1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Re-map IO memory to kernel address space so that we can access it. 4 * This is needed for high PCI addresses that aren't mapped in the 5 * 640k-1MB IO memory area on PC's 6 * 7 * (C) Copyright 1995 1996 Linus Torvalds 8 */ 9 10 #include <linux/memblock.h> 11 #include <linux/init.h> 12 #include <linux/io.h> 13 #include <linux/ioport.h> 14 #include <linux/slab.h> 15 #include <linux/vmalloc.h> 16 #include <linux/mmiotrace.h> 17 #include <linux/mem_encrypt.h> 18 #include <linux/efi.h> 19 #include <linux/pgtable.h> 20 21 #include <asm/set_memory.h> 22 #include <asm/e820/api.h> 23 #include <asm/efi.h> 24 #include <asm/fixmap.h> 25 #include <asm/tlbflush.h> 26 #include <asm/pgalloc.h> 27 #include <asm/memtype.h> 28 #include <asm/setup.h> 29 30 #include "physaddr.h" 31 32 /* 33 * Descriptor controlling ioremap() behavior. 34 */ 35 struct ioremap_desc { 36 unsigned int flags; 37 }; 38 39 /* 40 * Fix up the linear direct mapping of the kernel to avoid cache attribute 41 * conflicts. 42 */ 43 int ioremap_change_attr(unsigned long vaddr, unsigned long size, 44 enum page_cache_mode pcm) 45 { 46 unsigned long nrpages = size >> PAGE_SHIFT; 47 int err; 48 49 switch (pcm) { 50 case _PAGE_CACHE_MODE_UC: 51 default: 52 err = _set_memory_uc(vaddr, nrpages); 53 break; 54 case _PAGE_CACHE_MODE_WC: 55 err = _set_memory_wc(vaddr, nrpages); 56 break; 57 case _PAGE_CACHE_MODE_WT: 58 err = _set_memory_wt(vaddr, nrpages); 59 break; 60 case _PAGE_CACHE_MODE_WB: 61 err = _set_memory_wb(vaddr, nrpages); 62 break; 63 } 64 65 return err; 66 } 67 68 /* Does the range (or a subset of) contain normal RAM? */ 69 static unsigned int __ioremap_check_ram(struct resource *res) 70 { 71 unsigned long start_pfn, stop_pfn; 72 unsigned long i; 73 74 if ((res->flags & IORESOURCE_SYSTEM_RAM) != IORESOURCE_SYSTEM_RAM) 75 return 0; 76 77 start_pfn = (res->start + PAGE_SIZE - 1) >> PAGE_SHIFT; 78 stop_pfn = (res->end + 1) >> PAGE_SHIFT; 79 if (stop_pfn > start_pfn) { 80 for (i = 0; i < (stop_pfn - start_pfn); ++i) 81 if (pfn_valid(start_pfn + i) && 82 !PageReserved(pfn_to_page(start_pfn + i))) 83 return IORES_MAP_SYSTEM_RAM; 84 } 85 86 return 0; 87 } 88 89 /* 90 * In a SEV guest, NONE and RESERVED should not be mapped encrypted because 91 * there the whole memory is already encrypted. 92 */ 93 static unsigned int __ioremap_check_encrypted(struct resource *res) 94 { 95 if (!sev_active()) 96 return 0; 97 98 switch (res->desc) { 99 case IORES_DESC_NONE: 100 case IORES_DESC_RESERVED: 101 break; 102 default: 103 return IORES_MAP_ENCRYPTED; 104 } 105 106 return 0; 107 } 108 109 /* 110 * The EFI runtime services data area is not covered by walk_mem_res(), but must 111 * be mapped encrypted when SEV is active. 112 */ 113 static void __ioremap_check_other(resource_size_t addr, struct ioremap_desc *desc) 114 { 115 if (!sev_active()) 116 return; 117 118 if (!IS_ENABLED(CONFIG_EFI)) 119 return; 120 121 if (efi_mem_type(addr) == EFI_RUNTIME_SERVICES_DATA) 122 desc->flags |= IORES_MAP_ENCRYPTED; 123 } 124 125 static int __ioremap_collect_map_flags(struct resource *res, void *arg) 126 { 127 struct ioremap_desc *desc = arg; 128 129 if (!(desc->flags & IORES_MAP_SYSTEM_RAM)) 130 desc->flags |= __ioremap_check_ram(res); 131 132 if (!(desc->flags & IORES_MAP_ENCRYPTED)) 133 desc->flags |= __ioremap_check_encrypted(res); 134 135 return ((desc->flags & (IORES_MAP_SYSTEM_RAM | IORES_MAP_ENCRYPTED)) == 136 (IORES_MAP_SYSTEM_RAM | IORES_MAP_ENCRYPTED)); 137 } 138 139 /* 140 * To avoid multiple resource walks, this function walks resources marked as 141 * IORESOURCE_MEM and IORESOURCE_BUSY and looking for system RAM and/or a 142 * resource described not as IORES_DESC_NONE (e.g. IORES_DESC_ACPI_TABLES). 143 * 144 * After that, deal with misc other ranges in __ioremap_check_other() which do 145 * not fall into the above category. 146 */ 147 static void __ioremap_check_mem(resource_size_t addr, unsigned long size, 148 struct ioremap_desc *desc) 149 { 150 u64 start, end; 151 152 start = (u64)addr; 153 end = start + size - 1; 154 memset(desc, 0, sizeof(struct ioremap_desc)); 155 156 walk_mem_res(start, end, desc, __ioremap_collect_map_flags); 157 158 __ioremap_check_other(addr, desc); 159 } 160 161 /* 162 * Remap an arbitrary physical address space into the kernel virtual 163 * address space. It transparently creates kernel huge I/O mapping when 164 * the physical address is aligned by a huge page size (1GB or 2MB) and 165 * the requested size is at least the huge page size. 166 * 167 * NOTE: MTRRs can override PAT memory types with a 4KB granularity. 168 * Therefore, the mapping code falls back to use a smaller page toward 4KB 169 * when a mapping range is covered by non-WB type of MTRRs. 170 * 171 * NOTE! We need to allow non-page-aligned mappings too: we will obviously 172 * have to convert them into an offset in a page-aligned mapping, but the 173 * caller shouldn't need to know that small detail. 174 */ 175 static void __iomem * 176 __ioremap_caller(resource_size_t phys_addr, unsigned long size, 177 enum page_cache_mode pcm, void *caller, bool encrypted) 178 { 179 unsigned long offset, vaddr; 180 resource_size_t last_addr; 181 const resource_size_t unaligned_phys_addr = phys_addr; 182 const unsigned long unaligned_size = size; 183 struct ioremap_desc io_desc; 184 struct vm_struct *area; 185 enum page_cache_mode new_pcm; 186 pgprot_t prot; 187 int retval; 188 void __iomem *ret_addr; 189 190 /* Don't allow wraparound or zero size */ 191 last_addr = phys_addr + size - 1; 192 if (!size || last_addr < phys_addr) 193 return NULL; 194 195 if (!phys_addr_valid(phys_addr)) { 196 printk(KERN_WARNING "ioremap: invalid physical address %llx\n", 197 (unsigned long long)phys_addr); 198 WARN_ON_ONCE(1); 199 return NULL; 200 } 201 202 __ioremap_check_mem(phys_addr, size, &io_desc); 203 204 /* 205 * Don't allow anybody to remap normal RAM that we're using.. 206 */ 207 if (io_desc.flags & IORES_MAP_SYSTEM_RAM) { 208 WARN_ONCE(1, "ioremap on RAM at %pa - %pa\n", 209 &phys_addr, &last_addr); 210 return NULL; 211 } 212 213 /* 214 * Mappings have to be page-aligned 215 */ 216 offset = phys_addr & ~PAGE_MASK; 217 phys_addr &= PHYSICAL_PAGE_MASK; 218 size = PAGE_ALIGN(last_addr+1) - phys_addr; 219 220 retval = memtype_reserve(phys_addr, (u64)phys_addr + size, 221 pcm, &new_pcm); 222 if (retval) { 223 printk(KERN_ERR "ioremap memtype_reserve failed %d\n", retval); 224 return NULL; 225 } 226 227 if (pcm != new_pcm) { 228 if (!is_new_memtype_allowed(phys_addr, size, pcm, new_pcm)) { 229 printk(KERN_ERR 230 "ioremap error for 0x%llx-0x%llx, requested 0x%x, got 0x%x\n", 231 (unsigned long long)phys_addr, 232 (unsigned long long)(phys_addr + size), 233 pcm, new_pcm); 234 goto err_free_memtype; 235 } 236 pcm = new_pcm; 237 } 238 239 /* 240 * If the page being mapped is in memory and SEV is active then 241 * make sure the memory encryption attribute is enabled in the 242 * resulting mapping. 243 */ 244 prot = PAGE_KERNEL_IO; 245 if ((io_desc.flags & IORES_MAP_ENCRYPTED) || encrypted) 246 prot = pgprot_encrypted(prot); 247 248 switch (pcm) { 249 case _PAGE_CACHE_MODE_UC: 250 default: 251 prot = __pgprot(pgprot_val(prot) | 252 cachemode2protval(_PAGE_CACHE_MODE_UC)); 253 break; 254 case _PAGE_CACHE_MODE_UC_MINUS: 255 prot = __pgprot(pgprot_val(prot) | 256 cachemode2protval(_PAGE_CACHE_MODE_UC_MINUS)); 257 break; 258 case _PAGE_CACHE_MODE_WC: 259 prot = __pgprot(pgprot_val(prot) | 260 cachemode2protval(_PAGE_CACHE_MODE_WC)); 261 break; 262 case _PAGE_CACHE_MODE_WT: 263 prot = __pgprot(pgprot_val(prot) | 264 cachemode2protval(_PAGE_CACHE_MODE_WT)); 265 break; 266 case _PAGE_CACHE_MODE_WB: 267 break; 268 } 269 270 /* 271 * Ok, go for it.. 272 */ 273 area = get_vm_area_caller(size, VM_IOREMAP, caller); 274 if (!area) 275 goto err_free_memtype; 276 area->phys_addr = phys_addr; 277 vaddr = (unsigned long) area->addr; 278 279 if (memtype_kernel_map_sync(phys_addr, size, pcm)) 280 goto err_free_area; 281 282 if (ioremap_page_range(vaddr, vaddr + size, phys_addr, prot)) 283 goto err_free_area; 284 285 ret_addr = (void __iomem *) (vaddr + offset); 286 mmiotrace_ioremap(unaligned_phys_addr, unaligned_size, ret_addr); 287 288 /* 289 * Check if the request spans more than any BAR in the iomem resource 290 * tree. 291 */ 292 if (iomem_map_sanity_check(unaligned_phys_addr, unaligned_size)) 293 pr_warn("caller %pS mapping multiple BARs\n", caller); 294 295 return ret_addr; 296 err_free_area: 297 free_vm_area(area); 298 err_free_memtype: 299 memtype_free(phys_addr, phys_addr + size); 300 return NULL; 301 } 302 303 /** 304 * ioremap - map bus memory into CPU space 305 * @phys_addr: bus address of the memory 306 * @size: size of the resource to map 307 * 308 * ioremap performs a platform specific sequence of operations to 309 * make bus memory CPU accessible via the readb/readw/readl/writeb/ 310 * writew/writel functions and the other mmio helpers. The returned 311 * address is not guaranteed to be usable directly as a virtual 312 * address. 313 * 314 * This version of ioremap ensures that the memory is marked uncachable 315 * on the CPU as well as honouring existing caching rules from things like 316 * the PCI bus. Note that there are other caches and buffers on many 317 * busses. In particular driver authors should read up on PCI writes 318 * 319 * It's useful if some control registers are in such an area and 320 * write combining or read caching is not desirable: 321 * 322 * Must be freed with iounmap. 323 */ 324 void __iomem *ioremap(resource_size_t phys_addr, unsigned long size) 325 { 326 /* 327 * Ideally, this should be: 328 * pat_enabled() ? _PAGE_CACHE_MODE_UC : _PAGE_CACHE_MODE_UC_MINUS; 329 * 330 * Till we fix all X drivers to use ioremap_wc(), we will use 331 * UC MINUS. Drivers that are certain they need or can already 332 * be converted over to strong UC can use ioremap_uc(). 333 */ 334 enum page_cache_mode pcm = _PAGE_CACHE_MODE_UC_MINUS; 335 336 return __ioremap_caller(phys_addr, size, pcm, 337 __builtin_return_address(0), false); 338 } 339 EXPORT_SYMBOL(ioremap); 340 341 /** 342 * ioremap_uc - map bus memory into CPU space as strongly uncachable 343 * @phys_addr: bus address of the memory 344 * @size: size of the resource to map 345 * 346 * ioremap_uc performs a platform specific sequence of operations to 347 * make bus memory CPU accessible via the readb/readw/readl/writeb/ 348 * writew/writel functions and the other mmio helpers. The returned 349 * address is not guaranteed to be usable directly as a virtual 350 * address. 351 * 352 * This version of ioremap ensures that the memory is marked with a strong 353 * preference as completely uncachable on the CPU when possible. For non-PAT 354 * systems this ends up setting page-attribute flags PCD=1, PWT=1. For PAT 355 * systems this will set the PAT entry for the pages as strong UC. This call 356 * will honor existing caching rules from things like the PCI bus. Note that 357 * there are other caches and buffers on many busses. In particular driver 358 * authors should read up on PCI writes. 359 * 360 * It's useful if some control registers are in such an area and 361 * write combining or read caching is not desirable: 362 * 363 * Must be freed with iounmap. 364 */ 365 void __iomem *ioremap_uc(resource_size_t phys_addr, unsigned long size) 366 { 367 enum page_cache_mode pcm = _PAGE_CACHE_MODE_UC; 368 369 return __ioremap_caller(phys_addr, size, pcm, 370 __builtin_return_address(0), false); 371 } 372 EXPORT_SYMBOL_GPL(ioremap_uc); 373 374 /** 375 * ioremap_wc - map memory into CPU space write combined 376 * @phys_addr: bus address of the memory 377 * @size: size of the resource to map 378 * 379 * This version of ioremap ensures that the memory is marked write combining. 380 * Write combining allows faster writes to some hardware devices. 381 * 382 * Must be freed with iounmap. 383 */ 384 void __iomem *ioremap_wc(resource_size_t phys_addr, unsigned long size) 385 { 386 return __ioremap_caller(phys_addr, size, _PAGE_CACHE_MODE_WC, 387 __builtin_return_address(0), false); 388 } 389 EXPORT_SYMBOL(ioremap_wc); 390 391 /** 392 * ioremap_wt - map memory into CPU space write through 393 * @phys_addr: bus address of the memory 394 * @size: size of the resource to map 395 * 396 * This version of ioremap ensures that the memory is marked write through. 397 * Write through stores data into memory while keeping the cache up-to-date. 398 * 399 * Must be freed with iounmap. 400 */ 401 void __iomem *ioremap_wt(resource_size_t phys_addr, unsigned long size) 402 { 403 return __ioremap_caller(phys_addr, size, _PAGE_CACHE_MODE_WT, 404 __builtin_return_address(0), false); 405 } 406 EXPORT_SYMBOL(ioremap_wt); 407 408 void __iomem *ioremap_encrypted(resource_size_t phys_addr, unsigned long size) 409 { 410 return __ioremap_caller(phys_addr, size, _PAGE_CACHE_MODE_WB, 411 __builtin_return_address(0), true); 412 } 413 EXPORT_SYMBOL(ioremap_encrypted); 414 415 void __iomem *ioremap_cache(resource_size_t phys_addr, unsigned long size) 416 { 417 return __ioremap_caller(phys_addr, size, _PAGE_CACHE_MODE_WB, 418 __builtin_return_address(0), false); 419 } 420 EXPORT_SYMBOL(ioremap_cache); 421 422 void __iomem *ioremap_prot(resource_size_t phys_addr, unsigned long size, 423 unsigned long prot_val) 424 { 425 return __ioremap_caller(phys_addr, size, 426 pgprot2cachemode(__pgprot(prot_val)), 427 __builtin_return_address(0), false); 428 } 429 EXPORT_SYMBOL(ioremap_prot); 430 431 /** 432 * iounmap - Free a IO remapping 433 * @addr: virtual address from ioremap_* 434 * 435 * Caller must ensure there is only one unmapping for the same pointer. 436 */ 437 void iounmap(volatile void __iomem *addr) 438 { 439 struct vm_struct *p, *o; 440 441 if ((void __force *)addr <= high_memory) 442 return; 443 444 /* 445 * The PCI/ISA range special-casing was removed from __ioremap() 446 * so this check, in theory, can be removed. However, there are 447 * cases where iounmap() is called for addresses not obtained via 448 * ioremap() (vga16fb for example). Add a warning so that these 449 * cases can be caught and fixed. 450 */ 451 if ((void __force *)addr >= phys_to_virt(ISA_START_ADDRESS) && 452 (void __force *)addr < phys_to_virt(ISA_END_ADDRESS)) { 453 WARN(1, "iounmap() called for ISA range not obtained using ioremap()\n"); 454 return; 455 } 456 457 mmiotrace_iounmap(addr); 458 459 addr = (volatile void __iomem *) 460 (PAGE_MASK & (unsigned long __force)addr); 461 462 /* Use the vm area unlocked, assuming the caller 463 ensures there isn't another iounmap for the same address 464 in parallel. Reuse of the virtual address is prevented by 465 leaving it in the global lists until we're done with it. 466 cpa takes care of the direct mappings. */ 467 p = find_vm_area((void __force *)addr); 468 469 if (!p) { 470 printk(KERN_ERR "iounmap: bad address %p\n", addr); 471 dump_stack(); 472 return; 473 } 474 475 memtype_free(p->phys_addr, p->phys_addr + get_vm_area_size(p)); 476 477 /* Finally remove it */ 478 o = remove_vm_area((void __force *)addr); 479 BUG_ON(p != o || o == NULL); 480 kfree(p); 481 } 482 EXPORT_SYMBOL(iounmap); 483 484 /* 485 * Convert a physical pointer to a virtual kernel pointer for /dev/mem 486 * access 487 */ 488 void *xlate_dev_mem_ptr(phys_addr_t phys) 489 { 490 unsigned long start = phys & PAGE_MASK; 491 unsigned long offset = phys & ~PAGE_MASK; 492 void *vaddr; 493 494 /* memremap() maps if RAM, otherwise falls back to ioremap() */ 495 vaddr = memremap(start, PAGE_SIZE, MEMREMAP_WB); 496 497 /* Only add the offset on success and return NULL if memremap() failed */ 498 if (vaddr) 499 vaddr += offset; 500 501 return vaddr; 502 } 503 504 void unxlate_dev_mem_ptr(phys_addr_t phys, void *addr) 505 { 506 memunmap((void *)((unsigned long)addr & PAGE_MASK)); 507 } 508 509 /* 510 * Examine the physical address to determine if it is an area of memory 511 * that should be mapped decrypted. If the memory is not part of the 512 * kernel usable area it was accessed and created decrypted, so these 513 * areas should be mapped decrypted. And since the encryption key can 514 * change across reboots, persistent memory should also be mapped 515 * decrypted. 516 * 517 * If SEV is active, that implies that BIOS/UEFI also ran encrypted so 518 * only persistent memory should be mapped decrypted. 519 */ 520 static bool memremap_should_map_decrypted(resource_size_t phys_addr, 521 unsigned long size) 522 { 523 int is_pmem; 524 525 /* 526 * Check if the address is part of a persistent memory region. 527 * This check covers areas added by E820, EFI and ACPI. 528 */ 529 is_pmem = region_intersects(phys_addr, size, IORESOURCE_MEM, 530 IORES_DESC_PERSISTENT_MEMORY); 531 if (is_pmem != REGION_DISJOINT) 532 return true; 533 534 /* 535 * Check if the non-volatile attribute is set for an EFI 536 * reserved area. 537 */ 538 if (efi_enabled(EFI_BOOT)) { 539 switch (efi_mem_type(phys_addr)) { 540 case EFI_RESERVED_TYPE: 541 if (efi_mem_attributes(phys_addr) & EFI_MEMORY_NV) 542 return true; 543 break; 544 default: 545 break; 546 } 547 } 548 549 /* Check if the address is outside kernel usable area */ 550 switch (e820__get_entry_type(phys_addr, phys_addr + size - 1)) { 551 case E820_TYPE_RESERVED: 552 case E820_TYPE_ACPI: 553 case E820_TYPE_NVS: 554 case E820_TYPE_UNUSABLE: 555 /* For SEV, these areas are encrypted */ 556 if (sev_active()) 557 break; 558 fallthrough; 559 560 case E820_TYPE_PRAM: 561 return true; 562 default: 563 break; 564 } 565 566 return false; 567 } 568 569 /* 570 * Examine the physical address to determine if it is EFI data. Check 571 * it against the boot params structure and EFI tables and memory types. 572 */ 573 static bool memremap_is_efi_data(resource_size_t phys_addr, 574 unsigned long size) 575 { 576 u64 paddr; 577 578 /* Check if the address is part of EFI boot/runtime data */ 579 if (!efi_enabled(EFI_BOOT)) 580 return false; 581 582 paddr = boot_params.efi_info.efi_memmap_hi; 583 paddr <<= 32; 584 paddr |= boot_params.efi_info.efi_memmap; 585 if (phys_addr == paddr) 586 return true; 587 588 paddr = boot_params.efi_info.efi_systab_hi; 589 paddr <<= 32; 590 paddr |= boot_params.efi_info.efi_systab; 591 if (phys_addr == paddr) 592 return true; 593 594 if (efi_is_table_address(phys_addr)) 595 return true; 596 597 switch (efi_mem_type(phys_addr)) { 598 case EFI_BOOT_SERVICES_DATA: 599 case EFI_RUNTIME_SERVICES_DATA: 600 return true; 601 default: 602 break; 603 } 604 605 return false; 606 } 607 608 /* 609 * Examine the physical address to determine if it is boot data by checking 610 * it against the boot params setup_data chain. 611 */ 612 static bool memremap_is_setup_data(resource_size_t phys_addr, 613 unsigned long size) 614 { 615 struct setup_data *data; 616 u64 paddr, paddr_next; 617 618 paddr = boot_params.hdr.setup_data; 619 while (paddr) { 620 unsigned int len; 621 622 if (phys_addr == paddr) 623 return true; 624 625 data = memremap(paddr, sizeof(*data), 626 MEMREMAP_WB | MEMREMAP_DEC); 627 628 paddr_next = data->next; 629 len = data->len; 630 631 if ((phys_addr > paddr) && (phys_addr < (paddr + len))) { 632 memunmap(data); 633 return true; 634 } 635 636 if (data->type == SETUP_INDIRECT && 637 ((struct setup_indirect *)data->data)->type != SETUP_INDIRECT) { 638 paddr = ((struct setup_indirect *)data->data)->addr; 639 len = ((struct setup_indirect *)data->data)->len; 640 } 641 642 memunmap(data); 643 644 if ((phys_addr > paddr) && (phys_addr < (paddr + len))) 645 return true; 646 647 paddr = paddr_next; 648 } 649 650 return false; 651 } 652 653 /* 654 * Examine the physical address to determine if it is boot data by checking 655 * it against the boot params setup_data chain (early boot version). 656 */ 657 static bool __init early_memremap_is_setup_data(resource_size_t phys_addr, 658 unsigned long size) 659 { 660 struct setup_data *data; 661 u64 paddr, paddr_next; 662 663 paddr = boot_params.hdr.setup_data; 664 while (paddr) { 665 unsigned int len; 666 667 if (phys_addr == paddr) 668 return true; 669 670 data = early_memremap_decrypted(paddr, sizeof(*data)); 671 672 paddr_next = data->next; 673 len = data->len; 674 675 early_memunmap(data, sizeof(*data)); 676 677 if ((phys_addr > paddr) && (phys_addr < (paddr + len))) 678 return true; 679 680 paddr = paddr_next; 681 } 682 683 return false; 684 } 685 686 /* 687 * Architecture function to determine if RAM remap is allowed. By default, a 688 * RAM remap will map the data as encrypted. Determine if a RAM remap should 689 * not be done so that the data will be mapped decrypted. 690 */ 691 bool arch_memremap_can_ram_remap(resource_size_t phys_addr, unsigned long size, 692 unsigned long flags) 693 { 694 if (!mem_encrypt_active()) 695 return true; 696 697 if (flags & MEMREMAP_ENC) 698 return true; 699 700 if (flags & MEMREMAP_DEC) 701 return false; 702 703 if (sme_active()) { 704 if (memremap_is_setup_data(phys_addr, size) || 705 memremap_is_efi_data(phys_addr, size)) 706 return false; 707 } 708 709 return !memremap_should_map_decrypted(phys_addr, size); 710 } 711 712 /* 713 * Architecture override of __weak function to adjust the protection attributes 714 * used when remapping memory. By default, early_memremap() will map the data 715 * as encrypted. Determine if an encrypted mapping should not be done and set 716 * the appropriate protection attributes. 717 */ 718 pgprot_t __init early_memremap_pgprot_adjust(resource_size_t phys_addr, 719 unsigned long size, 720 pgprot_t prot) 721 { 722 bool encrypted_prot; 723 724 if (!mem_encrypt_active()) 725 return prot; 726 727 encrypted_prot = true; 728 729 if (sme_active()) { 730 if (early_memremap_is_setup_data(phys_addr, size) || 731 memremap_is_efi_data(phys_addr, size)) 732 encrypted_prot = false; 733 } 734 735 if (encrypted_prot && memremap_should_map_decrypted(phys_addr, size)) 736 encrypted_prot = false; 737 738 return encrypted_prot ? pgprot_encrypted(prot) 739 : pgprot_decrypted(prot); 740 } 741 742 bool phys_mem_access_encrypted(unsigned long phys_addr, unsigned long size) 743 { 744 return arch_memremap_can_ram_remap(phys_addr, size, 0); 745 } 746 747 #ifdef CONFIG_AMD_MEM_ENCRYPT 748 /* Remap memory with encryption */ 749 void __init *early_memremap_encrypted(resource_size_t phys_addr, 750 unsigned long size) 751 { 752 return early_memremap_prot(phys_addr, size, __PAGE_KERNEL_ENC); 753 } 754 755 /* 756 * Remap memory with encryption and write-protected - cannot be called 757 * before pat_init() is called 758 */ 759 void __init *early_memremap_encrypted_wp(resource_size_t phys_addr, 760 unsigned long size) 761 { 762 if (!x86_has_pat_wp()) 763 return NULL; 764 return early_memremap_prot(phys_addr, size, __PAGE_KERNEL_ENC_WP); 765 } 766 767 /* Remap memory without encryption */ 768 void __init *early_memremap_decrypted(resource_size_t phys_addr, 769 unsigned long size) 770 { 771 return early_memremap_prot(phys_addr, size, __PAGE_KERNEL_NOENC); 772 } 773 774 /* 775 * Remap memory without encryption and write-protected - cannot be called 776 * before pat_init() is called 777 */ 778 void __init *early_memremap_decrypted_wp(resource_size_t phys_addr, 779 unsigned long size) 780 { 781 if (!x86_has_pat_wp()) 782 return NULL; 783 return early_memremap_prot(phys_addr, size, __PAGE_KERNEL_NOENC_WP); 784 } 785 #endif /* CONFIG_AMD_MEM_ENCRYPT */ 786 787 static pte_t bm_pte[PAGE_SIZE/sizeof(pte_t)] __page_aligned_bss; 788 789 static inline pmd_t * __init early_ioremap_pmd(unsigned long addr) 790 { 791 /* Don't assume we're using swapper_pg_dir at this point */ 792 pgd_t *base = __va(read_cr3_pa()); 793 pgd_t *pgd = &base[pgd_index(addr)]; 794 p4d_t *p4d = p4d_offset(pgd, addr); 795 pud_t *pud = pud_offset(p4d, addr); 796 pmd_t *pmd = pmd_offset(pud, addr); 797 798 return pmd; 799 } 800 801 static inline pte_t * __init early_ioremap_pte(unsigned long addr) 802 { 803 return &bm_pte[pte_index(addr)]; 804 } 805 806 bool __init is_early_ioremap_ptep(pte_t *ptep) 807 { 808 return ptep >= &bm_pte[0] && ptep < &bm_pte[PAGE_SIZE/sizeof(pte_t)]; 809 } 810 811 void __init early_ioremap_init(void) 812 { 813 pmd_t *pmd; 814 815 #ifdef CONFIG_X86_64 816 BUILD_BUG_ON((fix_to_virt(0) + PAGE_SIZE) & ((1 << PMD_SHIFT) - 1)); 817 #else 818 WARN_ON((fix_to_virt(0) + PAGE_SIZE) & ((1 << PMD_SHIFT) - 1)); 819 #endif 820 821 early_ioremap_setup(); 822 823 pmd = early_ioremap_pmd(fix_to_virt(FIX_BTMAP_BEGIN)); 824 memset(bm_pte, 0, sizeof(bm_pte)); 825 pmd_populate_kernel(&init_mm, pmd, bm_pte); 826 827 /* 828 * The boot-ioremap range spans multiple pmds, for which 829 * we are not prepared: 830 */ 831 #define __FIXADDR_TOP (-PAGE_SIZE) 832 BUILD_BUG_ON((__fix_to_virt(FIX_BTMAP_BEGIN) >> PMD_SHIFT) 833 != (__fix_to_virt(FIX_BTMAP_END) >> PMD_SHIFT)); 834 #undef __FIXADDR_TOP 835 if (pmd != early_ioremap_pmd(fix_to_virt(FIX_BTMAP_END))) { 836 WARN_ON(1); 837 printk(KERN_WARNING "pmd %p != %p\n", 838 pmd, early_ioremap_pmd(fix_to_virt(FIX_BTMAP_END))); 839 printk(KERN_WARNING "fix_to_virt(FIX_BTMAP_BEGIN): %08lx\n", 840 fix_to_virt(FIX_BTMAP_BEGIN)); 841 printk(KERN_WARNING "fix_to_virt(FIX_BTMAP_END): %08lx\n", 842 fix_to_virt(FIX_BTMAP_END)); 843 844 printk(KERN_WARNING "FIX_BTMAP_END: %d\n", FIX_BTMAP_END); 845 printk(KERN_WARNING "FIX_BTMAP_BEGIN: %d\n", 846 FIX_BTMAP_BEGIN); 847 } 848 } 849 850 void __init __early_set_fixmap(enum fixed_addresses idx, 851 phys_addr_t phys, pgprot_t flags) 852 { 853 unsigned long addr = __fix_to_virt(idx); 854 pte_t *pte; 855 856 if (idx >= __end_of_fixed_addresses) { 857 BUG(); 858 return; 859 } 860 pte = early_ioremap_pte(addr); 861 862 /* Sanitize 'prot' against any unsupported bits: */ 863 pgprot_val(flags) &= __supported_pte_mask; 864 865 if (pgprot_val(flags)) 866 set_pte(pte, pfn_pte(phys >> PAGE_SHIFT, flags)); 867 else 868 pte_clear(&init_mm, addr, pte); 869 flush_tlb_one_kernel(addr); 870 } 871