1 /* 2 * Re-map IO memory to kernel address space so that we can access it. 3 * This is needed for high PCI addresses that aren't mapped in the 4 * 640k-1MB IO memory area on PC's 5 * 6 * (C) Copyright 1995 1996 Linus Torvalds 7 */ 8 9 #include <linux/bootmem.h> 10 #include <linux/init.h> 11 #include <linux/io.h> 12 #include <linux/ioport.h> 13 #include <linux/slab.h> 14 #include <linux/vmalloc.h> 15 #include <linux/mmiotrace.h> 16 17 #include <asm/set_memory.h> 18 #include <asm/e820/api.h> 19 #include <asm/fixmap.h> 20 #include <asm/pgtable.h> 21 #include <asm/tlbflush.h> 22 #include <asm/pgalloc.h> 23 #include <asm/pat.h> 24 25 #include "physaddr.h" 26 27 /* 28 * Fix up the linear direct mapping of the kernel to avoid cache attribute 29 * conflicts. 30 */ 31 int ioremap_change_attr(unsigned long vaddr, unsigned long size, 32 enum page_cache_mode pcm) 33 { 34 unsigned long nrpages = size >> PAGE_SHIFT; 35 int err; 36 37 switch (pcm) { 38 case _PAGE_CACHE_MODE_UC: 39 default: 40 err = _set_memory_uc(vaddr, nrpages); 41 break; 42 case _PAGE_CACHE_MODE_WC: 43 err = _set_memory_wc(vaddr, nrpages); 44 break; 45 case _PAGE_CACHE_MODE_WT: 46 err = _set_memory_wt(vaddr, nrpages); 47 break; 48 case _PAGE_CACHE_MODE_WB: 49 err = _set_memory_wb(vaddr, nrpages); 50 break; 51 } 52 53 return err; 54 } 55 56 static int __ioremap_check_ram(unsigned long start_pfn, unsigned long nr_pages, 57 void *arg) 58 { 59 unsigned long i; 60 61 for (i = 0; i < nr_pages; ++i) 62 if (pfn_valid(start_pfn + i) && 63 !PageReserved(pfn_to_page(start_pfn + i))) 64 return 1; 65 66 return 0; 67 } 68 69 /* 70 * Remap an arbitrary physical address space into the kernel virtual 71 * address space. It transparently creates kernel huge I/O mapping when 72 * the physical address is aligned by a huge page size (1GB or 2MB) and 73 * the requested size is at least the huge page size. 74 * 75 * NOTE: MTRRs can override PAT memory types with a 4KB granularity. 76 * Therefore, the mapping code falls back to use a smaller page toward 4KB 77 * when a mapping range is covered by non-WB type of MTRRs. 78 * 79 * NOTE! We need to allow non-page-aligned mappings too: we will obviously 80 * have to convert them into an offset in a page-aligned mapping, but the 81 * caller shouldn't need to know that small detail. 82 */ 83 static void __iomem *__ioremap_caller(resource_size_t phys_addr, 84 unsigned long size, enum page_cache_mode pcm, void *caller) 85 { 86 unsigned long offset, vaddr; 87 resource_size_t pfn, last_pfn, last_addr; 88 const resource_size_t unaligned_phys_addr = phys_addr; 89 const unsigned long unaligned_size = size; 90 struct vm_struct *area; 91 enum page_cache_mode new_pcm; 92 pgprot_t prot; 93 int retval; 94 void __iomem *ret_addr; 95 96 /* Don't allow wraparound or zero size */ 97 last_addr = phys_addr + size - 1; 98 if (!size || last_addr < phys_addr) 99 return NULL; 100 101 if (!phys_addr_valid(phys_addr)) { 102 printk(KERN_WARNING "ioremap: invalid physical address %llx\n", 103 (unsigned long long)phys_addr); 104 WARN_ON_ONCE(1); 105 return NULL; 106 } 107 108 /* 109 * Don't allow anybody to remap normal RAM that we're using.. 110 */ 111 pfn = phys_addr >> PAGE_SHIFT; 112 last_pfn = last_addr >> PAGE_SHIFT; 113 if (walk_system_ram_range(pfn, last_pfn - pfn + 1, NULL, 114 __ioremap_check_ram) == 1) { 115 WARN_ONCE(1, "ioremap on RAM at %pa - %pa\n", 116 &phys_addr, &last_addr); 117 return NULL; 118 } 119 120 /* 121 * Mappings have to be page-aligned 122 */ 123 offset = phys_addr & ~PAGE_MASK; 124 phys_addr &= PHYSICAL_PAGE_MASK; 125 size = PAGE_ALIGN(last_addr+1) - phys_addr; 126 127 retval = reserve_memtype(phys_addr, (u64)phys_addr + size, 128 pcm, &new_pcm); 129 if (retval) { 130 printk(KERN_ERR "ioremap reserve_memtype failed %d\n", retval); 131 return NULL; 132 } 133 134 if (pcm != new_pcm) { 135 if (!is_new_memtype_allowed(phys_addr, size, pcm, new_pcm)) { 136 printk(KERN_ERR 137 "ioremap error for 0x%llx-0x%llx, requested 0x%x, got 0x%x\n", 138 (unsigned long long)phys_addr, 139 (unsigned long long)(phys_addr + size), 140 pcm, new_pcm); 141 goto err_free_memtype; 142 } 143 pcm = new_pcm; 144 } 145 146 prot = PAGE_KERNEL_IO; 147 switch (pcm) { 148 case _PAGE_CACHE_MODE_UC: 149 default: 150 prot = __pgprot(pgprot_val(prot) | 151 cachemode2protval(_PAGE_CACHE_MODE_UC)); 152 break; 153 case _PAGE_CACHE_MODE_UC_MINUS: 154 prot = __pgprot(pgprot_val(prot) | 155 cachemode2protval(_PAGE_CACHE_MODE_UC_MINUS)); 156 break; 157 case _PAGE_CACHE_MODE_WC: 158 prot = __pgprot(pgprot_val(prot) | 159 cachemode2protval(_PAGE_CACHE_MODE_WC)); 160 break; 161 case _PAGE_CACHE_MODE_WT: 162 prot = __pgprot(pgprot_val(prot) | 163 cachemode2protval(_PAGE_CACHE_MODE_WT)); 164 break; 165 case _PAGE_CACHE_MODE_WB: 166 break; 167 } 168 169 /* 170 * Ok, go for it.. 171 */ 172 area = get_vm_area_caller(size, VM_IOREMAP, caller); 173 if (!area) 174 goto err_free_memtype; 175 area->phys_addr = phys_addr; 176 vaddr = (unsigned long) area->addr; 177 178 if (kernel_map_sync_memtype(phys_addr, size, pcm)) 179 goto err_free_area; 180 181 if (ioremap_page_range(vaddr, vaddr + size, phys_addr, prot)) 182 goto err_free_area; 183 184 ret_addr = (void __iomem *) (vaddr + offset); 185 mmiotrace_ioremap(unaligned_phys_addr, unaligned_size, ret_addr); 186 187 /* 188 * Check if the request spans more than any BAR in the iomem resource 189 * tree. 190 */ 191 if (iomem_map_sanity_check(unaligned_phys_addr, unaligned_size)) 192 pr_warn("caller %pS mapping multiple BARs\n", caller); 193 194 return ret_addr; 195 err_free_area: 196 free_vm_area(area); 197 err_free_memtype: 198 free_memtype(phys_addr, phys_addr + size); 199 return NULL; 200 } 201 202 /** 203 * ioremap_nocache - map bus memory into CPU space 204 * @phys_addr: bus address of the memory 205 * @size: size of the resource to map 206 * 207 * ioremap_nocache performs a platform specific sequence of operations to 208 * make bus memory CPU accessible via the readb/readw/readl/writeb/ 209 * writew/writel functions and the other mmio helpers. The returned 210 * address is not guaranteed to be usable directly as a virtual 211 * address. 212 * 213 * This version of ioremap ensures that the memory is marked uncachable 214 * on the CPU as well as honouring existing caching rules from things like 215 * the PCI bus. Note that there are other caches and buffers on many 216 * busses. In particular driver authors should read up on PCI writes 217 * 218 * It's useful if some control registers are in such an area and 219 * write combining or read caching is not desirable: 220 * 221 * Must be freed with iounmap. 222 */ 223 void __iomem *ioremap_nocache(resource_size_t phys_addr, unsigned long size) 224 { 225 /* 226 * Ideally, this should be: 227 * pat_enabled() ? _PAGE_CACHE_MODE_UC : _PAGE_CACHE_MODE_UC_MINUS; 228 * 229 * Till we fix all X drivers to use ioremap_wc(), we will use 230 * UC MINUS. Drivers that are certain they need or can already 231 * be converted over to strong UC can use ioremap_uc(). 232 */ 233 enum page_cache_mode pcm = _PAGE_CACHE_MODE_UC_MINUS; 234 235 return __ioremap_caller(phys_addr, size, pcm, 236 __builtin_return_address(0)); 237 } 238 EXPORT_SYMBOL(ioremap_nocache); 239 240 /** 241 * ioremap_uc - map bus memory into CPU space as strongly uncachable 242 * @phys_addr: bus address of the memory 243 * @size: size of the resource to map 244 * 245 * ioremap_uc performs a platform specific sequence of operations to 246 * make bus memory CPU accessible via the readb/readw/readl/writeb/ 247 * writew/writel functions and the other mmio helpers. The returned 248 * address is not guaranteed to be usable directly as a virtual 249 * address. 250 * 251 * This version of ioremap ensures that the memory is marked with a strong 252 * preference as completely uncachable on the CPU when possible. For non-PAT 253 * systems this ends up setting page-attribute flags PCD=1, PWT=1. For PAT 254 * systems this will set the PAT entry for the pages as strong UC. This call 255 * will honor existing caching rules from things like the PCI bus. Note that 256 * there are other caches and buffers on many busses. In particular driver 257 * authors should read up on PCI writes. 258 * 259 * It's useful if some control registers are in such an area and 260 * write combining or read caching is not desirable: 261 * 262 * Must be freed with iounmap. 263 */ 264 void __iomem *ioremap_uc(resource_size_t phys_addr, unsigned long size) 265 { 266 enum page_cache_mode pcm = _PAGE_CACHE_MODE_UC; 267 268 return __ioremap_caller(phys_addr, size, pcm, 269 __builtin_return_address(0)); 270 } 271 EXPORT_SYMBOL_GPL(ioremap_uc); 272 273 /** 274 * ioremap_wc - map memory into CPU space write combined 275 * @phys_addr: bus address of the memory 276 * @size: size of the resource to map 277 * 278 * This version of ioremap ensures that the memory is marked write combining. 279 * Write combining allows faster writes to some hardware devices. 280 * 281 * Must be freed with iounmap. 282 */ 283 void __iomem *ioremap_wc(resource_size_t phys_addr, unsigned long size) 284 { 285 return __ioremap_caller(phys_addr, size, _PAGE_CACHE_MODE_WC, 286 __builtin_return_address(0)); 287 } 288 EXPORT_SYMBOL(ioremap_wc); 289 290 /** 291 * ioremap_wt - map memory into CPU space write through 292 * @phys_addr: bus address of the memory 293 * @size: size of the resource to map 294 * 295 * This version of ioremap ensures that the memory is marked write through. 296 * Write through stores data into memory while keeping the cache up-to-date. 297 * 298 * Must be freed with iounmap. 299 */ 300 void __iomem *ioremap_wt(resource_size_t phys_addr, unsigned long size) 301 { 302 return __ioremap_caller(phys_addr, size, _PAGE_CACHE_MODE_WT, 303 __builtin_return_address(0)); 304 } 305 EXPORT_SYMBOL(ioremap_wt); 306 307 void __iomem *ioremap_cache(resource_size_t phys_addr, unsigned long size) 308 { 309 return __ioremap_caller(phys_addr, size, _PAGE_CACHE_MODE_WB, 310 __builtin_return_address(0)); 311 } 312 EXPORT_SYMBOL(ioremap_cache); 313 314 void __iomem *ioremap_prot(resource_size_t phys_addr, unsigned long size, 315 unsigned long prot_val) 316 { 317 return __ioremap_caller(phys_addr, size, 318 pgprot2cachemode(__pgprot(prot_val)), 319 __builtin_return_address(0)); 320 } 321 EXPORT_SYMBOL(ioremap_prot); 322 323 /** 324 * iounmap - Free a IO remapping 325 * @addr: virtual address from ioremap_* 326 * 327 * Caller must ensure there is only one unmapping for the same pointer. 328 */ 329 void iounmap(volatile void __iomem *addr) 330 { 331 struct vm_struct *p, *o; 332 333 if ((void __force *)addr <= high_memory) 334 return; 335 336 /* 337 * The PCI/ISA range special-casing was removed from __ioremap() 338 * so this check, in theory, can be removed. However, there are 339 * cases where iounmap() is called for addresses not obtained via 340 * ioremap() (vga16fb for example). Add a warning so that these 341 * cases can be caught and fixed. 342 */ 343 if ((void __force *)addr >= phys_to_virt(ISA_START_ADDRESS) && 344 (void __force *)addr < phys_to_virt(ISA_END_ADDRESS)) { 345 WARN(1, "iounmap() called for ISA range not obtained using ioremap()\n"); 346 return; 347 } 348 349 addr = (volatile void __iomem *) 350 (PAGE_MASK & (unsigned long __force)addr); 351 352 mmiotrace_iounmap(addr); 353 354 /* Use the vm area unlocked, assuming the caller 355 ensures there isn't another iounmap for the same address 356 in parallel. Reuse of the virtual address is prevented by 357 leaving it in the global lists until we're done with it. 358 cpa takes care of the direct mappings. */ 359 p = find_vm_area((void __force *)addr); 360 361 if (!p) { 362 printk(KERN_ERR "iounmap: bad address %p\n", addr); 363 dump_stack(); 364 return; 365 } 366 367 free_memtype(p->phys_addr, p->phys_addr + get_vm_area_size(p)); 368 369 /* Finally remove it */ 370 o = remove_vm_area((void __force *)addr); 371 BUG_ON(p != o || o == NULL); 372 kfree(p); 373 } 374 EXPORT_SYMBOL(iounmap); 375 376 int __init arch_ioremap_pud_supported(void) 377 { 378 #ifdef CONFIG_X86_64 379 return boot_cpu_has(X86_FEATURE_GBPAGES); 380 #else 381 return 0; 382 #endif 383 } 384 385 int __init arch_ioremap_pmd_supported(void) 386 { 387 return boot_cpu_has(X86_FEATURE_PSE); 388 } 389 390 /* 391 * Convert a physical pointer to a virtual kernel pointer for /dev/mem 392 * access 393 */ 394 void *xlate_dev_mem_ptr(phys_addr_t phys) 395 { 396 unsigned long start = phys & PAGE_MASK; 397 unsigned long offset = phys & ~PAGE_MASK; 398 void *vaddr; 399 400 /* If page is RAM, we can use __va. Otherwise ioremap and unmap. */ 401 if (page_is_ram(start >> PAGE_SHIFT)) 402 return __va(phys); 403 404 vaddr = ioremap_cache(start, PAGE_SIZE); 405 /* Only add the offset on success and return NULL if the ioremap() failed: */ 406 if (vaddr) 407 vaddr += offset; 408 409 return vaddr; 410 } 411 412 void unxlate_dev_mem_ptr(phys_addr_t phys, void *addr) 413 { 414 if (page_is_ram(phys >> PAGE_SHIFT)) 415 return; 416 417 iounmap((void __iomem *)((unsigned long)addr & PAGE_MASK)); 418 } 419 420 static pte_t bm_pte[PAGE_SIZE/sizeof(pte_t)] __page_aligned_bss; 421 422 static inline pmd_t * __init early_ioremap_pmd(unsigned long addr) 423 { 424 /* Don't assume we're using swapper_pg_dir at this point */ 425 pgd_t *base = __va(read_cr3_pa()); 426 pgd_t *pgd = &base[pgd_index(addr)]; 427 p4d_t *p4d = p4d_offset(pgd, addr); 428 pud_t *pud = pud_offset(p4d, addr); 429 pmd_t *pmd = pmd_offset(pud, addr); 430 431 return pmd; 432 } 433 434 static inline pte_t * __init early_ioremap_pte(unsigned long addr) 435 { 436 return &bm_pte[pte_index(addr)]; 437 } 438 439 bool __init is_early_ioremap_ptep(pte_t *ptep) 440 { 441 return ptep >= &bm_pte[0] && ptep < &bm_pte[PAGE_SIZE/sizeof(pte_t)]; 442 } 443 444 void __init early_ioremap_init(void) 445 { 446 pmd_t *pmd; 447 448 #ifdef CONFIG_X86_64 449 BUILD_BUG_ON((fix_to_virt(0) + PAGE_SIZE) & ((1 << PMD_SHIFT) - 1)); 450 #else 451 WARN_ON((fix_to_virt(0) + PAGE_SIZE) & ((1 << PMD_SHIFT) - 1)); 452 #endif 453 454 early_ioremap_setup(); 455 456 pmd = early_ioremap_pmd(fix_to_virt(FIX_BTMAP_BEGIN)); 457 memset(bm_pte, 0, sizeof(bm_pte)); 458 pmd_populate_kernel(&init_mm, pmd, bm_pte); 459 460 /* 461 * The boot-ioremap range spans multiple pmds, for which 462 * we are not prepared: 463 */ 464 #define __FIXADDR_TOP (-PAGE_SIZE) 465 BUILD_BUG_ON((__fix_to_virt(FIX_BTMAP_BEGIN) >> PMD_SHIFT) 466 != (__fix_to_virt(FIX_BTMAP_END) >> PMD_SHIFT)); 467 #undef __FIXADDR_TOP 468 if (pmd != early_ioremap_pmd(fix_to_virt(FIX_BTMAP_END))) { 469 WARN_ON(1); 470 printk(KERN_WARNING "pmd %p != %p\n", 471 pmd, early_ioremap_pmd(fix_to_virt(FIX_BTMAP_END))); 472 printk(KERN_WARNING "fix_to_virt(FIX_BTMAP_BEGIN): %08lx\n", 473 fix_to_virt(FIX_BTMAP_BEGIN)); 474 printk(KERN_WARNING "fix_to_virt(FIX_BTMAP_END): %08lx\n", 475 fix_to_virt(FIX_BTMAP_END)); 476 477 printk(KERN_WARNING "FIX_BTMAP_END: %d\n", FIX_BTMAP_END); 478 printk(KERN_WARNING "FIX_BTMAP_BEGIN: %d\n", 479 FIX_BTMAP_BEGIN); 480 } 481 } 482 483 void __init __early_set_fixmap(enum fixed_addresses idx, 484 phys_addr_t phys, pgprot_t flags) 485 { 486 unsigned long addr = __fix_to_virt(idx); 487 pte_t *pte; 488 489 if (idx >= __end_of_fixed_addresses) { 490 BUG(); 491 return; 492 } 493 pte = early_ioremap_pte(addr); 494 495 if (pgprot_val(flags)) 496 set_pte(pte, pfn_pte(phys >> PAGE_SHIFT, flags)); 497 else 498 pte_clear(&init_mm, addr, pte); 499 __flush_tlb_one(addr); 500 } 501