xref: /linux/arch/x86/mm/ioremap.c (revision 3ce095c16263630dde46d6051854073edaacf3d7)
1 /*
2  * Re-map IO memory to kernel address space so that we can access it.
3  * This is needed for high PCI addresses that aren't mapped in the
4  * 640k-1MB IO memory area on PC's
5  *
6  * (C) Copyright 1995 1996 Linus Torvalds
7  */
8 
9 #include <linux/bootmem.h>
10 #include <linux/init.h>
11 #include <linux/io.h>
12 #include <linux/module.h>
13 #include <linux/slab.h>
14 #include <linux/vmalloc.h>
15 #include <linux/mmiotrace.h>
16 
17 #include <asm/cacheflush.h>
18 #include <asm/e820.h>
19 #include <asm/fixmap.h>
20 #include <asm/pgtable.h>
21 #include <asm/tlbflush.h>
22 #include <asm/pgalloc.h>
23 #include <asm/pat.h>
24 
25 #include "physaddr.h"
26 
27 /*
28  * Fix up the linear direct mapping of the kernel to avoid cache attribute
29  * conflicts.
30  */
31 int ioremap_change_attr(unsigned long vaddr, unsigned long size,
32 			enum page_cache_mode pcm)
33 {
34 	unsigned long nrpages = size >> PAGE_SHIFT;
35 	int err;
36 
37 	switch (pcm) {
38 	case _PAGE_CACHE_MODE_UC:
39 	default:
40 		err = _set_memory_uc(vaddr, nrpages);
41 		break;
42 	case _PAGE_CACHE_MODE_WC:
43 		err = _set_memory_wc(vaddr, nrpages);
44 		break;
45 	case _PAGE_CACHE_MODE_WB:
46 		err = _set_memory_wb(vaddr, nrpages);
47 		break;
48 	}
49 
50 	return err;
51 }
52 
53 static int __ioremap_check_ram(unsigned long start_pfn, unsigned long nr_pages,
54 			       void *arg)
55 {
56 	unsigned long i;
57 
58 	for (i = 0; i < nr_pages; ++i)
59 		if (pfn_valid(start_pfn + i) &&
60 		    !PageReserved(pfn_to_page(start_pfn + i)))
61 			return 1;
62 
63 	WARN_ONCE(1, "ioremap on RAM pfn 0x%lx\n", start_pfn);
64 
65 	return 0;
66 }
67 
68 /*
69  * Remap an arbitrary physical address space into the kernel virtual
70  * address space. It transparently creates kernel huge I/O mapping when
71  * the physical address is aligned by a huge page size (1GB or 2MB) and
72  * the requested size is at least the huge page size.
73  *
74  * NOTE: MTRRs can override PAT memory types with a 4KB granularity.
75  * Therefore, the mapping code falls back to use a smaller page toward 4KB
76  * when a mapping range is covered by non-WB type of MTRRs.
77  *
78  * NOTE! We need to allow non-page-aligned mappings too: we will obviously
79  * have to convert them into an offset in a page-aligned mapping, but the
80  * caller shouldn't need to know that small detail.
81  */
82 static void __iomem *__ioremap_caller(resource_size_t phys_addr,
83 		unsigned long size, enum page_cache_mode pcm, void *caller)
84 {
85 	unsigned long offset, vaddr;
86 	resource_size_t pfn, last_pfn, last_addr;
87 	const resource_size_t unaligned_phys_addr = phys_addr;
88 	const unsigned long unaligned_size = size;
89 	struct vm_struct *area;
90 	enum page_cache_mode new_pcm;
91 	pgprot_t prot;
92 	int retval;
93 	void __iomem *ret_addr;
94 	int ram_region;
95 
96 	/* Don't allow wraparound or zero size */
97 	last_addr = phys_addr + size - 1;
98 	if (!size || last_addr < phys_addr)
99 		return NULL;
100 
101 	if (!phys_addr_valid(phys_addr)) {
102 		printk(KERN_WARNING "ioremap: invalid physical address %llx\n",
103 		       (unsigned long long)phys_addr);
104 		WARN_ON_ONCE(1);
105 		return NULL;
106 	}
107 
108 	/*
109 	 * Don't remap the low PCI/ISA area, it's always mapped..
110 	 */
111 	if (is_ISA_range(phys_addr, last_addr))
112 		return (__force void __iomem *)phys_to_virt(phys_addr);
113 
114 	/*
115 	 * Don't allow anybody to remap normal RAM that we're using..
116 	 */
117 	/* First check if whole region can be identified as RAM or not */
118 	ram_region = region_is_ram(phys_addr, size);
119 	if (ram_region > 0) {
120 		WARN_ONCE(1, "ioremap on RAM at 0x%lx - 0x%lx\n",
121 				(unsigned long int)phys_addr,
122 				(unsigned long int)last_addr);
123 		return NULL;
124 	}
125 
126 	/* If could not be identified(-1), check page by page */
127 	if (ram_region < 0) {
128 		pfn      = phys_addr >> PAGE_SHIFT;
129 		last_pfn = last_addr >> PAGE_SHIFT;
130 		if (walk_system_ram_range(pfn, last_pfn - pfn + 1, NULL,
131 					  __ioremap_check_ram) == 1)
132 			return NULL;
133 	}
134 	/*
135 	 * Mappings have to be page-aligned
136 	 */
137 	offset = phys_addr & ~PAGE_MASK;
138 	phys_addr &= PHYSICAL_PAGE_MASK;
139 	size = PAGE_ALIGN(last_addr+1) - phys_addr;
140 
141 	retval = reserve_memtype(phys_addr, (u64)phys_addr + size,
142 						pcm, &new_pcm);
143 	if (retval) {
144 		printk(KERN_ERR "ioremap reserve_memtype failed %d\n", retval);
145 		return NULL;
146 	}
147 
148 	if (pcm != new_pcm) {
149 		if (!is_new_memtype_allowed(phys_addr, size, pcm, new_pcm)) {
150 			printk(KERN_ERR
151 		"ioremap error for 0x%llx-0x%llx, requested 0x%x, got 0x%x\n",
152 				(unsigned long long)phys_addr,
153 				(unsigned long long)(phys_addr + size),
154 				pcm, new_pcm);
155 			goto err_free_memtype;
156 		}
157 		pcm = new_pcm;
158 	}
159 
160 	prot = PAGE_KERNEL_IO;
161 	switch (pcm) {
162 	case _PAGE_CACHE_MODE_UC:
163 	default:
164 		prot = __pgprot(pgprot_val(prot) |
165 				cachemode2protval(_PAGE_CACHE_MODE_UC));
166 		break;
167 	case _PAGE_CACHE_MODE_UC_MINUS:
168 		prot = __pgprot(pgprot_val(prot) |
169 				cachemode2protval(_PAGE_CACHE_MODE_UC_MINUS));
170 		break;
171 	case _PAGE_CACHE_MODE_WC:
172 		prot = __pgprot(pgprot_val(prot) |
173 				cachemode2protval(_PAGE_CACHE_MODE_WC));
174 		break;
175 	case _PAGE_CACHE_MODE_WB:
176 		break;
177 	}
178 
179 	/*
180 	 * Ok, go for it..
181 	 */
182 	area = get_vm_area_caller(size, VM_IOREMAP, caller);
183 	if (!area)
184 		goto err_free_memtype;
185 	area->phys_addr = phys_addr;
186 	vaddr = (unsigned long) area->addr;
187 
188 	if (kernel_map_sync_memtype(phys_addr, size, pcm))
189 		goto err_free_area;
190 
191 	if (ioremap_page_range(vaddr, vaddr + size, phys_addr, prot))
192 		goto err_free_area;
193 
194 	ret_addr = (void __iomem *) (vaddr + offset);
195 	mmiotrace_ioremap(unaligned_phys_addr, unaligned_size, ret_addr);
196 
197 	/*
198 	 * Check if the request spans more than any BAR in the iomem resource
199 	 * tree.
200 	 */
201 	WARN_ONCE(iomem_map_sanity_check(unaligned_phys_addr, unaligned_size),
202 		  KERN_INFO "Info: mapping multiple BARs. Your kernel is fine.");
203 
204 	return ret_addr;
205 err_free_area:
206 	free_vm_area(area);
207 err_free_memtype:
208 	free_memtype(phys_addr, phys_addr + size);
209 	return NULL;
210 }
211 
212 /**
213  * ioremap_nocache     -   map bus memory into CPU space
214  * @phys_addr:    bus address of the memory
215  * @size:      size of the resource to map
216  *
217  * ioremap_nocache performs a platform specific sequence of operations to
218  * make bus memory CPU accessible via the readb/readw/readl/writeb/
219  * writew/writel functions and the other mmio helpers. The returned
220  * address is not guaranteed to be usable directly as a virtual
221  * address.
222  *
223  * This version of ioremap ensures that the memory is marked uncachable
224  * on the CPU as well as honouring existing caching rules from things like
225  * the PCI bus. Note that there are other caches and buffers on many
226  * busses. In particular driver authors should read up on PCI writes
227  *
228  * It's useful if some control registers are in such an area and
229  * write combining or read caching is not desirable:
230  *
231  * Must be freed with iounmap.
232  */
233 void __iomem *ioremap_nocache(resource_size_t phys_addr, unsigned long size)
234 {
235 	/*
236 	 * Ideally, this should be:
237 	 *	pat_enabled ? _PAGE_CACHE_MODE_UC : _PAGE_CACHE_MODE_UC_MINUS;
238 	 *
239 	 * Till we fix all X drivers to use ioremap_wc(), we will use
240 	 * UC MINUS.
241 	 */
242 	enum page_cache_mode pcm = _PAGE_CACHE_MODE_UC_MINUS;
243 
244 	return __ioremap_caller(phys_addr, size, pcm,
245 				__builtin_return_address(0));
246 }
247 EXPORT_SYMBOL(ioremap_nocache);
248 
249 /**
250  * ioremap_wc	-	map memory into CPU space write combined
251  * @phys_addr:	bus address of the memory
252  * @size:	size of the resource to map
253  *
254  * This version of ioremap ensures that the memory is marked write combining.
255  * Write combining allows faster writes to some hardware devices.
256  *
257  * Must be freed with iounmap.
258  */
259 void __iomem *ioremap_wc(resource_size_t phys_addr, unsigned long size)
260 {
261 	if (pat_enabled)
262 		return __ioremap_caller(phys_addr, size, _PAGE_CACHE_MODE_WC,
263 					__builtin_return_address(0));
264 	else
265 		return ioremap_nocache(phys_addr, size);
266 }
267 EXPORT_SYMBOL(ioremap_wc);
268 
269 void __iomem *ioremap_cache(resource_size_t phys_addr, unsigned long size)
270 {
271 	return __ioremap_caller(phys_addr, size, _PAGE_CACHE_MODE_WB,
272 				__builtin_return_address(0));
273 }
274 EXPORT_SYMBOL(ioremap_cache);
275 
276 void __iomem *ioremap_prot(resource_size_t phys_addr, unsigned long size,
277 				unsigned long prot_val)
278 {
279 	return __ioremap_caller(phys_addr, size,
280 				pgprot2cachemode(__pgprot(prot_val)),
281 				__builtin_return_address(0));
282 }
283 EXPORT_SYMBOL(ioremap_prot);
284 
285 /**
286  * iounmap - Free a IO remapping
287  * @addr: virtual address from ioremap_*
288  *
289  * Caller must ensure there is only one unmapping for the same pointer.
290  */
291 void iounmap(volatile void __iomem *addr)
292 {
293 	struct vm_struct *p, *o;
294 
295 	if ((void __force *)addr <= high_memory)
296 		return;
297 
298 	/*
299 	 * __ioremap special-cases the PCI/ISA range by not instantiating a
300 	 * vm_area and by simply returning an address into the kernel mapping
301 	 * of ISA space.   So handle that here.
302 	 */
303 	if ((void __force *)addr >= phys_to_virt(ISA_START_ADDRESS) &&
304 	    (void __force *)addr < phys_to_virt(ISA_END_ADDRESS))
305 		return;
306 
307 	addr = (volatile void __iomem *)
308 		(PAGE_MASK & (unsigned long __force)addr);
309 
310 	mmiotrace_iounmap(addr);
311 
312 	/* Use the vm area unlocked, assuming the caller
313 	   ensures there isn't another iounmap for the same address
314 	   in parallel. Reuse of the virtual address is prevented by
315 	   leaving it in the global lists until we're done with it.
316 	   cpa takes care of the direct mappings. */
317 	p = find_vm_area((void __force *)addr);
318 
319 	if (!p) {
320 		printk(KERN_ERR "iounmap: bad address %p\n", addr);
321 		dump_stack();
322 		return;
323 	}
324 
325 	free_memtype(p->phys_addr, p->phys_addr + get_vm_area_size(p));
326 
327 	/* Finally remove it */
328 	o = remove_vm_area((void __force *)addr);
329 	BUG_ON(p != o || o == NULL);
330 	kfree(p);
331 }
332 EXPORT_SYMBOL(iounmap);
333 
334 int arch_ioremap_pud_supported(void)
335 {
336 #ifdef CONFIG_X86_64
337 	return cpu_has_gbpages;
338 #else
339 	return 0;
340 #endif
341 }
342 
343 int arch_ioremap_pmd_supported(void)
344 {
345 	return cpu_has_pse;
346 }
347 
348 /*
349  * Convert a physical pointer to a virtual kernel pointer for /dev/mem
350  * access
351  */
352 void *xlate_dev_mem_ptr(phys_addr_t phys)
353 {
354 	unsigned long start  = phys &  PAGE_MASK;
355 	unsigned long offset = phys & ~PAGE_MASK;
356 	unsigned long vaddr;
357 
358 	/* If page is RAM, we can use __va. Otherwise ioremap and unmap. */
359 	if (page_is_ram(start >> PAGE_SHIFT))
360 		return __va(phys);
361 
362 	vaddr = (unsigned long)ioremap_cache(start, PAGE_SIZE);
363 	/* Only add the offset on success and return NULL if the ioremap() failed: */
364 	if (vaddr)
365 		vaddr += offset;
366 
367 	return (void *)vaddr;
368 }
369 
370 void unxlate_dev_mem_ptr(phys_addr_t phys, void *addr)
371 {
372 	if (page_is_ram(phys >> PAGE_SHIFT))
373 		return;
374 
375 	iounmap((void __iomem *)((unsigned long)addr & PAGE_MASK));
376 	return;
377 }
378 
379 static pte_t bm_pte[PAGE_SIZE/sizeof(pte_t)] __page_aligned_bss;
380 
381 static inline pmd_t * __init early_ioremap_pmd(unsigned long addr)
382 {
383 	/* Don't assume we're using swapper_pg_dir at this point */
384 	pgd_t *base = __va(read_cr3());
385 	pgd_t *pgd = &base[pgd_index(addr)];
386 	pud_t *pud = pud_offset(pgd, addr);
387 	pmd_t *pmd = pmd_offset(pud, addr);
388 
389 	return pmd;
390 }
391 
392 static inline pte_t * __init early_ioremap_pte(unsigned long addr)
393 {
394 	return &bm_pte[pte_index(addr)];
395 }
396 
397 bool __init is_early_ioremap_ptep(pte_t *ptep)
398 {
399 	return ptep >= &bm_pte[0] && ptep < &bm_pte[PAGE_SIZE/sizeof(pte_t)];
400 }
401 
402 void __init early_ioremap_init(void)
403 {
404 	pmd_t *pmd;
405 
406 #ifdef CONFIG_X86_64
407 	BUILD_BUG_ON((fix_to_virt(0) + PAGE_SIZE) & ((1 << PMD_SHIFT) - 1));
408 #else
409 	WARN_ON((fix_to_virt(0) + PAGE_SIZE) & ((1 << PMD_SHIFT) - 1));
410 #endif
411 
412 	early_ioremap_setup();
413 
414 	pmd = early_ioremap_pmd(fix_to_virt(FIX_BTMAP_BEGIN));
415 	memset(bm_pte, 0, sizeof(bm_pte));
416 	pmd_populate_kernel(&init_mm, pmd, bm_pte);
417 
418 	/*
419 	 * The boot-ioremap range spans multiple pmds, for which
420 	 * we are not prepared:
421 	 */
422 #define __FIXADDR_TOP (-PAGE_SIZE)
423 	BUILD_BUG_ON((__fix_to_virt(FIX_BTMAP_BEGIN) >> PMD_SHIFT)
424 		     != (__fix_to_virt(FIX_BTMAP_END) >> PMD_SHIFT));
425 #undef __FIXADDR_TOP
426 	if (pmd != early_ioremap_pmd(fix_to_virt(FIX_BTMAP_END))) {
427 		WARN_ON(1);
428 		printk(KERN_WARNING "pmd %p != %p\n",
429 		       pmd, early_ioremap_pmd(fix_to_virt(FIX_BTMAP_END)));
430 		printk(KERN_WARNING "fix_to_virt(FIX_BTMAP_BEGIN): %08lx\n",
431 			fix_to_virt(FIX_BTMAP_BEGIN));
432 		printk(KERN_WARNING "fix_to_virt(FIX_BTMAP_END):   %08lx\n",
433 			fix_to_virt(FIX_BTMAP_END));
434 
435 		printk(KERN_WARNING "FIX_BTMAP_END:       %d\n", FIX_BTMAP_END);
436 		printk(KERN_WARNING "FIX_BTMAP_BEGIN:     %d\n",
437 		       FIX_BTMAP_BEGIN);
438 	}
439 }
440 
441 void __init __early_set_fixmap(enum fixed_addresses idx,
442 			       phys_addr_t phys, pgprot_t flags)
443 {
444 	unsigned long addr = __fix_to_virt(idx);
445 	pte_t *pte;
446 
447 	if (idx >= __end_of_fixed_addresses) {
448 		BUG();
449 		return;
450 	}
451 	pte = early_ioremap_pte(addr);
452 
453 	if (pgprot_val(flags))
454 		set_pte(pte, pfn_pte(phys >> PAGE_SHIFT, flags));
455 	else
456 		pte_clear(&init_mm, addr, pte);
457 	__flush_tlb_one(addr);
458 }
459