xref: /linux/arch/x86/mm/ioremap.c (revision e9f0878c4b2004ac19581274c1ae4c61ae3ca70e)
1 /*
2  * Re-map IO memory to kernel address space so that we can access it.
3  * This is needed for high PCI addresses that aren't mapped in the
4  * 640k-1MB IO memory area on PC's
5  *
6  * (C) Copyright 1995 1996 Linus Torvalds
7  */
8 
9 #include <linux/bootmem.h>
10 #include <linux/init.h>
11 #include <linux/io.h>
12 #include <linux/ioport.h>
13 #include <linux/slab.h>
14 #include <linux/vmalloc.h>
15 #include <linux/mmiotrace.h>
16 #include <linux/mem_encrypt.h>
17 #include <linux/efi.h>
18 
19 #include <asm/set_memory.h>
20 #include <asm/e820/api.h>
21 #include <asm/fixmap.h>
22 #include <asm/pgtable.h>
23 #include <asm/tlbflush.h>
24 #include <asm/pgalloc.h>
25 #include <asm/pat.h>
26 #include <asm/setup.h>
27 
28 #include "physaddr.h"
29 
30 struct ioremap_mem_flags {
31 	bool system_ram;
32 	bool desc_other;
33 };
34 
35 /*
36  * Fix up the linear direct mapping of the kernel to avoid cache attribute
37  * conflicts.
38  */
39 int ioremap_change_attr(unsigned long vaddr, unsigned long size,
40 			enum page_cache_mode pcm)
41 {
42 	unsigned long nrpages = size >> PAGE_SHIFT;
43 	int err;
44 
45 	switch (pcm) {
46 	case _PAGE_CACHE_MODE_UC:
47 	default:
48 		err = _set_memory_uc(vaddr, nrpages);
49 		break;
50 	case _PAGE_CACHE_MODE_WC:
51 		err = _set_memory_wc(vaddr, nrpages);
52 		break;
53 	case _PAGE_CACHE_MODE_WT:
54 		err = _set_memory_wt(vaddr, nrpages);
55 		break;
56 	case _PAGE_CACHE_MODE_WB:
57 		err = _set_memory_wb(vaddr, nrpages);
58 		break;
59 	}
60 
61 	return err;
62 }
63 
64 static bool __ioremap_check_ram(struct resource *res)
65 {
66 	unsigned long start_pfn, stop_pfn;
67 	unsigned long i;
68 
69 	if ((res->flags & IORESOURCE_SYSTEM_RAM) != IORESOURCE_SYSTEM_RAM)
70 		return false;
71 
72 	start_pfn = (res->start + PAGE_SIZE - 1) >> PAGE_SHIFT;
73 	stop_pfn = (res->end + 1) >> PAGE_SHIFT;
74 	if (stop_pfn > start_pfn) {
75 		for (i = 0; i < (stop_pfn - start_pfn); ++i)
76 			if (pfn_valid(start_pfn + i) &&
77 			    !PageReserved(pfn_to_page(start_pfn + i)))
78 				return true;
79 	}
80 
81 	return false;
82 }
83 
84 static int __ioremap_check_desc_other(struct resource *res)
85 {
86 	return (res->desc != IORES_DESC_NONE);
87 }
88 
89 static int __ioremap_res_check(struct resource *res, void *arg)
90 {
91 	struct ioremap_mem_flags *flags = arg;
92 
93 	if (!flags->system_ram)
94 		flags->system_ram = __ioremap_check_ram(res);
95 
96 	if (!flags->desc_other)
97 		flags->desc_other = __ioremap_check_desc_other(res);
98 
99 	return flags->system_ram && flags->desc_other;
100 }
101 
102 /*
103  * To avoid multiple resource walks, this function walks resources marked as
104  * IORESOURCE_MEM and IORESOURCE_BUSY and looking for system RAM and/or a
105  * resource described not as IORES_DESC_NONE (e.g. IORES_DESC_ACPI_TABLES).
106  */
107 static void __ioremap_check_mem(resource_size_t addr, unsigned long size,
108 				struct ioremap_mem_flags *flags)
109 {
110 	u64 start, end;
111 
112 	start = (u64)addr;
113 	end = start + size - 1;
114 	memset(flags, 0, sizeof(*flags));
115 
116 	walk_mem_res(start, end, flags, __ioremap_res_check);
117 }
118 
119 /*
120  * Remap an arbitrary physical address space into the kernel virtual
121  * address space. It transparently creates kernel huge I/O mapping when
122  * the physical address is aligned by a huge page size (1GB or 2MB) and
123  * the requested size is at least the huge page size.
124  *
125  * NOTE: MTRRs can override PAT memory types with a 4KB granularity.
126  * Therefore, the mapping code falls back to use a smaller page toward 4KB
127  * when a mapping range is covered by non-WB type of MTRRs.
128  *
129  * NOTE! We need to allow non-page-aligned mappings too: we will obviously
130  * have to convert them into an offset in a page-aligned mapping, but the
131  * caller shouldn't need to know that small detail.
132  */
133 static void __iomem *__ioremap_caller(resource_size_t phys_addr,
134 		unsigned long size, enum page_cache_mode pcm, void *caller)
135 {
136 	unsigned long offset, vaddr;
137 	resource_size_t last_addr;
138 	const resource_size_t unaligned_phys_addr = phys_addr;
139 	const unsigned long unaligned_size = size;
140 	struct ioremap_mem_flags mem_flags;
141 	struct vm_struct *area;
142 	enum page_cache_mode new_pcm;
143 	pgprot_t prot;
144 	int retval;
145 	void __iomem *ret_addr;
146 
147 	/* Don't allow wraparound or zero size */
148 	last_addr = phys_addr + size - 1;
149 	if (!size || last_addr < phys_addr)
150 		return NULL;
151 
152 	if (!phys_addr_valid(phys_addr)) {
153 		printk(KERN_WARNING "ioremap: invalid physical address %llx\n",
154 		       (unsigned long long)phys_addr);
155 		WARN_ON_ONCE(1);
156 		return NULL;
157 	}
158 
159 	__ioremap_check_mem(phys_addr, size, &mem_flags);
160 
161 	/*
162 	 * Don't allow anybody to remap normal RAM that we're using..
163 	 */
164 	if (mem_flags.system_ram) {
165 		WARN_ONCE(1, "ioremap on RAM at %pa - %pa\n",
166 			  &phys_addr, &last_addr);
167 		return NULL;
168 	}
169 
170 	/*
171 	 * Mappings have to be page-aligned
172 	 */
173 	offset = phys_addr & ~PAGE_MASK;
174 	phys_addr &= PHYSICAL_PAGE_MASK;
175 	size = PAGE_ALIGN(last_addr+1) - phys_addr;
176 
177 	retval = reserve_memtype(phys_addr, (u64)phys_addr + size,
178 						pcm, &new_pcm);
179 	if (retval) {
180 		printk(KERN_ERR "ioremap reserve_memtype failed %d\n", retval);
181 		return NULL;
182 	}
183 
184 	if (pcm != new_pcm) {
185 		if (!is_new_memtype_allowed(phys_addr, size, pcm, new_pcm)) {
186 			printk(KERN_ERR
187 		"ioremap error for 0x%llx-0x%llx, requested 0x%x, got 0x%x\n",
188 				(unsigned long long)phys_addr,
189 				(unsigned long long)(phys_addr + size),
190 				pcm, new_pcm);
191 			goto err_free_memtype;
192 		}
193 		pcm = new_pcm;
194 	}
195 
196 	/*
197 	 * If the page being mapped is in memory and SEV is active then
198 	 * make sure the memory encryption attribute is enabled in the
199 	 * resulting mapping.
200 	 */
201 	prot = PAGE_KERNEL_IO;
202 	if (sev_active() && mem_flags.desc_other)
203 		prot = pgprot_encrypted(prot);
204 
205 	switch (pcm) {
206 	case _PAGE_CACHE_MODE_UC:
207 	default:
208 		prot = __pgprot(pgprot_val(prot) |
209 				cachemode2protval(_PAGE_CACHE_MODE_UC));
210 		break;
211 	case _PAGE_CACHE_MODE_UC_MINUS:
212 		prot = __pgprot(pgprot_val(prot) |
213 				cachemode2protval(_PAGE_CACHE_MODE_UC_MINUS));
214 		break;
215 	case _PAGE_CACHE_MODE_WC:
216 		prot = __pgprot(pgprot_val(prot) |
217 				cachemode2protval(_PAGE_CACHE_MODE_WC));
218 		break;
219 	case _PAGE_CACHE_MODE_WT:
220 		prot = __pgprot(pgprot_val(prot) |
221 				cachemode2protval(_PAGE_CACHE_MODE_WT));
222 		break;
223 	case _PAGE_CACHE_MODE_WB:
224 		break;
225 	}
226 
227 	/*
228 	 * Ok, go for it..
229 	 */
230 	area = get_vm_area_caller(size, VM_IOREMAP, caller);
231 	if (!area)
232 		goto err_free_memtype;
233 	area->phys_addr = phys_addr;
234 	vaddr = (unsigned long) area->addr;
235 
236 	if (kernel_map_sync_memtype(phys_addr, size, pcm))
237 		goto err_free_area;
238 
239 	if (ioremap_page_range(vaddr, vaddr + size, phys_addr, prot))
240 		goto err_free_area;
241 
242 	ret_addr = (void __iomem *) (vaddr + offset);
243 	mmiotrace_ioremap(unaligned_phys_addr, unaligned_size, ret_addr);
244 
245 	/*
246 	 * Check if the request spans more than any BAR in the iomem resource
247 	 * tree.
248 	 */
249 	if (iomem_map_sanity_check(unaligned_phys_addr, unaligned_size))
250 		pr_warn("caller %pS mapping multiple BARs\n", caller);
251 
252 	return ret_addr;
253 err_free_area:
254 	free_vm_area(area);
255 err_free_memtype:
256 	free_memtype(phys_addr, phys_addr + size);
257 	return NULL;
258 }
259 
260 /**
261  * ioremap_nocache     -   map bus memory into CPU space
262  * @phys_addr:    bus address of the memory
263  * @size:      size of the resource to map
264  *
265  * ioremap_nocache performs a platform specific sequence of operations to
266  * make bus memory CPU accessible via the readb/readw/readl/writeb/
267  * writew/writel functions and the other mmio helpers. The returned
268  * address is not guaranteed to be usable directly as a virtual
269  * address.
270  *
271  * This version of ioremap ensures that the memory is marked uncachable
272  * on the CPU as well as honouring existing caching rules from things like
273  * the PCI bus. Note that there are other caches and buffers on many
274  * busses. In particular driver authors should read up on PCI writes
275  *
276  * It's useful if some control registers are in such an area and
277  * write combining or read caching is not desirable:
278  *
279  * Must be freed with iounmap.
280  */
281 void __iomem *ioremap_nocache(resource_size_t phys_addr, unsigned long size)
282 {
283 	/*
284 	 * Ideally, this should be:
285 	 *	pat_enabled() ? _PAGE_CACHE_MODE_UC : _PAGE_CACHE_MODE_UC_MINUS;
286 	 *
287 	 * Till we fix all X drivers to use ioremap_wc(), we will use
288 	 * UC MINUS. Drivers that are certain they need or can already
289 	 * be converted over to strong UC can use ioremap_uc().
290 	 */
291 	enum page_cache_mode pcm = _PAGE_CACHE_MODE_UC_MINUS;
292 
293 	return __ioremap_caller(phys_addr, size, pcm,
294 				__builtin_return_address(0));
295 }
296 EXPORT_SYMBOL(ioremap_nocache);
297 
298 /**
299  * ioremap_uc     -   map bus memory into CPU space as strongly uncachable
300  * @phys_addr:    bus address of the memory
301  * @size:      size of the resource to map
302  *
303  * ioremap_uc performs a platform specific sequence of operations to
304  * make bus memory CPU accessible via the readb/readw/readl/writeb/
305  * writew/writel functions and the other mmio helpers. The returned
306  * address is not guaranteed to be usable directly as a virtual
307  * address.
308  *
309  * This version of ioremap ensures that the memory is marked with a strong
310  * preference as completely uncachable on the CPU when possible. For non-PAT
311  * systems this ends up setting page-attribute flags PCD=1, PWT=1. For PAT
312  * systems this will set the PAT entry for the pages as strong UC.  This call
313  * will honor existing caching rules from things like the PCI bus. Note that
314  * there are other caches and buffers on many busses. In particular driver
315  * authors should read up on PCI writes.
316  *
317  * It's useful if some control registers are in such an area and
318  * write combining or read caching is not desirable:
319  *
320  * Must be freed with iounmap.
321  */
322 void __iomem *ioremap_uc(resource_size_t phys_addr, unsigned long size)
323 {
324 	enum page_cache_mode pcm = _PAGE_CACHE_MODE_UC;
325 
326 	return __ioremap_caller(phys_addr, size, pcm,
327 				__builtin_return_address(0));
328 }
329 EXPORT_SYMBOL_GPL(ioremap_uc);
330 
331 /**
332  * ioremap_wc	-	map memory into CPU space write combined
333  * @phys_addr:	bus address of the memory
334  * @size:	size of the resource to map
335  *
336  * This version of ioremap ensures that the memory is marked write combining.
337  * Write combining allows faster writes to some hardware devices.
338  *
339  * Must be freed with iounmap.
340  */
341 void __iomem *ioremap_wc(resource_size_t phys_addr, unsigned long size)
342 {
343 	return __ioremap_caller(phys_addr, size, _PAGE_CACHE_MODE_WC,
344 					__builtin_return_address(0));
345 }
346 EXPORT_SYMBOL(ioremap_wc);
347 
348 /**
349  * ioremap_wt	-	map memory into CPU space write through
350  * @phys_addr:	bus address of the memory
351  * @size:	size of the resource to map
352  *
353  * This version of ioremap ensures that the memory is marked write through.
354  * Write through stores data into memory while keeping the cache up-to-date.
355  *
356  * Must be freed with iounmap.
357  */
358 void __iomem *ioremap_wt(resource_size_t phys_addr, unsigned long size)
359 {
360 	return __ioremap_caller(phys_addr, size, _PAGE_CACHE_MODE_WT,
361 					__builtin_return_address(0));
362 }
363 EXPORT_SYMBOL(ioremap_wt);
364 
365 void __iomem *ioremap_cache(resource_size_t phys_addr, unsigned long size)
366 {
367 	return __ioremap_caller(phys_addr, size, _PAGE_CACHE_MODE_WB,
368 				__builtin_return_address(0));
369 }
370 EXPORT_SYMBOL(ioremap_cache);
371 
372 void __iomem *ioremap_prot(resource_size_t phys_addr, unsigned long size,
373 				unsigned long prot_val)
374 {
375 	return __ioremap_caller(phys_addr, size,
376 				pgprot2cachemode(__pgprot(prot_val)),
377 				__builtin_return_address(0));
378 }
379 EXPORT_SYMBOL(ioremap_prot);
380 
381 /**
382  * iounmap - Free a IO remapping
383  * @addr: virtual address from ioremap_*
384  *
385  * Caller must ensure there is only one unmapping for the same pointer.
386  */
387 void iounmap(volatile void __iomem *addr)
388 {
389 	struct vm_struct *p, *o;
390 
391 	if ((void __force *)addr <= high_memory)
392 		return;
393 
394 	/*
395 	 * The PCI/ISA range special-casing was removed from __ioremap()
396 	 * so this check, in theory, can be removed. However, there are
397 	 * cases where iounmap() is called for addresses not obtained via
398 	 * ioremap() (vga16fb for example). Add a warning so that these
399 	 * cases can be caught and fixed.
400 	 */
401 	if ((void __force *)addr >= phys_to_virt(ISA_START_ADDRESS) &&
402 	    (void __force *)addr < phys_to_virt(ISA_END_ADDRESS)) {
403 		WARN(1, "iounmap() called for ISA range not obtained using ioremap()\n");
404 		return;
405 	}
406 
407 	mmiotrace_iounmap(addr);
408 
409 	addr = (volatile void __iomem *)
410 		(PAGE_MASK & (unsigned long __force)addr);
411 
412 	/* Use the vm area unlocked, assuming the caller
413 	   ensures there isn't another iounmap for the same address
414 	   in parallel. Reuse of the virtual address is prevented by
415 	   leaving it in the global lists until we're done with it.
416 	   cpa takes care of the direct mappings. */
417 	p = find_vm_area((void __force *)addr);
418 
419 	if (!p) {
420 		printk(KERN_ERR "iounmap: bad address %p\n", addr);
421 		dump_stack();
422 		return;
423 	}
424 
425 	free_memtype(p->phys_addr, p->phys_addr + get_vm_area_size(p));
426 
427 	/* Finally remove it */
428 	o = remove_vm_area((void __force *)addr);
429 	BUG_ON(p != o || o == NULL);
430 	kfree(p);
431 }
432 EXPORT_SYMBOL(iounmap);
433 
434 int __init arch_ioremap_pud_supported(void)
435 {
436 #ifdef CONFIG_X86_64
437 	return boot_cpu_has(X86_FEATURE_GBPAGES);
438 #else
439 	return 0;
440 #endif
441 }
442 
443 int __init arch_ioremap_pmd_supported(void)
444 {
445 	return boot_cpu_has(X86_FEATURE_PSE);
446 }
447 
448 /*
449  * Convert a physical pointer to a virtual kernel pointer for /dev/mem
450  * access
451  */
452 void *xlate_dev_mem_ptr(phys_addr_t phys)
453 {
454 	unsigned long start  = phys &  PAGE_MASK;
455 	unsigned long offset = phys & ~PAGE_MASK;
456 	void *vaddr;
457 
458 	/* memremap() maps if RAM, otherwise falls back to ioremap() */
459 	vaddr = memremap(start, PAGE_SIZE, MEMREMAP_WB);
460 
461 	/* Only add the offset on success and return NULL if memremap() failed */
462 	if (vaddr)
463 		vaddr += offset;
464 
465 	return vaddr;
466 }
467 
468 void unxlate_dev_mem_ptr(phys_addr_t phys, void *addr)
469 {
470 	memunmap((void *)((unsigned long)addr & PAGE_MASK));
471 }
472 
473 /*
474  * Examine the physical address to determine if it is an area of memory
475  * that should be mapped decrypted.  If the memory is not part of the
476  * kernel usable area it was accessed and created decrypted, so these
477  * areas should be mapped decrypted. And since the encryption key can
478  * change across reboots, persistent memory should also be mapped
479  * decrypted.
480  *
481  * If SEV is active, that implies that BIOS/UEFI also ran encrypted so
482  * only persistent memory should be mapped decrypted.
483  */
484 static bool memremap_should_map_decrypted(resource_size_t phys_addr,
485 					  unsigned long size)
486 {
487 	int is_pmem;
488 
489 	/*
490 	 * Check if the address is part of a persistent memory region.
491 	 * This check covers areas added by E820, EFI and ACPI.
492 	 */
493 	is_pmem = region_intersects(phys_addr, size, IORESOURCE_MEM,
494 				    IORES_DESC_PERSISTENT_MEMORY);
495 	if (is_pmem != REGION_DISJOINT)
496 		return true;
497 
498 	/*
499 	 * Check if the non-volatile attribute is set for an EFI
500 	 * reserved area.
501 	 */
502 	if (efi_enabled(EFI_BOOT)) {
503 		switch (efi_mem_type(phys_addr)) {
504 		case EFI_RESERVED_TYPE:
505 			if (efi_mem_attributes(phys_addr) & EFI_MEMORY_NV)
506 				return true;
507 			break;
508 		default:
509 			break;
510 		}
511 	}
512 
513 	/* Check if the address is outside kernel usable area */
514 	switch (e820__get_entry_type(phys_addr, phys_addr + size - 1)) {
515 	case E820_TYPE_RESERVED:
516 	case E820_TYPE_ACPI:
517 	case E820_TYPE_NVS:
518 	case E820_TYPE_UNUSABLE:
519 		/* For SEV, these areas are encrypted */
520 		if (sev_active())
521 			break;
522 		/* Fallthrough */
523 
524 	case E820_TYPE_PRAM:
525 		return true;
526 	default:
527 		break;
528 	}
529 
530 	return false;
531 }
532 
533 /*
534  * Examine the physical address to determine if it is EFI data. Check
535  * it against the boot params structure and EFI tables and memory types.
536  */
537 static bool memremap_is_efi_data(resource_size_t phys_addr,
538 				 unsigned long size)
539 {
540 	u64 paddr;
541 
542 	/* Check if the address is part of EFI boot/runtime data */
543 	if (!efi_enabled(EFI_BOOT))
544 		return false;
545 
546 	paddr = boot_params.efi_info.efi_memmap_hi;
547 	paddr <<= 32;
548 	paddr |= boot_params.efi_info.efi_memmap;
549 	if (phys_addr == paddr)
550 		return true;
551 
552 	paddr = boot_params.efi_info.efi_systab_hi;
553 	paddr <<= 32;
554 	paddr |= boot_params.efi_info.efi_systab;
555 	if (phys_addr == paddr)
556 		return true;
557 
558 	if (efi_is_table_address(phys_addr))
559 		return true;
560 
561 	switch (efi_mem_type(phys_addr)) {
562 	case EFI_BOOT_SERVICES_DATA:
563 	case EFI_RUNTIME_SERVICES_DATA:
564 		return true;
565 	default:
566 		break;
567 	}
568 
569 	return false;
570 }
571 
572 /*
573  * Examine the physical address to determine if it is boot data by checking
574  * it against the boot params setup_data chain.
575  */
576 static bool memremap_is_setup_data(resource_size_t phys_addr,
577 				   unsigned long size)
578 {
579 	struct setup_data *data;
580 	u64 paddr, paddr_next;
581 
582 	paddr = boot_params.hdr.setup_data;
583 	while (paddr) {
584 		unsigned int len;
585 
586 		if (phys_addr == paddr)
587 			return true;
588 
589 		data = memremap(paddr, sizeof(*data),
590 				MEMREMAP_WB | MEMREMAP_DEC);
591 
592 		paddr_next = data->next;
593 		len = data->len;
594 
595 		memunmap(data);
596 
597 		if ((phys_addr > paddr) && (phys_addr < (paddr + len)))
598 			return true;
599 
600 		paddr = paddr_next;
601 	}
602 
603 	return false;
604 }
605 
606 /*
607  * Examine the physical address to determine if it is boot data by checking
608  * it against the boot params setup_data chain (early boot version).
609  */
610 static bool __init early_memremap_is_setup_data(resource_size_t phys_addr,
611 						unsigned long size)
612 {
613 	struct setup_data *data;
614 	u64 paddr, paddr_next;
615 
616 	paddr = boot_params.hdr.setup_data;
617 	while (paddr) {
618 		unsigned int len;
619 
620 		if (phys_addr == paddr)
621 			return true;
622 
623 		data = early_memremap_decrypted(paddr, sizeof(*data));
624 
625 		paddr_next = data->next;
626 		len = data->len;
627 
628 		early_memunmap(data, sizeof(*data));
629 
630 		if ((phys_addr > paddr) && (phys_addr < (paddr + len)))
631 			return true;
632 
633 		paddr = paddr_next;
634 	}
635 
636 	return false;
637 }
638 
639 /*
640  * Architecture function to determine if RAM remap is allowed. By default, a
641  * RAM remap will map the data as encrypted. Determine if a RAM remap should
642  * not be done so that the data will be mapped decrypted.
643  */
644 bool arch_memremap_can_ram_remap(resource_size_t phys_addr, unsigned long size,
645 				 unsigned long flags)
646 {
647 	if (!mem_encrypt_active())
648 		return true;
649 
650 	if (flags & MEMREMAP_ENC)
651 		return true;
652 
653 	if (flags & MEMREMAP_DEC)
654 		return false;
655 
656 	if (sme_active()) {
657 		if (memremap_is_setup_data(phys_addr, size) ||
658 		    memremap_is_efi_data(phys_addr, size))
659 			return false;
660 	}
661 
662 	return !memremap_should_map_decrypted(phys_addr, size);
663 }
664 
665 /*
666  * Architecture override of __weak function to adjust the protection attributes
667  * used when remapping memory. By default, early_memremap() will map the data
668  * as encrypted. Determine if an encrypted mapping should not be done and set
669  * the appropriate protection attributes.
670  */
671 pgprot_t __init early_memremap_pgprot_adjust(resource_size_t phys_addr,
672 					     unsigned long size,
673 					     pgprot_t prot)
674 {
675 	bool encrypted_prot;
676 
677 	if (!mem_encrypt_active())
678 		return prot;
679 
680 	encrypted_prot = true;
681 
682 	if (sme_active()) {
683 		if (early_memremap_is_setup_data(phys_addr, size) ||
684 		    memremap_is_efi_data(phys_addr, size))
685 			encrypted_prot = false;
686 	}
687 
688 	if (encrypted_prot && memremap_should_map_decrypted(phys_addr, size))
689 		encrypted_prot = false;
690 
691 	return encrypted_prot ? pgprot_encrypted(prot)
692 			      : pgprot_decrypted(prot);
693 }
694 
695 bool phys_mem_access_encrypted(unsigned long phys_addr, unsigned long size)
696 {
697 	return arch_memremap_can_ram_remap(phys_addr, size, 0);
698 }
699 
700 #ifdef CONFIG_ARCH_USE_MEMREMAP_PROT
701 /* Remap memory with encryption */
702 void __init *early_memremap_encrypted(resource_size_t phys_addr,
703 				      unsigned long size)
704 {
705 	return early_memremap_prot(phys_addr, size, __PAGE_KERNEL_ENC);
706 }
707 
708 /*
709  * Remap memory with encryption and write-protected - cannot be called
710  * before pat_init() is called
711  */
712 void __init *early_memremap_encrypted_wp(resource_size_t phys_addr,
713 					 unsigned long size)
714 {
715 	/* Be sure the write-protect PAT entry is set for write-protect */
716 	if (__pte2cachemode_tbl[_PAGE_CACHE_MODE_WP] != _PAGE_CACHE_MODE_WP)
717 		return NULL;
718 
719 	return early_memremap_prot(phys_addr, size, __PAGE_KERNEL_ENC_WP);
720 }
721 
722 /* Remap memory without encryption */
723 void __init *early_memremap_decrypted(resource_size_t phys_addr,
724 				      unsigned long size)
725 {
726 	return early_memremap_prot(phys_addr, size, __PAGE_KERNEL_NOENC);
727 }
728 
729 /*
730  * Remap memory without encryption and write-protected - cannot be called
731  * before pat_init() is called
732  */
733 void __init *early_memremap_decrypted_wp(resource_size_t phys_addr,
734 					 unsigned long size)
735 {
736 	/* Be sure the write-protect PAT entry is set for write-protect */
737 	if (__pte2cachemode_tbl[_PAGE_CACHE_MODE_WP] != _PAGE_CACHE_MODE_WP)
738 		return NULL;
739 
740 	return early_memremap_prot(phys_addr, size, __PAGE_KERNEL_NOENC_WP);
741 }
742 #endif	/* CONFIG_ARCH_USE_MEMREMAP_PROT */
743 
744 static pte_t bm_pte[PAGE_SIZE/sizeof(pte_t)] __page_aligned_bss;
745 
746 static inline pmd_t * __init early_ioremap_pmd(unsigned long addr)
747 {
748 	/* Don't assume we're using swapper_pg_dir at this point */
749 	pgd_t *base = __va(read_cr3_pa());
750 	pgd_t *pgd = &base[pgd_index(addr)];
751 	p4d_t *p4d = p4d_offset(pgd, addr);
752 	pud_t *pud = pud_offset(p4d, addr);
753 	pmd_t *pmd = pmd_offset(pud, addr);
754 
755 	return pmd;
756 }
757 
758 static inline pte_t * __init early_ioremap_pte(unsigned long addr)
759 {
760 	return &bm_pte[pte_index(addr)];
761 }
762 
763 bool __init is_early_ioremap_ptep(pte_t *ptep)
764 {
765 	return ptep >= &bm_pte[0] && ptep < &bm_pte[PAGE_SIZE/sizeof(pte_t)];
766 }
767 
768 void __init early_ioremap_init(void)
769 {
770 	pmd_t *pmd;
771 
772 #ifdef CONFIG_X86_64
773 	BUILD_BUG_ON((fix_to_virt(0) + PAGE_SIZE) & ((1 << PMD_SHIFT) - 1));
774 #else
775 	WARN_ON((fix_to_virt(0) + PAGE_SIZE) & ((1 << PMD_SHIFT) - 1));
776 #endif
777 
778 	early_ioremap_setup();
779 
780 	pmd = early_ioremap_pmd(fix_to_virt(FIX_BTMAP_BEGIN));
781 	memset(bm_pte, 0, sizeof(bm_pte));
782 	pmd_populate_kernel(&init_mm, pmd, bm_pte);
783 
784 	/*
785 	 * The boot-ioremap range spans multiple pmds, for which
786 	 * we are not prepared:
787 	 */
788 #define __FIXADDR_TOP (-PAGE_SIZE)
789 	BUILD_BUG_ON((__fix_to_virt(FIX_BTMAP_BEGIN) >> PMD_SHIFT)
790 		     != (__fix_to_virt(FIX_BTMAP_END) >> PMD_SHIFT));
791 #undef __FIXADDR_TOP
792 	if (pmd != early_ioremap_pmd(fix_to_virt(FIX_BTMAP_END))) {
793 		WARN_ON(1);
794 		printk(KERN_WARNING "pmd %p != %p\n",
795 		       pmd, early_ioremap_pmd(fix_to_virt(FIX_BTMAP_END)));
796 		printk(KERN_WARNING "fix_to_virt(FIX_BTMAP_BEGIN): %08lx\n",
797 			fix_to_virt(FIX_BTMAP_BEGIN));
798 		printk(KERN_WARNING "fix_to_virt(FIX_BTMAP_END):   %08lx\n",
799 			fix_to_virt(FIX_BTMAP_END));
800 
801 		printk(KERN_WARNING "FIX_BTMAP_END:       %d\n", FIX_BTMAP_END);
802 		printk(KERN_WARNING "FIX_BTMAP_BEGIN:     %d\n",
803 		       FIX_BTMAP_BEGIN);
804 	}
805 }
806 
807 void __init __early_set_fixmap(enum fixed_addresses idx,
808 			       phys_addr_t phys, pgprot_t flags)
809 {
810 	unsigned long addr = __fix_to_virt(idx);
811 	pte_t *pte;
812 
813 	if (idx >= __end_of_fixed_addresses) {
814 		BUG();
815 		return;
816 	}
817 	pte = early_ioremap_pte(addr);
818 
819 	/* Sanitize 'prot' against any unsupported bits: */
820 	pgprot_val(flags) &= __default_kernel_pte_mask;
821 
822 	if (pgprot_val(flags))
823 		set_pte(pte, pfn_pte(phys >> PAGE_SHIFT, flags));
824 	else
825 		pte_clear(&init_mm, addr, pte);
826 	__flush_tlb_one_kernel(addr);
827 }
828