1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Re-map IO memory to kernel address space so that we can access it. 4 * This is needed for high PCI addresses that aren't mapped in the 5 * 640k-1MB IO memory area on PC's 6 * 7 * (C) Copyright 1995 1996 Linus Torvalds 8 */ 9 10 #include <linux/memblock.h> 11 #include <linux/init.h> 12 #include <linux/io.h> 13 #include <linux/ioport.h> 14 #include <linux/ioremap.h> 15 #include <linux/slab.h> 16 #include <linux/vmalloc.h> 17 #include <linux/mmiotrace.h> 18 #include <linux/cc_platform.h> 19 #include <linux/efi.h> 20 #include <linux/pgtable.h> 21 #include <linux/kmsan.h> 22 23 #include <asm/set_memory.h> 24 #include <asm/e820/api.h> 25 #include <asm/efi.h> 26 #include <asm/fixmap.h> 27 #include <asm/tlbflush.h> 28 #include <asm/pgalloc.h> 29 #include <asm/memtype.h> 30 #include <asm/setup.h> 31 32 #include "physaddr.h" 33 34 /* 35 * Descriptor controlling ioremap() behavior. 36 */ 37 struct ioremap_desc { 38 unsigned int flags; 39 }; 40 41 /* 42 * Fix up the linear direct mapping of the kernel to avoid cache attribute 43 * conflicts. 44 */ 45 int ioremap_change_attr(unsigned long vaddr, unsigned long size, 46 enum page_cache_mode pcm) 47 { 48 unsigned long nrpages = size >> PAGE_SHIFT; 49 int err; 50 51 switch (pcm) { 52 case _PAGE_CACHE_MODE_UC: 53 default: 54 err = _set_memory_uc(vaddr, nrpages); 55 break; 56 case _PAGE_CACHE_MODE_WC: 57 err = _set_memory_wc(vaddr, nrpages); 58 break; 59 case _PAGE_CACHE_MODE_WT: 60 err = _set_memory_wt(vaddr, nrpages); 61 break; 62 case _PAGE_CACHE_MODE_WB: 63 err = _set_memory_wb(vaddr, nrpages); 64 break; 65 } 66 67 return err; 68 } 69 70 /* Does the range (or a subset of) contain normal RAM? */ 71 static unsigned int __ioremap_check_ram(struct resource *res) 72 { 73 unsigned long start_pfn, stop_pfn; 74 unsigned long pfn; 75 76 if ((res->flags & IORESOURCE_SYSTEM_RAM) != IORESOURCE_SYSTEM_RAM) 77 return 0; 78 79 start_pfn = (res->start + PAGE_SIZE - 1) >> PAGE_SHIFT; 80 stop_pfn = (res->end + 1) >> PAGE_SHIFT; 81 if (stop_pfn > start_pfn) { 82 for_each_valid_pfn(pfn, start_pfn, stop_pfn) 83 if (!PageReserved(pfn_to_page(pfn))) 84 return IORES_MAP_SYSTEM_RAM; 85 } 86 87 return 0; 88 } 89 90 /* 91 * In a SEV guest, NONE and RESERVED should not be mapped encrypted because 92 * there the whole memory is already encrypted. 93 */ 94 static unsigned int __ioremap_check_encrypted(struct resource *res) 95 { 96 if (!cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT)) 97 return 0; 98 99 switch (res->desc) { 100 case IORES_DESC_NONE: 101 case IORES_DESC_RESERVED: 102 break; 103 default: 104 return IORES_MAP_ENCRYPTED; 105 } 106 107 return 0; 108 } 109 110 /* 111 * The EFI runtime services data area is not covered by walk_mem_res(), but must 112 * be mapped encrypted when SEV is active. 113 */ 114 static void __ioremap_check_other(resource_size_t addr, struct ioremap_desc *desc) 115 { 116 if (!cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT)) 117 return; 118 119 if (x86_platform.hyper.is_private_mmio(addr)) { 120 desc->flags |= IORES_MAP_ENCRYPTED; 121 return; 122 } 123 124 if (!IS_ENABLED(CONFIG_EFI)) 125 return; 126 127 if (efi_mem_type(addr) == EFI_RUNTIME_SERVICES_DATA || 128 (efi_mem_type(addr) == EFI_BOOT_SERVICES_DATA && 129 efi_mem_attributes(addr) & EFI_MEMORY_RUNTIME)) 130 desc->flags |= IORES_MAP_ENCRYPTED; 131 } 132 133 static int __ioremap_collect_map_flags(struct resource *res, void *arg) 134 { 135 struct ioremap_desc *desc = arg; 136 137 if (!(desc->flags & IORES_MAP_SYSTEM_RAM)) 138 desc->flags |= __ioremap_check_ram(res); 139 140 if (!(desc->flags & IORES_MAP_ENCRYPTED)) 141 desc->flags |= __ioremap_check_encrypted(res); 142 143 return ((desc->flags & (IORES_MAP_SYSTEM_RAM | IORES_MAP_ENCRYPTED)) == 144 (IORES_MAP_SYSTEM_RAM | IORES_MAP_ENCRYPTED)); 145 } 146 147 /* 148 * To avoid multiple resource walks, this function walks resources marked as 149 * IORESOURCE_MEM and IORESOURCE_BUSY and looking for system RAM and/or a 150 * resource described not as IORES_DESC_NONE (e.g. IORES_DESC_ACPI_TABLES). 151 * 152 * After that, deal with misc other ranges in __ioremap_check_other() which do 153 * not fall into the above category. 154 */ 155 static void __ioremap_check_mem(resource_size_t addr, unsigned long size, 156 struct ioremap_desc *desc) 157 { 158 u64 start, end; 159 160 start = (u64)addr; 161 end = start + size - 1; 162 memset(desc, 0, sizeof(struct ioremap_desc)); 163 164 walk_mem_res(start, end, desc, __ioremap_collect_map_flags); 165 166 __ioremap_check_other(addr, desc); 167 } 168 169 /* 170 * Remap an arbitrary physical address space into the kernel virtual 171 * address space. It transparently creates kernel huge I/O mapping when 172 * the physical address is aligned by a huge page size (1GB or 2MB) and 173 * the requested size is at least the huge page size. 174 * 175 * NOTE: MTRRs can override PAT memory types with a 4KB granularity. 176 * Therefore, the mapping code falls back to use a smaller page toward 4KB 177 * when a mapping range is covered by non-WB type of MTRRs. 178 * 179 * NOTE! We need to allow non-page-aligned mappings too: we will obviously 180 * have to convert them into an offset in a page-aligned mapping, but the 181 * caller shouldn't need to know that small detail. 182 */ 183 static void __iomem * 184 __ioremap_caller(resource_size_t phys_addr, unsigned long size, 185 enum page_cache_mode pcm, void *caller, bool encrypted) 186 { 187 unsigned long offset, vaddr; 188 resource_size_t last_addr; 189 const resource_size_t unaligned_phys_addr = phys_addr; 190 const unsigned long unaligned_size = size; 191 struct ioremap_desc io_desc; 192 struct vm_struct *area; 193 enum page_cache_mode new_pcm; 194 pgprot_t prot; 195 int retval; 196 void __iomem *ret_addr; 197 198 /* Don't allow wraparound or zero size */ 199 last_addr = phys_addr + size - 1; 200 if (!size || last_addr < phys_addr) 201 return NULL; 202 203 if (!phys_addr_valid(phys_addr)) { 204 printk(KERN_WARNING "ioremap: invalid physical address %llx\n", 205 (unsigned long long)phys_addr); 206 WARN_ON_ONCE(1); 207 return NULL; 208 } 209 210 __ioremap_check_mem(phys_addr, size, &io_desc); 211 212 /* 213 * Don't allow anybody to remap normal RAM that we're using.. 214 */ 215 if (io_desc.flags & IORES_MAP_SYSTEM_RAM) { 216 WARN_ONCE(1, "ioremap on RAM at %pa - %pa\n", 217 &phys_addr, &last_addr); 218 return NULL; 219 } 220 221 /* 222 * Mappings have to be page-aligned 223 */ 224 offset = phys_addr & ~PAGE_MASK; 225 phys_addr &= PAGE_MASK; 226 size = PAGE_ALIGN(last_addr+1) - phys_addr; 227 228 /* 229 * Mask out any bits not part of the actual physical 230 * address, like memory encryption bits. 231 */ 232 phys_addr &= PHYSICAL_PAGE_MASK; 233 234 retval = memtype_reserve(phys_addr, (u64)phys_addr + size, 235 pcm, &new_pcm); 236 if (retval) { 237 printk(KERN_ERR "ioremap memtype_reserve failed %d\n", retval); 238 return NULL; 239 } 240 241 if (pcm != new_pcm) { 242 if (!is_new_memtype_allowed(phys_addr, size, pcm, new_pcm)) { 243 printk(KERN_ERR 244 "ioremap error for 0x%llx-0x%llx, requested 0x%x, got 0x%x\n", 245 (unsigned long long)phys_addr, 246 (unsigned long long)(phys_addr + size), 247 pcm, new_pcm); 248 goto err_free_memtype; 249 } 250 pcm = new_pcm; 251 } 252 253 /* 254 * If the page being mapped is in memory and SEV is active then 255 * make sure the memory encryption attribute is enabled in the 256 * resulting mapping. 257 * In TDX guests, memory is marked private by default. If encryption 258 * is not requested (using encrypted), explicitly set decrypt 259 * attribute in all IOREMAPPED memory. 260 */ 261 prot = PAGE_KERNEL_IO; 262 if ((io_desc.flags & IORES_MAP_ENCRYPTED) || encrypted) 263 prot = pgprot_encrypted(prot); 264 else 265 prot = pgprot_decrypted(prot); 266 267 switch (pcm) { 268 case _PAGE_CACHE_MODE_UC: 269 default: 270 prot = __pgprot(pgprot_val(prot) | 271 cachemode2protval(_PAGE_CACHE_MODE_UC)); 272 break; 273 case _PAGE_CACHE_MODE_UC_MINUS: 274 prot = __pgprot(pgprot_val(prot) | 275 cachemode2protval(_PAGE_CACHE_MODE_UC_MINUS)); 276 break; 277 case _PAGE_CACHE_MODE_WC: 278 prot = __pgprot(pgprot_val(prot) | 279 cachemode2protval(_PAGE_CACHE_MODE_WC)); 280 break; 281 case _PAGE_CACHE_MODE_WT: 282 prot = __pgprot(pgprot_val(prot) | 283 cachemode2protval(_PAGE_CACHE_MODE_WT)); 284 break; 285 case _PAGE_CACHE_MODE_WB: 286 break; 287 } 288 289 /* 290 * Ok, go for it.. 291 */ 292 area = get_vm_area_caller(size, VM_IOREMAP, caller); 293 if (!area) 294 goto err_free_memtype; 295 area->phys_addr = phys_addr; 296 vaddr = (unsigned long) area->addr; 297 298 if (memtype_kernel_map_sync(phys_addr, size, pcm)) 299 goto err_free_area; 300 301 if (ioremap_page_range(vaddr, vaddr + size, phys_addr, prot)) 302 goto err_free_area; 303 304 ret_addr = (void __iomem *) (vaddr + offset); 305 mmiotrace_ioremap(unaligned_phys_addr, unaligned_size, ret_addr); 306 307 /* 308 * Check if the request spans more than any BAR in the iomem resource 309 * tree. 310 */ 311 if (iomem_map_sanity_check(unaligned_phys_addr, unaligned_size)) 312 pr_warn("caller %pS mapping multiple BARs\n", caller); 313 314 return ret_addr; 315 err_free_area: 316 free_vm_area(area); 317 err_free_memtype: 318 memtype_free(phys_addr, phys_addr + size); 319 return NULL; 320 } 321 322 /** 323 * ioremap - map bus memory into CPU space 324 * @phys_addr: bus address of the memory 325 * @size: size of the resource to map 326 * 327 * ioremap performs a platform specific sequence of operations to 328 * make bus memory CPU accessible via the readb/readw/readl/writeb/ 329 * writew/writel functions and the other mmio helpers. The returned 330 * address is not guaranteed to be usable directly as a virtual 331 * address. 332 * 333 * This version of ioremap ensures that the memory is marked uncachable 334 * on the CPU as well as honouring existing caching rules from things like 335 * the PCI bus. Note that there are other caches and buffers on many 336 * busses. In particular driver authors should read up on PCI writes 337 * 338 * It's useful if some control registers are in such an area and 339 * write combining or read caching is not desirable: 340 * 341 * Must be freed with iounmap. 342 */ 343 void __iomem *ioremap(resource_size_t phys_addr, unsigned long size) 344 { 345 /* 346 * Ideally, this should be: 347 * pat_enabled() ? _PAGE_CACHE_MODE_UC : _PAGE_CACHE_MODE_UC_MINUS; 348 * 349 * Till we fix all X drivers to use ioremap_wc(), we will use 350 * UC MINUS. Drivers that are certain they need or can already 351 * be converted over to strong UC can use ioremap_uc(). 352 */ 353 enum page_cache_mode pcm = _PAGE_CACHE_MODE_UC_MINUS; 354 355 return __ioremap_caller(phys_addr, size, pcm, 356 __builtin_return_address(0), false); 357 } 358 EXPORT_SYMBOL(ioremap); 359 360 /** 361 * ioremap_uc - map bus memory into CPU space as strongly uncachable 362 * @phys_addr: bus address of the memory 363 * @size: size of the resource to map 364 * 365 * ioremap_uc performs a platform specific sequence of operations to 366 * make bus memory CPU accessible via the readb/readw/readl/writeb/ 367 * writew/writel functions and the other mmio helpers. The returned 368 * address is not guaranteed to be usable directly as a virtual 369 * address. 370 * 371 * This version of ioremap ensures that the memory is marked with a strong 372 * preference as completely uncachable on the CPU when possible. For non-PAT 373 * systems this ends up setting page-attribute flags PCD=1, PWT=1. For PAT 374 * systems this will set the PAT entry for the pages as strong UC. This call 375 * will honor existing caching rules from things like the PCI bus. Note that 376 * there are other caches and buffers on many busses. In particular driver 377 * authors should read up on PCI writes. 378 * 379 * It's useful if some control registers are in such an area and 380 * write combining or read caching is not desirable: 381 * 382 * Must be freed with iounmap. 383 */ 384 void __iomem *ioremap_uc(resource_size_t phys_addr, unsigned long size) 385 { 386 enum page_cache_mode pcm = _PAGE_CACHE_MODE_UC; 387 388 return __ioremap_caller(phys_addr, size, pcm, 389 __builtin_return_address(0), false); 390 } 391 EXPORT_SYMBOL_GPL(ioremap_uc); 392 393 /** 394 * ioremap_wc - map memory into CPU space write combined 395 * @phys_addr: bus address of the memory 396 * @size: size of the resource to map 397 * 398 * This version of ioremap ensures that the memory is marked write combining. 399 * Write combining allows faster writes to some hardware devices. 400 * 401 * Must be freed with iounmap. 402 */ 403 void __iomem *ioremap_wc(resource_size_t phys_addr, unsigned long size) 404 { 405 return __ioremap_caller(phys_addr, size, _PAGE_CACHE_MODE_WC, 406 __builtin_return_address(0), false); 407 } 408 EXPORT_SYMBOL(ioremap_wc); 409 410 /** 411 * ioremap_wt - map memory into CPU space write through 412 * @phys_addr: bus address of the memory 413 * @size: size of the resource to map 414 * 415 * This version of ioremap ensures that the memory is marked write through. 416 * Write through stores data into memory while keeping the cache up-to-date. 417 * 418 * Must be freed with iounmap. 419 */ 420 void __iomem *ioremap_wt(resource_size_t phys_addr, unsigned long size) 421 { 422 return __ioremap_caller(phys_addr, size, _PAGE_CACHE_MODE_WT, 423 __builtin_return_address(0), false); 424 } 425 EXPORT_SYMBOL(ioremap_wt); 426 427 void __iomem *ioremap_encrypted(resource_size_t phys_addr, unsigned long size) 428 { 429 return __ioremap_caller(phys_addr, size, _PAGE_CACHE_MODE_WB, 430 __builtin_return_address(0), true); 431 } 432 EXPORT_SYMBOL(ioremap_encrypted); 433 434 void __iomem *ioremap_cache(resource_size_t phys_addr, unsigned long size) 435 { 436 return __ioremap_caller(phys_addr, size, _PAGE_CACHE_MODE_WB, 437 __builtin_return_address(0), false); 438 } 439 EXPORT_SYMBOL(ioremap_cache); 440 441 void __iomem *ioremap_prot(resource_size_t phys_addr, unsigned long size, 442 pgprot_t prot) 443 { 444 return __ioremap_caller(phys_addr, size, 445 pgprot2cachemode(prot), 446 __builtin_return_address(0), false); 447 } 448 EXPORT_SYMBOL(ioremap_prot); 449 450 /** 451 * iounmap - Free a IO remapping 452 * @addr: virtual address from ioremap_* 453 * 454 * Caller must ensure there is only one unmapping for the same pointer. 455 */ 456 void iounmap(volatile void __iomem *addr) 457 { 458 struct vm_struct *p, *o; 459 460 if (WARN_ON_ONCE(!is_ioremap_addr((void __force *)addr))) 461 return; 462 463 /* 464 * The PCI/ISA range special-casing was removed from __ioremap() 465 * so this check, in theory, can be removed. However, there are 466 * cases where iounmap() is called for addresses not obtained via 467 * ioremap() (vga16fb for example). Add a warning so that these 468 * cases can be caught and fixed. 469 */ 470 if ((void __force *)addr >= phys_to_virt(ISA_START_ADDRESS) && 471 (void __force *)addr < phys_to_virt(ISA_END_ADDRESS)) { 472 WARN(1, "iounmap() called for ISA range not obtained using ioremap()\n"); 473 return; 474 } 475 476 mmiotrace_iounmap(addr); 477 478 addr = (volatile void __iomem *) 479 (PAGE_MASK & (unsigned long __force)addr); 480 481 /* Use the vm area unlocked, assuming the caller 482 ensures there isn't another iounmap for the same address 483 in parallel. Reuse of the virtual address is prevented by 484 leaving it in the global lists until we're done with it. 485 cpa takes care of the direct mappings. */ 486 p = find_vm_area((void __force *)addr); 487 488 if (!p) { 489 printk(KERN_ERR "iounmap: bad address %p\n", addr); 490 dump_stack(); 491 return; 492 } 493 494 kmsan_iounmap_page_range((unsigned long)addr, 495 (unsigned long)addr + get_vm_area_size(p)); 496 memtype_free(p->phys_addr, p->phys_addr + get_vm_area_size(p)); 497 498 /* Finally remove it */ 499 o = remove_vm_area((void __force *)addr); 500 BUG_ON(p != o || o == NULL); 501 kfree(p); 502 } 503 EXPORT_SYMBOL(iounmap); 504 505 void *arch_memremap_wb(phys_addr_t phys_addr, size_t size, unsigned long flags) 506 { 507 if ((flags & MEMREMAP_DEC) || cc_platform_has(CC_ATTR_HOST_MEM_ENCRYPT)) 508 return (void __force *)ioremap_cache(phys_addr, size); 509 510 return (void __force *)ioremap_encrypted(phys_addr, size); 511 } 512 513 /* 514 * Convert a physical pointer to a virtual kernel pointer for /dev/mem 515 * access 516 */ 517 void *xlate_dev_mem_ptr(phys_addr_t phys) 518 { 519 unsigned long start = phys & PAGE_MASK; 520 unsigned long offset = phys & ~PAGE_MASK; 521 void *vaddr; 522 523 /* memremap() maps if RAM, otherwise falls back to ioremap() */ 524 vaddr = memremap(start, PAGE_SIZE, MEMREMAP_WB); 525 526 /* Only add the offset on success and return NULL if memremap() failed */ 527 if (vaddr) 528 vaddr += offset; 529 530 return vaddr; 531 } 532 533 void unxlate_dev_mem_ptr(phys_addr_t phys, void *addr) 534 { 535 memunmap((void *)((unsigned long)addr & PAGE_MASK)); 536 } 537 538 #ifdef CONFIG_AMD_MEM_ENCRYPT 539 /* 540 * Examine the physical address to determine if it is an area of memory 541 * that should be mapped decrypted. If the memory is not part of the 542 * kernel usable area it was accessed and created decrypted, so these 543 * areas should be mapped decrypted. And since the encryption key can 544 * change across reboots, persistent memory should also be mapped 545 * decrypted. 546 * 547 * If SEV is active, that implies that BIOS/UEFI also ran encrypted so 548 * only persistent memory should be mapped decrypted. 549 */ 550 static bool memremap_should_map_decrypted(resource_size_t phys_addr, 551 unsigned long size) 552 { 553 int is_pmem; 554 555 /* 556 * Check if the address is part of a persistent memory region. 557 * This check covers areas added by E820, EFI and ACPI. 558 */ 559 is_pmem = region_intersects(phys_addr, size, IORESOURCE_MEM, 560 IORES_DESC_PERSISTENT_MEMORY); 561 if (is_pmem != REGION_DISJOINT) 562 return true; 563 564 /* 565 * Check if the non-volatile attribute is set for an EFI 566 * reserved area. 567 */ 568 if (efi_enabled(EFI_BOOT)) { 569 switch (efi_mem_type(phys_addr)) { 570 case EFI_RESERVED_TYPE: 571 if (efi_mem_attributes(phys_addr) & EFI_MEMORY_NV) 572 return true; 573 break; 574 default: 575 break; 576 } 577 } 578 579 /* Check if the address is outside kernel usable area */ 580 switch (e820__get_entry_type(phys_addr, phys_addr + size - 1)) { 581 case E820_TYPE_RESERVED: 582 case E820_TYPE_ACPI: 583 case E820_TYPE_NVS: 584 case E820_TYPE_UNUSABLE: 585 /* For SEV, these areas are encrypted */ 586 if (cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT)) 587 break; 588 fallthrough; 589 590 case E820_TYPE_PRAM: 591 return true; 592 default: 593 break; 594 } 595 596 return false; 597 } 598 599 /* 600 * Examine the physical address to determine if it is EFI data. Check 601 * it against the boot params structure and EFI tables and memory types. 602 */ 603 static bool memremap_is_efi_data(resource_size_t phys_addr) 604 { 605 u64 paddr; 606 607 /* Check if the address is part of EFI boot/runtime data */ 608 if (!efi_enabled(EFI_BOOT)) 609 return false; 610 611 paddr = boot_params.efi_info.efi_memmap_hi; 612 paddr <<= 32; 613 paddr |= boot_params.efi_info.efi_memmap; 614 if (phys_addr == paddr) 615 return true; 616 617 paddr = boot_params.efi_info.efi_systab_hi; 618 paddr <<= 32; 619 paddr |= boot_params.efi_info.efi_systab; 620 if (phys_addr == paddr) 621 return true; 622 623 if (efi_is_table_address(phys_addr)) 624 return true; 625 626 switch (efi_mem_type(phys_addr)) { 627 case EFI_BOOT_SERVICES_DATA: 628 case EFI_RUNTIME_SERVICES_DATA: 629 return true; 630 default: 631 break; 632 } 633 634 return false; 635 } 636 637 /* 638 * Examine the physical address to determine if it is boot data by checking 639 * it against the boot params setup_data chain. 640 */ 641 static bool __ref __memremap_is_setup_data(resource_size_t phys_addr, bool early) 642 { 643 unsigned int setup_data_sz = sizeof(struct setup_data); 644 struct setup_indirect *indirect; 645 struct setup_data *data; 646 u64 paddr, paddr_next; 647 648 paddr = boot_params.hdr.setup_data; 649 while (paddr) { 650 unsigned int len, size; 651 652 if (phys_addr == paddr) 653 return true; 654 655 if (early) 656 data = early_memremap_decrypted(paddr, setup_data_sz); 657 else 658 data = memremap(paddr, setup_data_sz, MEMREMAP_WB | MEMREMAP_DEC); 659 if (!data) { 660 pr_warn("failed to remap setup_data entry\n"); 661 return false; 662 } 663 664 size = setup_data_sz; 665 666 paddr_next = data->next; 667 len = data->len; 668 669 if ((phys_addr > paddr) && 670 (phys_addr < (paddr + setup_data_sz + len))) { 671 if (early) 672 early_memunmap(data, setup_data_sz); 673 else 674 memunmap(data); 675 return true; 676 } 677 678 if (data->type == SETUP_INDIRECT) { 679 size += len; 680 if (early) { 681 early_memunmap(data, setup_data_sz); 682 data = early_memremap_decrypted(paddr, size); 683 } else { 684 memunmap(data); 685 data = memremap(paddr, size, MEMREMAP_WB | MEMREMAP_DEC); 686 } 687 if (!data) { 688 pr_warn("failed to remap indirect setup_data\n"); 689 return false; 690 } 691 692 indirect = (struct setup_indirect *)data->data; 693 694 if (indirect->type != SETUP_INDIRECT) { 695 paddr = indirect->addr; 696 len = indirect->len; 697 } 698 } 699 700 if (early) 701 early_memunmap(data, size); 702 else 703 memunmap(data); 704 705 if ((phys_addr > paddr) && (phys_addr < (paddr + len))) 706 return true; 707 708 paddr = paddr_next; 709 } 710 711 return false; 712 } 713 714 static bool memremap_is_setup_data(resource_size_t phys_addr) 715 { 716 return __memremap_is_setup_data(phys_addr, false); 717 } 718 719 static bool __init early_memremap_is_setup_data(resource_size_t phys_addr) 720 { 721 return __memremap_is_setup_data(phys_addr, true); 722 } 723 724 /* 725 * Architecture function to determine if RAM remap is allowed. By default, a 726 * RAM remap will map the data as encrypted. Determine if a RAM remap should 727 * not be done so that the data will be mapped decrypted. 728 */ 729 bool arch_memremap_can_ram_remap(resource_size_t phys_addr, unsigned long size, 730 unsigned long flags) 731 { 732 if (!cc_platform_has(CC_ATTR_MEM_ENCRYPT)) 733 return true; 734 735 if (flags & MEMREMAP_ENC) 736 return true; 737 738 if (flags & MEMREMAP_DEC) 739 return false; 740 741 if (cc_platform_has(CC_ATTR_HOST_MEM_ENCRYPT)) { 742 if (memremap_is_setup_data(phys_addr) || 743 memremap_is_efi_data(phys_addr)) 744 return false; 745 } 746 747 return !memremap_should_map_decrypted(phys_addr, size); 748 } 749 750 /* 751 * Architecture override of __weak function to adjust the protection attributes 752 * used when remapping memory. By default, early_memremap() will map the data 753 * as encrypted. Determine if an encrypted mapping should not be done and set 754 * the appropriate protection attributes. 755 */ 756 pgprot_t __init early_memremap_pgprot_adjust(resource_size_t phys_addr, 757 unsigned long size, 758 pgprot_t prot) 759 { 760 bool encrypted_prot; 761 762 if (!cc_platform_has(CC_ATTR_MEM_ENCRYPT)) 763 return prot; 764 765 encrypted_prot = true; 766 767 if (cc_platform_has(CC_ATTR_HOST_MEM_ENCRYPT)) { 768 if (early_memremap_is_setup_data(phys_addr) || 769 memremap_is_efi_data(phys_addr)) 770 encrypted_prot = false; 771 } 772 773 if (encrypted_prot && memremap_should_map_decrypted(phys_addr, size)) 774 encrypted_prot = false; 775 776 return encrypted_prot ? pgprot_encrypted(prot) 777 : pgprot_decrypted(prot); 778 } 779 780 bool phys_mem_access_encrypted(unsigned long phys_addr, unsigned long size) 781 { 782 return arch_memremap_can_ram_remap(phys_addr, size, 0); 783 } 784 785 /* Remap memory with encryption */ 786 void __init *early_memremap_encrypted(resource_size_t phys_addr, 787 unsigned long size) 788 { 789 return early_memremap_prot(phys_addr, size, __PAGE_KERNEL_ENC); 790 } 791 792 /* 793 * Remap memory with encryption and write-protected - cannot be called 794 * before pat_init() is called 795 */ 796 void __init *early_memremap_encrypted_wp(resource_size_t phys_addr, 797 unsigned long size) 798 { 799 if (!x86_has_pat_wp()) 800 return NULL; 801 return early_memremap_prot(phys_addr, size, __PAGE_KERNEL_ENC_WP); 802 } 803 804 /* Remap memory without encryption */ 805 void __init *early_memremap_decrypted(resource_size_t phys_addr, 806 unsigned long size) 807 { 808 return early_memremap_prot(phys_addr, size, __PAGE_KERNEL_NOENC); 809 } 810 811 /* 812 * Remap memory without encryption and write-protected - cannot be called 813 * before pat_init() is called 814 */ 815 void __init *early_memremap_decrypted_wp(resource_size_t phys_addr, 816 unsigned long size) 817 { 818 if (!x86_has_pat_wp()) 819 return NULL; 820 return early_memremap_prot(phys_addr, size, __PAGE_KERNEL_NOENC_WP); 821 } 822 #endif /* CONFIG_AMD_MEM_ENCRYPT */ 823 824 static pte_t bm_pte[PAGE_SIZE/sizeof(pte_t)] __page_aligned_bss; 825 826 static inline pmd_t * __init early_ioremap_pmd(unsigned long addr) 827 { 828 /* Don't assume we're using swapper_pg_dir at this point */ 829 pgd_t *base = __va(read_cr3_pa()); 830 pgd_t *pgd = &base[pgd_index(addr)]; 831 p4d_t *p4d = p4d_offset(pgd, addr); 832 pud_t *pud = pud_offset(p4d, addr); 833 pmd_t *pmd = pmd_offset(pud, addr); 834 835 return pmd; 836 } 837 838 static inline pte_t * __init early_ioremap_pte(unsigned long addr) 839 { 840 return &bm_pte[pte_index(addr)]; 841 } 842 843 bool __init is_early_ioremap_ptep(pte_t *ptep) 844 { 845 return ptep >= &bm_pte[0] && ptep < &bm_pte[PAGE_SIZE/sizeof(pte_t)]; 846 } 847 848 void __init early_ioremap_init(void) 849 { 850 pmd_t *pmd; 851 852 #ifdef CONFIG_X86_64 853 BUILD_BUG_ON((fix_to_virt(0) + PAGE_SIZE) & ((1 << PMD_SHIFT) - 1)); 854 #else 855 WARN_ON((fix_to_virt(0) + PAGE_SIZE) & ((1 << PMD_SHIFT) - 1)); 856 #endif 857 858 early_ioremap_setup(); 859 860 pmd = early_ioremap_pmd(fix_to_virt(FIX_BTMAP_BEGIN)); 861 memset(bm_pte, 0, sizeof(bm_pte)); 862 pmd_populate_kernel(&init_mm, pmd, bm_pte); 863 864 /* 865 * The boot-ioremap range spans multiple pmds, for which 866 * we are not prepared: 867 */ 868 #define __FIXADDR_TOP (-PAGE_SIZE) 869 BUILD_BUG_ON((__fix_to_virt(FIX_BTMAP_BEGIN) >> PMD_SHIFT) 870 != (__fix_to_virt(FIX_BTMAP_END) >> PMD_SHIFT)); 871 #undef __FIXADDR_TOP 872 if (pmd != early_ioremap_pmd(fix_to_virt(FIX_BTMAP_END))) { 873 WARN_ON(1); 874 printk(KERN_WARNING "pmd %p != %p\n", 875 pmd, early_ioremap_pmd(fix_to_virt(FIX_BTMAP_END))); 876 printk(KERN_WARNING "fix_to_virt(FIX_BTMAP_BEGIN): %08lx\n", 877 fix_to_virt(FIX_BTMAP_BEGIN)); 878 printk(KERN_WARNING "fix_to_virt(FIX_BTMAP_END): %08lx\n", 879 fix_to_virt(FIX_BTMAP_END)); 880 881 printk(KERN_WARNING "FIX_BTMAP_END: %d\n", FIX_BTMAP_END); 882 printk(KERN_WARNING "FIX_BTMAP_BEGIN: %d\n", 883 FIX_BTMAP_BEGIN); 884 } 885 } 886 887 void __init __early_set_fixmap(enum fixed_addresses idx, 888 phys_addr_t phys, pgprot_t flags) 889 { 890 unsigned long addr = __fix_to_virt(idx); 891 pte_t *pte; 892 893 if (idx >= __end_of_fixed_addresses) { 894 BUG(); 895 return; 896 } 897 pte = early_ioremap_pte(addr); 898 899 /* Sanitize 'prot' against any unsupported bits: */ 900 pgprot_val(flags) &= __supported_pte_mask; 901 902 if (pgprot_val(flags)) 903 set_pte(pte, pfn_pte(phys >> PAGE_SHIFT, flags)); 904 else 905 pte_clear(&init_mm, addr, pte); 906 flush_tlb_one_kernel(addr); 907 } 908