1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Re-map IO memory to kernel address space so that we can access it. 4 * This is needed for high PCI addresses that aren't mapped in the 5 * 640k-1MB IO memory area on PC's 6 * 7 * (C) Copyright 1995 1996 Linus Torvalds 8 */ 9 10 #include <linux/memblock.h> 11 #include <linux/init.h> 12 #include <linux/io.h> 13 #include <linux/ioport.h> 14 #include <linux/ioremap.h> 15 #include <linux/slab.h> 16 #include <linux/vmalloc.h> 17 #include <linux/mmiotrace.h> 18 #include <linux/cc_platform.h> 19 #include <linux/efi.h> 20 #include <linux/pgtable.h> 21 #include <linux/kmsan.h> 22 23 #include <asm/set_memory.h> 24 #include <asm/e820/api.h> 25 #include <asm/efi.h> 26 #include <asm/fixmap.h> 27 #include <asm/tlbflush.h> 28 #include <asm/pgalloc.h> 29 #include <asm/memtype.h> 30 #include <asm/setup.h> 31 32 #include "physaddr.h" 33 34 /* 35 * Descriptor controlling ioremap() behavior. 36 */ 37 struct ioremap_desc { 38 unsigned int flags; 39 }; 40 41 /* 42 * Fix up the linear direct mapping of the kernel to avoid cache attribute 43 * conflicts. 44 */ 45 int ioremap_change_attr(unsigned long vaddr, unsigned long size, 46 enum page_cache_mode pcm) 47 { 48 unsigned long nrpages = size >> PAGE_SHIFT; 49 int err; 50 51 switch (pcm) { 52 case _PAGE_CACHE_MODE_UC: 53 default: 54 err = _set_memory_uc(vaddr, nrpages); 55 break; 56 case _PAGE_CACHE_MODE_WC: 57 err = _set_memory_wc(vaddr, nrpages); 58 break; 59 case _PAGE_CACHE_MODE_WT: 60 err = _set_memory_wt(vaddr, nrpages); 61 break; 62 case _PAGE_CACHE_MODE_WB: 63 err = _set_memory_wb(vaddr, nrpages); 64 break; 65 } 66 67 return err; 68 } 69 70 /* Does the range (or a subset of) contain normal RAM? */ 71 static unsigned int __ioremap_check_ram(struct resource *res) 72 { 73 unsigned long start_pfn, stop_pfn; 74 unsigned long i; 75 76 if ((res->flags & IORESOURCE_SYSTEM_RAM) != IORESOURCE_SYSTEM_RAM) 77 return 0; 78 79 start_pfn = (res->start + PAGE_SIZE - 1) >> PAGE_SHIFT; 80 stop_pfn = (res->end + 1) >> PAGE_SHIFT; 81 if (stop_pfn > start_pfn) { 82 for (i = 0; i < (stop_pfn - start_pfn); ++i) 83 if (pfn_valid(start_pfn + i) && 84 !PageReserved(pfn_to_page(start_pfn + i))) 85 return IORES_MAP_SYSTEM_RAM; 86 } 87 88 return 0; 89 } 90 91 /* 92 * In a SEV guest, NONE and RESERVED should not be mapped encrypted because 93 * there the whole memory is already encrypted. 94 */ 95 static unsigned int __ioremap_check_encrypted(struct resource *res) 96 { 97 if (!cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT)) 98 return 0; 99 100 switch (res->desc) { 101 case IORES_DESC_NONE: 102 case IORES_DESC_RESERVED: 103 break; 104 default: 105 return IORES_MAP_ENCRYPTED; 106 } 107 108 return 0; 109 } 110 111 /* 112 * The EFI runtime services data area is not covered by walk_mem_res(), but must 113 * be mapped encrypted when SEV is active. 114 */ 115 static void __ioremap_check_other(resource_size_t addr, struct ioremap_desc *desc) 116 { 117 if (!cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT)) 118 return; 119 120 if (x86_platform.hyper.is_private_mmio(addr)) { 121 desc->flags |= IORES_MAP_ENCRYPTED; 122 return; 123 } 124 125 if (!IS_ENABLED(CONFIG_EFI)) 126 return; 127 128 if (efi_mem_type(addr) == EFI_RUNTIME_SERVICES_DATA || 129 (efi_mem_type(addr) == EFI_BOOT_SERVICES_DATA && 130 efi_mem_attributes(addr) & EFI_MEMORY_RUNTIME)) 131 desc->flags |= IORES_MAP_ENCRYPTED; 132 } 133 134 static int __ioremap_collect_map_flags(struct resource *res, void *arg) 135 { 136 struct ioremap_desc *desc = arg; 137 138 if (!(desc->flags & IORES_MAP_SYSTEM_RAM)) 139 desc->flags |= __ioremap_check_ram(res); 140 141 if (!(desc->flags & IORES_MAP_ENCRYPTED)) 142 desc->flags |= __ioremap_check_encrypted(res); 143 144 return ((desc->flags & (IORES_MAP_SYSTEM_RAM | IORES_MAP_ENCRYPTED)) == 145 (IORES_MAP_SYSTEM_RAM | IORES_MAP_ENCRYPTED)); 146 } 147 148 /* 149 * To avoid multiple resource walks, this function walks resources marked as 150 * IORESOURCE_MEM and IORESOURCE_BUSY and looking for system RAM and/or a 151 * resource described not as IORES_DESC_NONE (e.g. IORES_DESC_ACPI_TABLES). 152 * 153 * After that, deal with misc other ranges in __ioremap_check_other() which do 154 * not fall into the above category. 155 */ 156 static void __ioremap_check_mem(resource_size_t addr, unsigned long size, 157 struct ioremap_desc *desc) 158 { 159 u64 start, end; 160 161 start = (u64)addr; 162 end = start + size - 1; 163 memset(desc, 0, sizeof(struct ioremap_desc)); 164 165 walk_mem_res(start, end, desc, __ioremap_collect_map_flags); 166 167 __ioremap_check_other(addr, desc); 168 } 169 170 /* 171 * Remap an arbitrary physical address space into the kernel virtual 172 * address space. It transparently creates kernel huge I/O mapping when 173 * the physical address is aligned by a huge page size (1GB or 2MB) and 174 * the requested size is at least the huge page size. 175 * 176 * NOTE: MTRRs can override PAT memory types with a 4KB granularity. 177 * Therefore, the mapping code falls back to use a smaller page toward 4KB 178 * when a mapping range is covered by non-WB type of MTRRs. 179 * 180 * NOTE! We need to allow non-page-aligned mappings too: we will obviously 181 * have to convert them into an offset in a page-aligned mapping, but the 182 * caller shouldn't need to know that small detail. 183 */ 184 static void __iomem * 185 __ioremap_caller(resource_size_t phys_addr, unsigned long size, 186 enum page_cache_mode pcm, void *caller, bool encrypted) 187 { 188 unsigned long offset, vaddr; 189 resource_size_t last_addr; 190 const resource_size_t unaligned_phys_addr = phys_addr; 191 const unsigned long unaligned_size = size; 192 struct ioremap_desc io_desc; 193 struct vm_struct *area; 194 enum page_cache_mode new_pcm; 195 pgprot_t prot; 196 int retval; 197 void __iomem *ret_addr; 198 199 /* Don't allow wraparound or zero size */ 200 last_addr = phys_addr + size - 1; 201 if (!size || last_addr < phys_addr) 202 return NULL; 203 204 if (!phys_addr_valid(phys_addr)) { 205 printk(KERN_WARNING "ioremap: invalid physical address %llx\n", 206 (unsigned long long)phys_addr); 207 WARN_ON_ONCE(1); 208 return NULL; 209 } 210 211 __ioremap_check_mem(phys_addr, size, &io_desc); 212 213 /* 214 * Don't allow anybody to remap normal RAM that we're using.. 215 */ 216 if (io_desc.flags & IORES_MAP_SYSTEM_RAM) { 217 WARN_ONCE(1, "ioremap on RAM at %pa - %pa\n", 218 &phys_addr, &last_addr); 219 return NULL; 220 } 221 222 /* 223 * Mappings have to be page-aligned 224 */ 225 offset = phys_addr & ~PAGE_MASK; 226 phys_addr &= PAGE_MASK; 227 size = PAGE_ALIGN(last_addr+1) - phys_addr; 228 229 /* 230 * Mask out any bits not part of the actual physical 231 * address, like memory encryption bits. 232 */ 233 phys_addr &= PHYSICAL_PAGE_MASK; 234 235 retval = memtype_reserve(phys_addr, (u64)phys_addr + size, 236 pcm, &new_pcm); 237 if (retval) { 238 printk(KERN_ERR "ioremap memtype_reserve failed %d\n", retval); 239 return NULL; 240 } 241 242 if (pcm != new_pcm) { 243 if (!is_new_memtype_allowed(phys_addr, size, pcm, new_pcm)) { 244 printk(KERN_ERR 245 "ioremap error for 0x%llx-0x%llx, requested 0x%x, got 0x%x\n", 246 (unsigned long long)phys_addr, 247 (unsigned long long)(phys_addr + size), 248 pcm, new_pcm); 249 goto err_free_memtype; 250 } 251 pcm = new_pcm; 252 } 253 254 /* 255 * If the page being mapped is in memory and SEV is active then 256 * make sure the memory encryption attribute is enabled in the 257 * resulting mapping. 258 * In TDX guests, memory is marked private by default. If encryption 259 * is not requested (using encrypted), explicitly set decrypt 260 * attribute in all IOREMAPPED memory. 261 */ 262 prot = PAGE_KERNEL_IO; 263 if ((io_desc.flags & IORES_MAP_ENCRYPTED) || encrypted) 264 prot = pgprot_encrypted(prot); 265 else 266 prot = pgprot_decrypted(prot); 267 268 switch (pcm) { 269 case _PAGE_CACHE_MODE_UC: 270 default: 271 prot = __pgprot(pgprot_val(prot) | 272 cachemode2protval(_PAGE_CACHE_MODE_UC)); 273 break; 274 case _PAGE_CACHE_MODE_UC_MINUS: 275 prot = __pgprot(pgprot_val(prot) | 276 cachemode2protval(_PAGE_CACHE_MODE_UC_MINUS)); 277 break; 278 case _PAGE_CACHE_MODE_WC: 279 prot = __pgprot(pgprot_val(prot) | 280 cachemode2protval(_PAGE_CACHE_MODE_WC)); 281 break; 282 case _PAGE_CACHE_MODE_WT: 283 prot = __pgprot(pgprot_val(prot) | 284 cachemode2protval(_PAGE_CACHE_MODE_WT)); 285 break; 286 case _PAGE_CACHE_MODE_WB: 287 break; 288 } 289 290 /* 291 * Ok, go for it.. 292 */ 293 area = get_vm_area_caller(size, VM_IOREMAP, caller); 294 if (!area) 295 goto err_free_memtype; 296 area->phys_addr = phys_addr; 297 vaddr = (unsigned long) area->addr; 298 299 if (memtype_kernel_map_sync(phys_addr, size, pcm)) 300 goto err_free_area; 301 302 if (ioremap_page_range(vaddr, vaddr + size, phys_addr, prot)) 303 goto err_free_area; 304 305 ret_addr = (void __iomem *) (vaddr + offset); 306 mmiotrace_ioremap(unaligned_phys_addr, unaligned_size, ret_addr); 307 308 /* 309 * Check if the request spans more than any BAR in the iomem resource 310 * tree. 311 */ 312 if (iomem_map_sanity_check(unaligned_phys_addr, unaligned_size)) 313 pr_warn("caller %pS mapping multiple BARs\n", caller); 314 315 return ret_addr; 316 err_free_area: 317 free_vm_area(area); 318 err_free_memtype: 319 memtype_free(phys_addr, phys_addr + size); 320 return NULL; 321 } 322 323 /** 324 * ioremap - map bus memory into CPU space 325 * @phys_addr: bus address of the memory 326 * @size: size of the resource to map 327 * 328 * ioremap performs a platform specific sequence of operations to 329 * make bus memory CPU accessible via the readb/readw/readl/writeb/ 330 * writew/writel functions and the other mmio helpers. The returned 331 * address is not guaranteed to be usable directly as a virtual 332 * address. 333 * 334 * This version of ioremap ensures that the memory is marked uncachable 335 * on the CPU as well as honouring existing caching rules from things like 336 * the PCI bus. Note that there are other caches and buffers on many 337 * busses. In particular driver authors should read up on PCI writes 338 * 339 * It's useful if some control registers are in such an area and 340 * write combining or read caching is not desirable: 341 * 342 * Must be freed with iounmap. 343 */ 344 void __iomem *ioremap(resource_size_t phys_addr, unsigned long size) 345 { 346 /* 347 * Ideally, this should be: 348 * pat_enabled() ? _PAGE_CACHE_MODE_UC : _PAGE_CACHE_MODE_UC_MINUS; 349 * 350 * Till we fix all X drivers to use ioremap_wc(), we will use 351 * UC MINUS. Drivers that are certain they need or can already 352 * be converted over to strong UC can use ioremap_uc(). 353 */ 354 enum page_cache_mode pcm = _PAGE_CACHE_MODE_UC_MINUS; 355 356 return __ioremap_caller(phys_addr, size, pcm, 357 __builtin_return_address(0), false); 358 } 359 EXPORT_SYMBOL(ioremap); 360 361 /** 362 * ioremap_uc - map bus memory into CPU space as strongly uncachable 363 * @phys_addr: bus address of the memory 364 * @size: size of the resource to map 365 * 366 * ioremap_uc performs a platform specific sequence of operations to 367 * make bus memory CPU accessible via the readb/readw/readl/writeb/ 368 * writew/writel functions and the other mmio helpers. The returned 369 * address is not guaranteed to be usable directly as a virtual 370 * address. 371 * 372 * This version of ioremap ensures that the memory is marked with a strong 373 * preference as completely uncachable on the CPU when possible. For non-PAT 374 * systems this ends up setting page-attribute flags PCD=1, PWT=1. For PAT 375 * systems this will set the PAT entry for the pages as strong UC. This call 376 * will honor existing caching rules from things like the PCI bus. Note that 377 * there are other caches and buffers on many busses. In particular driver 378 * authors should read up on PCI writes. 379 * 380 * It's useful if some control registers are in such an area and 381 * write combining or read caching is not desirable: 382 * 383 * Must be freed with iounmap. 384 */ 385 void __iomem *ioremap_uc(resource_size_t phys_addr, unsigned long size) 386 { 387 enum page_cache_mode pcm = _PAGE_CACHE_MODE_UC; 388 389 return __ioremap_caller(phys_addr, size, pcm, 390 __builtin_return_address(0), false); 391 } 392 EXPORT_SYMBOL_GPL(ioremap_uc); 393 394 /** 395 * ioremap_wc - map memory into CPU space write combined 396 * @phys_addr: bus address of the memory 397 * @size: size of the resource to map 398 * 399 * This version of ioremap ensures that the memory is marked write combining. 400 * Write combining allows faster writes to some hardware devices. 401 * 402 * Must be freed with iounmap. 403 */ 404 void __iomem *ioremap_wc(resource_size_t phys_addr, unsigned long size) 405 { 406 return __ioremap_caller(phys_addr, size, _PAGE_CACHE_MODE_WC, 407 __builtin_return_address(0), false); 408 } 409 EXPORT_SYMBOL(ioremap_wc); 410 411 /** 412 * ioremap_wt - map memory into CPU space write through 413 * @phys_addr: bus address of the memory 414 * @size: size of the resource to map 415 * 416 * This version of ioremap ensures that the memory is marked write through. 417 * Write through stores data into memory while keeping the cache up-to-date. 418 * 419 * Must be freed with iounmap. 420 */ 421 void __iomem *ioremap_wt(resource_size_t phys_addr, unsigned long size) 422 { 423 return __ioremap_caller(phys_addr, size, _PAGE_CACHE_MODE_WT, 424 __builtin_return_address(0), false); 425 } 426 EXPORT_SYMBOL(ioremap_wt); 427 428 void __iomem *ioremap_encrypted(resource_size_t phys_addr, unsigned long size) 429 { 430 return __ioremap_caller(phys_addr, size, _PAGE_CACHE_MODE_WB, 431 __builtin_return_address(0), true); 432 } 433 EXPORT_SYMBOL(ioremap_encrypted); 434 435 void __iomem *ioremap_cache(resource_size_t phys_addr, unsigned long size) 436 { 437 return __ioremap_caller(phys_addr, size, _PAGE_CACHE_MODE_WB, 438 __builtin_return_address(0), false); 439 } 440 EXPORT_SYMBOL(ioremap_cache); 441 442 void __iomem *ioremap_prot(resource_size_t phys_addr, unsigned long size, 443 unsigned long prot_val) 444 { 445 return __ioremap_caller(phys_addr, size, 446 pgprot2cachemode(__pgprot(prot_val)), 447 __builtin_return_address(0), false); 448 } 449 EXPORT_SYMBOL(ioremap_prot); 450 451 /** 452 * iounmap - Free a IO remapping 453 * @addr: virtual address from ioremap_* 454 * 455 * Caller must ensure there is only one unmapping for the same pointer. 456 */ 457 void iounmap(volatile void __iomem *addr) 458 { 459 struct vm_struct *p, *o; 460 461 if (WARN_ON_ONCE(!is_ioremap_addr((void __force *)addr))) 462 return; 463 464 /* 465 * The PCI/ISA range special-casing was removed from __ioremap() 466 * so this check, in theory, can be removed. However, there are 467 * cases where iounmap() is called for addresses not obtained via 468 * ioremap() (vga16fb for example). Add a warning so that these 469 * cases can be caught and fixed. 470 */ 471 if ((void __force *)addr >= phys_to_virt(ISA_START_ADDRESS) && 472 (void __force *)addr < phys_to_virt(ISA_END_ADDRESS)) { 473 WARN(1, "iounmap() called for ISA range not obtained using ioremap()\n"); 474 return; 475 } 476 477 mmiotrace_iounmap(addr); 478 479 addr = (volatile void __iomem *) 480 (PAGE_MASK & (unsigned long __force)addr); 481 482 /* Use the vm area unlocked, assuming the caller 483 ensures there isn't another iounmap for the same address 484 in parallel. Reuse of the virtual address is prevented by 485 leaving it in the global lists until we're done with it. 486 cpa takes care of the direct mappings. */ 487 p = find_vm_area((void __force *)addr); 488 489 if (!p) { 490 printk(KERN_ERR "iounmap: bad address %p\n", addr); 491 dump_stack(); 492 return; 493 } 494 495 kmsan_iounmap_page_range((unsigned long)addr, 496 (unsigned long)addr + get_vm_area_size(p)); 497 memtype_free(p->phys_addr, p->phys_addr + get_vm_area_size(p)); 498 499 /* Finally remove it */ 500 o = remove_vm_area((void __force *)addr); 501 BUG_ON(p != o || o == NULL); 502 kfree(p); 503 } 504 EXPORT_SYMBOL(iounmap); 505 506 /* 507 * Convert a physical pointer to a virtual kernel pointer for /dev/mem 508 * access 509 */ 510 void *xlate_dev_mem_ptr(phys_addr_t phys) 511 { 512 unsigned long start = phys & PAGE_MASK; 513 unsigned long offset = phys & ~PAGE_MASK; 514 void *vaddr; 515 516 /* memremap() maps if RAM, otherwise falls back to ioremap() */ 517 vaddr = memremap(start, PAGE_SIZE, MEMREMAP_WB); 518 519 /* Only add the offset on success and return NULL if memremap() failed */ 520 if (vaddr) 521 vaddr += offset; 522 523 return vaddr; 524 } 525 526 void unxlate_dev_mem_ptr(phys_addr_t phys, void *addr) 527 { 528 memunmap((void *)((unsigned long)addr & PAGE_MASK)); 529 } 530 531 #ifdef CONFIG_AMD_MEM_ENCRYPT 532 /* 533 * Examine the physical address to determine if it is an area of memory 534 * that should be mapped decrypted. If the memory is not part of the 535 * kernel usable area it was accessed and created decrypted, so these 536 * areas should be mapped decrypted. And since the encryption key can 537 * change across reboots, persistent memory should also be mapped 538 * decrypted. 539 * 540 * If SEV is active, that implies that BIOS/UEFI also ran encrypted so 541 * only persistent memory should be mapped decrypted. 542 */ 543 static bool memremap_should_map_decrypted(resource_size_t phys_addr, 544 unsigned long size) 545 { 546 int is_pmem; 547 548 /* 549 * Check if the address is part of a persistent memory region. 550 * This check covers areas added by E820, EFI and ACPI. 551 */ 552 is_pmem = region_intersects(phys_addr, size, IORESOURCE_MEM, 553 IORES_DESC_PERSISTENT_MEMORY); 554 if (is_pmem != REGION_DISJOINT) 555 return true; 556 557 /* 558 * Check if the non-volatile attribute is set for an EFI 559 * reserved area. 560 */ 561 if (efi_enabled(EFI_BOOT)) { 562 switch (efi_mem_type(phys_addr)) { 563 case EFI_RESERVED_TYPE: 564 if (efi_mem_attributes(phys_addr) & EFI_MEMORY_NV) 565 return true; 566 break; 567 default: 568 break; 569 } 570 } 571 572 /* Check if the address is outside kernel usable area */ 573 switch (e820__get_entry_type(phys_addr, phys_addr + size - 1)) { 574 case E820_TYPE_RESERVED: 575 case E820_TYPE_ACPI: 576 case E820_TYPE_NVS: 577 case E820_TYPE_UNUSABLE: 578 /* For SEV, these areas are encrypted */ 579 if (cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT)) 580 break; 581 fallthrough; 582 583 case E820_TYPE_PRAM: 584 return true; 585 default: 586 break; 587 } 588 589 return false; 590 } 591 592 /* 593 * Examine the physical address to determine if it is EFI data. Check 594 * it against the boot params structure and EFI tables and memory types. 595 */ 596 static bool memremap_is_efi_data(resource_size_t phys_addr, 597 unsigned long size) 598 { 599 u64 paddr; 600 601 /* Check if the address is part of EFI boot/runtime data */ 602 if (!efi_enabled(EFI_BOOT)) 603 return false; 604 605 paddr = boot_params.efi_info.efi_memmap_hi; 606 paddr <<= 32; 607 paddr |= boot_params.efi_info.efi_memmap; 608 if (phys_addr == paddr) 609 return true; 610 611 paddr = boot_params.efi_info.efi_systab_hi; 612 paddr <<= 32; 613 paddr |= boot_params.efi_info.efi_systab; 614 if (phys_addr == paddr) 615 return true; 616 617 if (efi_is_table_address(phys_addr)) 618 return true; 619 620 switch (efi_mem_type(phys_addr)) { 621 case EFI_BOOT_SERVICES_DATA: 622 case EFI_RUNTIME_SERVICES_DATA: 623 return true; 624 default: 625 break; 626 } 627 628 return false; 629 } 630 631 /* 632 * Examine the physical address to determine if it is boot data by checking 633 * it against the boot params setup_data chain. 634 */ 635 static bool memremap_is_setup_data(resource_size_t phys_addr, 636 unsigned long size) 637 { 638 struct setup_indirect *indirect; 639 struct setup_data *data; 640 u64 paddr, paddr_next; 641 642 paddr = boot_params.hdr.setup_data; 643 while (paddr) { 644 unsigned int len; 645 646 if (phys_addr == paddr) 647 return true; 648 649 data = memremap(paddr, sizeof(*data), 650 MEMREMAP_WB | MEMREMAP_DEC); 651 if (!data) { 652 pr_warn("failed to memremap setup_data entry\n"); 653 return false; 654 } 655 656 paddr_next = data->next; 657 len = data->len; 658 659 if ((phys_addr > paddr) && (phys_addr < (paddr + len))) { 660 memunmap(data); 661 return true; 662 } 663 664 if (data->type == SETUP_INDIRECT) { 665 memunmap(data); 666 data = memremap(paddr, sizeof(*data) + len, 667 MEMREMAP_WB | MEMREMAP_DEC); 668 if (!data) { 669 pr_warn("failed to memremap indirect setup_data\n"); 670 return false; 671 } 672 673 indirect = (struct setup_indirect *)data->data; 674 675 if (indirect->type != SETUP_INDIRECT) { 676 paddr = indirect->addr; 677 len = indirect->len; 678 } 679 } 680 681 memunmap(data); 682 683 if ((phys_addr > paddr) && (phys_addr < (paddr + len))) 684 return true; 685 686 paddr = paddr_next; 687 } 688 689 return false; 690 } 691 692 /* 693 * Examine the physical address to determine if it is boot data by checking 694 * it against the boot params setup_data chain (early boot version). 695 */ 696 static bool __init early_memremap_is_setup_data(resource_size_t phys_addr, 697 unsigned long size) 698 { 699 struct setup_indirect *indirect; 700 struct setup_data *data; 701 u64 paddr, paddr_next; 702 703 paddr = boot_params.hdr.setup_data; 704 while (paddr) { 705 unsigned int len, size; 706 707 if (phys_addr == paddr) 708 return true; 709 710 data = early_memremap_decrypted(paddr, sizeof(*data)); 711 if (!data) { 712 pr_warn("failed to early memremap setup_data entry\n"); 713 return false; 714 } 715 716 size = sizeof(*data); 717 718 paddr_next = data->next; 719 len = data->len; 720 721 if ((phys_addr > paddr) && (phys_addr < (paddr + len))) { 722 early_memunmap(data, sizeof(*data)); 723 return true; 724 } 725 726 if (data->type == SETUP_INDIRECT) { 727 size += len; 728 early_memunmap(data, sizeof(*data)); 729 data = early_memremap_decrypted(paddr, size); 730 if (!data) { 731 pr_warn("failed to early memremap indirect setup_data\n"); 732 return false; 733 } 734 735 indirect = (struct setup_indirect *)data->data; 736 737 if (indirect->type != SETUP_INDIRECT) { 738 paddr = indirect->addr; 739 len = indirect->len; 740 } 741 } 742 743 early_memunmap(data, size); 744 745 if ((phys_addr > paddr) && (phys_addr < (paddr + len))) 746 return true; 747 748 paddr = paddr_next; 749 } 750 751 return false; 752 } 753 754 /* 755 * Architecture function to determine if RAM remap is allowed. By default, a 756 * RAM remap will map the data as encrypted. Determine if a RAM remap should 757 * not be done so that the data will be mapped decrypted. 758 */ 759 bool arch_memremap_can_ram_remap(resource_size_t phys_addr, unsigned long size, 760 unsigned long flags) 761 { 762 if (!cc_platform_has(CC_ATTR_MEM_ENCRYPT)) 763 return true; 764 765 if (flags & MEMREMAP_ENC) 766 return true; 767 768 if (flags & MEMREMAP_DEC) 769 return false; 770 771 if (cc_platform_has(CC_ATTR_HOST_MEM_ENCRYPT)) { 772 if (memremap_is_setup_data(phys_addr, size) || 773 memremap_is_efi_data(phys_addr, size)) 774 return false; 775 } 776 777 return !memremap_should_map_decrypted(phys_addr, size); 778 } 779 780 /* 781 * Architecture override of __weak function to adjust the protection attributes 782 * used when remapping memory. By default, early_memremap() will map the data 783 * as encrypted. Determine if an encrypted mapping should not be done and set 784 * the appropriate protection attributes. 785 */ 786 pgprot_t __init early_memremap_pgprot_adjust(resource_size_t phys_addr, 787 unsigned long size, 788 pgprot_t prot) 789 { 790 bool encrypted_prot; 791 792 if (!cc_platform_has(CC_ATTR_MEM_ENCRYPT)) 793 return prot; 794 795 encrypted_prot = true; 796 797 if (cc_platform_has(CC_ATTR_HOST_MEM_ENCRYPT)) { 798 if (early_memremap_is_setup_data(phys_addr, size) || 799 memremap_is_efi_data(phys_addr, size)) 800 encrypted_prot = false; 801 } 802 803 if (encrypted_prot && memremap_should_map_decrypted(phys_addr, size)) 804 encrypted_prot = false; 805 806 return encrypted_prot ? pgprot_encrypted(prot) 807 : pgprot_decrypted(prot); 808 } 809 810 bool phys_mem_access_encrypted(unsigned long phys_addr, unsigned long size) 811 { 812 return arch_memremap_can_ram_remap(phys_addr, size, 0); 813 } 814 815 /* Remap memory with encryption */ 816 void __init *early_memremap_encrypted(resource_size_t phys_addr, 817 unsigned long size) 818 { 819 return early_memremap_prot(phys_addr, size, __PAGE_KERNEL_ENC); 820 } 821 822 /* 823 * Remap memory with encryption and write-protected - cannot be called 824 * before pat_init() is called 825 */ 826 void __init *early_memremap_encrypted_wp(resource_size_t phys_addr, 827 unsigned long size) 828 { 829 if (!x86_has_pat_wp()) 830 return NULL; 831 return early_memremap_prot(phys_addr, size, __PAGE_KERNEL_ENC_WP); 832 } 833 834 /* Remap memory without encryption */ 835 void __init *early_memremap_decrypted(resource_size_t phys_addr, 836 unsigned long size) 837 { 838 return early_memremap_prot(phys_addr, size, __PAGE_KERNEL_NOENC); 839 } 840 841 /* 842 * Remap memory without encryption and write-protected - cannot be called 843 * before pat_init() is called 844 */ 845 void __init *early_memremap_decrypted_wp(resource_size_t phys_addr, 846 unsigned long size) 847 { 848 if (!x86_has_pat_wp()) 849 return NULL; 850 return early_memremap_prot(phys_addr, size, __PAGE_KERNEL_NOENC_WP); 851 } 852 #endif /* CONFIG_AMD_MEM_ENCRYPT */ 853 854 static pte_t bm_pte[PAGE_SIZE/sizeof(pte_t)] __page_aligned_bss; 855 856 static inline pmd_t * __init early_ioremap_pmd(unsigned long addr) 857 { 858 /* Don't assume we're using swapper_pg_dir at this point */ 859 pgd_t *base = __va(read_cr3_pa()); 860 pgd_t *pgd = &base[pgd_index(addr)]; 861 p4d_t *p4d = p4d_offset(pgd, addr); 862 pud_t *pud = pud_offset(p4d, addr); 863 pmd_t *pmd = pmd_offset(pud, addr); 864 865 return pmd; 866 } 867 868 static inline pte_t * __init early_ioremap_pte(unsigned long addr) 869 { 870 return &bm_pte[pte_index(addr)]; 871 } 872 873 bool __init is_early_ioremap_ptep(pte_t *ptep) 874 { 875 return ptep >= &bm_pte[0] && ptep < &bm_pte[PAGE_SIZE/sizeof(pte_t)]; 876 } 877 878 void __init early_ioremap_init(void) 879 { 880 pmd_t *pmd; 881 882 #ifdef CONFIG_X86_64 883 BUILD_BUG_ON((fix_to_virt(0) + PAGE_SIZE) & ((1 << PMD_SHIFT) - 1)); 884 #else 885 WARN_ON((fix_to_virt(0) + PAGE_SIZE) & ((1 << PMD_SHIFT) - 1)); 886 #endif 887 888 early_ioremap_setup(); 889 890 pmd = early_ioremap_pmd(fix_to_virt(FIX_BTMAP_BEGIN)); 891 memset(bm_pte, 0, sizeof(bm_pte)); 892 pmd_populate_kernel(&init_mm, pmd, bm_pte); 893 894 /* 895 * The boot-ioremap range spans multiple pmds, for which 896 * we are not prepared: 897 */ 898 #define __FIXADDR_TOP (-PAGE_SIZE) 899 BUILD_BUG_ON((__fix_to_virt(FIX_BTMAP_BEGIN) >> PMD_SHIFT) 900 != (__fix_to_virt(FIX_BTMAP_END) >> PMD_SHIFT)); 901 #undef __FIXADDR_TOP 902 if (pmd != early_ioremap_pmd(fix_to_virt(FIX_BTMAP_END))) { 903 WARN_ON(1); 904 printk(KERN_WARNING "pmd %p != %p\n", 905 pmd, early_ioremap_pmd(fix_to_virt(FIX_BTMAP_END))); 906 printk(KERN_WARNING "fix_to_virt(FIX_BTMAP_BEGIN): %08lx\n", 907 fix_to_virt(FIX_BTMAP_BEGIN)); 908 printk(KERN_WARNING "fix_to_virt(FIX_BTMAP_END): %08lx\n", 909 fix_to_virt(FIX_BTMAP_END)); 910 911 printk(KERN_WARNING "FIX_BTMAP_END: %d\n", FIX_BTMAP_END); 912 printk(KERN_WARNING "FIX_BTMAP_BEGIN: %d\n", 913 FIX_BTMAP_BEGIN); 914 } 915 } 916 917 void __init __early_set_fixmap(enum fixed_addresses idx, 918 phys_addr_t phys, pgprot_t flags) 919 { 920 unsigned long addr = __fix_to_virt(idx); 921 pte_t *pte; 922 923 if (idx >= __end_of_fixed_addresses) { 924 BUG(); 925 return; 926 } 927 pte = early_ioremap_pte(addr); 928 929 /* Sanitize 'prot' against any unsupported bits: */ 930 pgprot_val(flags) &= __supported_pte_mask; 931 932 if (pgprot_val(flags)) 933 set_pte(pte, pfn_pte(phys >> PAGE_SHIFT, flags)); 934 else 935 pte_clear(&init_mm, addr, pte); 936 flush_tlb_one_kernel(addr); 937 } 938