadow((void *)VMALLOC_START),
407 			kasan_mem_to_shadow((void *)VMALLOC_END));
408 
409 	kasan_populate_early_shadow(
410 		kasan_mem_to_shadow((void *)VMALLOC_END + 1),
411 		(void *)shadow_cea_begin);
412 
413 	/*
414 	 * Populate the shadow for the shared portion of the CPU entry area.
415 	 * Shadows for the per-CPU areas are mapped on-demand, as each CPU's
416 	 * area is randomly placed somewhere in the 512GiB range and mapping
417 	 * the entire 512GiB range is prohibitively expensive.
418 	 */
419 	kasan_populate_shadow(shadow_cea_begin,
420 			      shadow_cea_per_cpu_begin, 0);
421 
422 	kasan_populate_early_shadow((void *)shadow_cea_end,
423 			kasan_mem_to_shadow((void *)__START_KERNEL_map));
424 
425 	kasan_populate_shadow((unsigned long)kasan_mem_to_shadow(_stext),
426 			      (unsigned long)kasan_mem_to_shadow(_end),
427 			      early_pfn_to_nid(__pa(_stext)));
428 
429 	kasan_populate_early_shadow(kasan_mem_to_shadow((void *)MODULES_END),
430 					(void *)KASAN_SHADOW_END);
431 
432 	load_cr3(init_top_pgt);
433 	__flush_tlb_all();
434 
435 	/*
436 	 * kasan_early_shadow_page has been used as early shadow memory, thus
437 	 * it may contain some garbage. Now we can clear and write protect it,
438 	 * since after the TLB flush no one should write to it.
439 	 */
440 	memset(kasan_early_shadow_page, 0, PAGE_SIZE);
441 	for (i = 0; i < PTRS_PER_PTE; i++) {
442 		pte_t pte;
443 		pgprot_t prot;
444 
445 		prot = __pgprot(__PAGE_KERNEL_RO | _PAGE_ENC);
446 		pgprot_val(prot) &= __default_kernel_pte_mask;
447 
448 		pte = __pte(__pa(kasan_early_shadow_page) | pgprot_val(prot));
449 		set_pte(&kasan_early_shadow_pte[i], pte);
450 	}
451 	/* Flush TLBs again to be sure that write protection applied. */
452 	__flush_tlb_all();
453 
454 	init_task.kasan_depth = 0;
455 	pr_info("KernelAddressSanitizer initialized\n");
456 }
457