1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Re-map IO memory to kernel address space so that we can access it. 4 * This is needed for high PCI addresses that aren't mapped in the 5 * 640k-1MB IO memory area on PC's 6 * 7 * (C) Copyright 1995 1996 Linus Torvalds 8 */ 9 10 #include <linux/memblock.h> 11 #include <linux/init.h> 12 #include <linux/io.h> 13 #include <linux/ioport.h> 14 #include <linux/slab.h> 15 #include <linux/vmalloc.h> 16 #include <linux/mmiotrace.h> 17 #include <linux/mem_encrypt.h> 18 #include <linux/efi.h> 19 #include <linux/pgtable.h> 20 21 #include <asm/set_memory.h> 22 #include <asm/e820/api.h> 23 #include <asm/efi.h> 24 #include <asm/fixmap.h> 25 #include <asm/tlbflush.h> 26 #include <asm/pgalloc.h> 27 #include <asm/memtype.h> 28 #include <asm/setup.h> 29 30 #include "physaddr.h" 31 32 /* 33 * Descriptor controlling ioremap() behavior. 34 */ 35 struct ioremap_desc { 36 unsigned int flags; 37 }; 38 39 /* 40 * Fix up the linear direct mapping of the kernel to avoid cache attribute 41 * conflicts. 42 */ 43 int ioremap_change_attr(unsigned long vaddr, unsigned long size, 44 enum page_cache_mode pcm) 45 { 46 unsigned long nrpages = size >> PAGE_SHIFT; 47 int err; 48 49 switch (pcm) { 50 case _PAGE_CACHE_MODE_UC: 51 default: 52 err = _set_memory_uc(vaddr, nrpages); 53 break; 54 case _PAGE_CACHE_MODE_WC: 55 err = _set_memory_wc(vaddr, nrpages); 56 break; 57 case _PAGE_CACHE_MODE_WT: 58 err = _set_memory_wt(vaddr, nrpages); 59 break; 60 case _PAGE_CACHE_MODE_WB: 61 err = _set_memory_wb(vaddr, nrpages); 62 break; 63 } 64 65 return err; 66 } 67 68 /* Does the range (or a subset of) contain normal RAM? */ 69 static unsigned int __ioremap_check_ram(struct resource *res) 70 { 71 unsigned long start_pfn, stop_pfn; 72 unsigned long i; 73 74 if ((res->flags & IORESOURCE_SYSTEM_RAM) != IORESOURCE_SYSTEM_RAM) 75 return 0; 76 77 start_pfn = (res->start + PAGE_SIZE - 1) >> PAGE_SHIFT; 78 stop_pfn = (res->end + 1) >> PAGE_SHIFT; 79 if (stop_pfn > start_pfn) { 80 for (i = 0; i < (stop_pfn - start_pfn); ++i) 81 if (pfn_valid(start_pfn + i) && 82 !PageReserved(pfn_to_page(start_pfn + i))) 83 return IORES_MAP_SYSTEM_RAM; 84 } 85 86 return 0; 87 } 88 89 /* 90 * In a SEV guest, NONE and RESERVED should not be mapped encrypted because 91 * there the whole memory is already encrypted. 92 */ 93 static unsigned int __ioremap_check_encrypted(struct resource *res) 94 { 95 if (!sev_active()) 96 return 0; 97 98 switch (res->desc) { 99 case IORES_DESC_NONE: 100 case IORES_DESC_RESERVED: 101 break; 102 default: 103 return IORES_MAP_ENCRYPTED; 104 } 105 106 return 0; 107 } 108 109 /* 110 * The EFI runtime services data area is not covered by walk_mem_res(), but must 111 * be mapped encrypted when SEV is active. 112 */ 113 static void __ioremap_check_other(resource_size_t addr, struct ioremap_desc *desc) 114 { 115 if (!sev_active()) 116 return; 117 118 if (!IS_ENABLED(CONFIG_EFI)) 119 return; 120 121 if (efi_mem_type(addr) == EFI_RUNTIME_SERVICES_DATA) 122 desc->flags |= IORES_MAP_ENCRYPTED; 123 } 124 125 static int __ioremap_collect_map_flags(struct resource *res, void *arg) 126 { 127 struct ioremap_desc *desc = arg; 128 129 if (!(desc->flags & IORES_MAP_SYSTEM_RAM)) 130 desc->flags |= __ioremap_check_ram(res); 131 132 if (!(desc->flags & IORES_MAP_ENCRYPTED)) 133 desc->flags |= __ioremap_check_encrypted(res); 134 135 return ((desc->flags & (IORES_MAP_SYSTEM_RAM | IORES_MAP_ENCRYPTED)) == 136 (IORES_MAP_SYSTEM_RAM | IORES_MAP_ENCRYPTED)); 137 } 138 139 /* 140 * To avoid multiple resource walks, this function walks resources marked as 141 * IORESOURCE_MEM and IORESOURCE_BUSY and looking for system RAM and/or a 142 * resource described not as IORES_DESC_NONE (e.g. IORES_DESC_ACPI_TABLES). 143 * 144 * After that, deal with misc other ranges in __ioremap_check_other() which do 145 * not fall into the above category. 146 */ 147 static void __ioremap_check_mem(resource_size_t addr, unsigned long size, 148 struct ioremap_desc *desc) 149 { 150 u64 start, end; 151 152 start = (u64)addr; 153 end = start + size - 1; 154 memset(desc, 0, sizeof(struct ioremap_desc)); 155 156 walk_mem_res(start, end, desc, __ioremap_collect_map_flags); 157 158 __ioremap_check_other(addr, desc); 159 } 160 161 /* 162 * Remap an arbitrary physical address space into the kernel virtual 163 * address space. It transparently creates kernel huge I/O mapping when 164 * the physical address is aligned by a huge page size (1GB or 2MB) and 165 * the requested size is at least the huge page size. 166 * 167 * NOTE: MTRRs can override PAT memory types with a 4KB granularity. 168 * Therefore, the mapping code falls back to use a smaller page toward 4KB 169 * when a mapping range is covered by non-WB type of MTRRs. 170 * 171 * NOTE! We need to allow non-page-aligned mappings too: we will obviously 172 * have to convert them into an offset in a page-aligned mapping, but the 173 * caller shouldn't need to know that small detail. 174 */ 175 static void __iomem * 176 __ioremap_caller(resource_size_t phys_addr, unsigned long size, 177 enum page_cache_mode pcm, void *caller, bool encrypted) 178 { 179 unsigned long offset, vaddr; 180 resource_size_t last_addr; 181 const resource_size_t unaligned_phys_addr = phys_addr; 182 const unsigned long unaligned_size = size; 183 struct ioremap_desc io_desc; 184 struct vm_struct *area; 185 enum page_cache_mode new_pcm; 186 pgprot_t prot; 187 int retval; 188 void __iomem *ret_addr; 189 190 /* Don't allow wraparound or zero size */ 191 last_addr = phys_addr + size - 1; 192 if (!size || last_addr < phys_addr) 193 return NULL; 194 195 if (!phys_addr_valid(phys_addr)) { 196 printk(KERN_WARNING "ioremap: invalid physical address %llx\n", 197 (unsigned long long)phys_addr); 198 WARN_ON_ONCE(1); 199 return NULL; 200 } 201 202 __ioremap_check_mem(phys_addr, size, &io_desc); 203 204 /* 205 * Don't allow anybody to remap normal RAM that we're using.. 206 */ 207 if (io_desc.flags & IORES_MAP_SYSTEM_RAM) { 208 WARN_ONCE(1, "ioremap on RAM at %pa - %pa\n", 209 &phys_addr, &last_addr); 210 return NULL; 211 } 212 213 /* 214 * Mappings have to be page-aligned 215 */ 216 offset = phys_addr & ~PAGE_MASK; 217 phys_addr &= PHYSICAL_PAGE_MASK; 218 size = PAGE_ALIGN(last_addr+1) - phys_addr; 219 220 retval = memtype_reserve(phys_addr, (u64)phys_addr + size, 221 pcm, &new_pcm); 222 if (retval) { 223 printk(KERN_ERR "ioremap memtype_reserve failed %d\n", retval); 224 return NULL; 225 } 226 227 if (pcm != new_pcm) { 228 if (!is_new_memtype_allowed(phys_addr, size, pcm, new_pcm)) { 229 printk(KERN_ERR 230 "ioremap error for 0x%llx-0x%llx, requested 0x%x, got 0x%x\n", 231 (unsigned long long)phys_addr, 232 (unsigned long long)(phys_addr + size), 233 pcm, new_pcm); 234 goto err_free_memtype; 235 } 236 pcm = new_pcm; 237 } 238 239 /* 240 * If the page being mapped is in memory and SEV is active then 241 * make sure the memory encryption attribute is enabled in the 242 * resulting mapping. 243 */ 244 prot = PAGE_KERNEL_IO; 245 if ((io_desc.flags & IORES_MAP_ENCRYPTED) || encrypted) 246 prot = pgprot_encrypted(prot); 247 248 switch (pcm) { 249 case _PAGE_CACHE_MODE_UC: 250 default: 251 prot = __pgprot(pgprot_val(prot) | 252 cachemode2protval(_PAGE_CACHE_MODE_UC)); 253 break; 254 case _PAGE_CACHE_MODE_UC_MINUS: 255 prot = __pgprot(pgprot_val(prot) | 256 cachemode2protval(_PAGE_CACHE_MODE_UC_MINUS)); 257 break; 258 case _PAGE_CACHE_MODE_WC: 259 prot = __pgprot(pgprot_val(prot) | 260 cachemode2protval(_PAGE_CACHE_MODE_WC)); 261 break; 262 case _PAGE_CACHE_MODE_WT: 263 prot = __pgprot(pgprot_val(prot) | 264 cachemode2protval(_PAGE_CACHE_MODE_WT)); 265 break; 266 case _PAGE_CACHE_MODE_WB: 267 break; 268 } 269 270 /* 271 * Ok, go for it.. 272 */ 273 area = get_vm_area_caller(size, VM_IOREMAP, caller); 274 if (!area) 275 goto err_free_memtype; 276 area->phys_addr = phys_addr; 277 vaddr = (unsigned long) area->addr; 278 279 if (memtype_kernel_map_sync(phys_addr, size, pcm)) 280 goto err_free_area; 281 282 if (ioremap_page_range(vaddr, vaddr + size, phys_addr, prot)) 283 goto err_free_area; 284 285 ret_addr = (void __iomem *) (vaddr + offset); 286 mmiotrace_ioremap(unaligned_phys_addr, unaligned_size, ret_addr); 287 288 /* 289 * Check if the request spans more than any BAR in the iomem resource 290 * tree. 291 */ 292 if (iomem_map_sanity_check(unaligned_phys_addr, unaligned_size)) 293 pr_warn("caller %pS mapping multiple BARs\n", caller); 294 295 return ret_addr; 296 err_free_area: 297 free_vm_area(area); 298 err_free_memtype: 299 memtype_free(phys_addr, phys_addr + size); 300 return NULL; 301 } 302 303 /** 304 * ioremap - map bus memory into CPU space 305 * @phys_addr: bus address of the memory 306 * @size: size of the resource to map 307 * 308 * ioremap performs a platform specific sequence of operations to 309 * make bus memory CPU accessible via the readb/readw/readl/writeb/ 310 * writew/writel functions and the other mmio helpers. The returned 311 * address is not guaranteed to be usable directly as a virtual 312 * address. 313 * 314 * This version of ioremap ensures that the memory is marked uncachable 315 * on the CPU as well as honouring existing caching rules from things like 316 * the PCI bus. Note that there are other caches and buffers on many 317 * busses. In particular driver authors should read up on PCI writes 318 * 319 * It's useful if some control registers are in such an area and 320 * write combining or read caching is not desirable: 321 * 322 * Must be freed with iounmap. 323 */ 324 void __iomem *ioremap(resource_size_t phys_addr, unsigned long size) 325 { 326 /* 327 * Ideally, this should be: 328 * pat_enabled() ? _PAGE_CACHE_MODE_UC : _PAGE_CACHE_MODE_UC_MINUS; 329 * 330 * Till we fix all X drivers to use ioremap_wc(), we will use 331 * UC MINUS. Drivers that are certain they need or can already 332 * be converted over to strong UC can use ioremap_uc(). 333 */ 334 enum page_cache_mode pcm = _PAGE_CACHE_MODE_UC_MINUS; 335 336 return __ioremap_caller(phys_addr, size, pcm, 337 __builtin_return_address(0), false); 338 } 339 EXPORT_SYMBOL(ioremap); 340 341 /** 342 * ioremap_uc - map bus memory into CPU space as strongly uncachable 343 * @phys_addr: bus address of the memory 344 * @size: size of the resource to map 345 * 346 * ioremap_uc performs a platform specific sequence of operations to 347 * make bus memory CPU accessible via the readb/readw/readl/writeb/ 348 * writew/writel functions and the other mmio helpers. The returned 349 * address is not guaranteed to be usable directly as a virtual 350 * address. 351 * 352 * This version of ioremap ensures that the memory is marked with a strong 353 * preference as completely uncachable on the CPU when possible. For non-PAT 354 * systems this ends up setting page-attribute flags PCD=1, PWT=1. For PAT 355 * systems this will set the PAT entry for the pages as strong UC. This call 356 * will honor existing caching rules from things like the PCI bus. Note that 357 * there are other caches and buffers on many busses. In particular driver 358 * authors should read up on PCI writes. 359 * 360 * It's useful if some control registers are in such an area and 361 * write combining or read caching is not desirable: 362 * 363 * Must be freed with iounmap. 364 */ 365 void __iomem *ioremap_uc(resource_size_t phys_addr, unsigned long size) 366 { 367 enum page_cache_mode pcm = _PAGE_CACHE_MODE_UC; 368 369 return __ioremap_caller(phys_addr, size, pcm, 370 __builtin_return_address(0), false); 371 } 372 EXPORT_SYMBOL_GPL(ioremap_uc); 373 374 /** 375 * ioremap_wc - map memory into CPU space write combined 376 * @phys_addr: bus address of the memory 377 * @size: size of the resource to map 378 * 379 * This version of ioremap ensures that the memory is marked write combining. 380 * Write combining allows faster writes to some hardware devices. 381 * 382 * Must be freed with iounmap. 383 */ 384 void __iomem *ioremap_wc(resource_size_t phys_addr, unsigned long size) 385 { 386 return __ioremap_caller(phys_addr, size, _PAGE_CACHE_MODE_WC, 387 __builtin_return_address(0), false); 388 } 389 EXPORT_SYMBOL(ioremap_wc); 390 391 /** 392 * ioremap_wt - map memory into CPU space write through 393 * @phys_addr: bus address of the memory 394 * @size: size of the resource to map 395 * 396 * This version of ioremap ensures that the memory is marked write through. 397 * Write through stores data into memory while keeping the cache up-to-date. 398 * 399 * Must be freed with iounmap. 400 */ 401 void __iomem *ioremap_wt(resource_size_t phys_addr, unsigned long size) 402 { 403 return __ioremap_caller(phys_addr, size, _PAGE_CACHE_MODE_WT, 404 __builtin_return_address(0), false); 405 } 406 EXPORT_SYMBOL(ioremap_wt); 407 408 void __iomem *ioremap_encrypted(resource_size_t phys_addr, unsigned long size) 409 { 410 return __ioremap_caller(phys_addr, size, _PAGE_CACHE_MODE_WB, 411 __builtin_return_address(0), true); 412 } 413 EXPORT_SYMBOL(ioremap_encrypted); 414 415 void __iomem *ioremap_cache(resource_size_t phys_addr, unsigned long size) 416 { 417 return __ioremap_caller(phys_addr, size, _PAGE_CACHE_MODE_WB, 418 __builtin_return_address(0), false); 419 } 420 EXPORT_SYMBOL(ioremap_cache); 421 422 void __iomem *ioremap_prot(resource_size_t phys_addr, unsigned long size, 423 unsigned long prot_val) 424 { 425 return __ioremap_caller(phys_addr, size, 426 pgprot2cachemode(__pgprot(prot_val)), 427 __builtin_return_address(0), false); 428 } 429 EXPORT_SYMBOL(ioremap_prot); 430 431 /** 432 * iounmap - Free a IO remapping 433 * @addr: virtual address from ioremap_* 434 * 435 * Caller must ensure there is only one unmapping for the same pointer. 436 */ 437 void iounmap(volatile void __iomem *addr) 438 { 439 struct vm_struct *p, *o; 440 441 if ((void __force *)addr <= high_memory) 442 return; 443 444 /* 445 * The PCI/ISA range special-casing was removed from __ioremap() 446 * so this check, in theory, can be removed. However, there are 447 * cases where iounmap() is called for addresses not obtained via 448 * ioremap() (vga16fb for example). Add a warning so that these 449 * cases can be caught and fixed. 450 */ 451 if ((void __force *)addr >= phys_to_virt(ISA_START_ADDRESS) && 452 (void __force *)addr < phys_to_virt(ISA_END_ADDRESS)) { 453 WARN(1, "iounmap() called for ISA range not obtained using ioremap()\n"); 454 return; 455 } 456 457 mmiotrace_iounmap(addr); 458 459 addr = (volatile void __iomem *) 460 (PAGE_MASK & (unsigned long __force)addr); 461 462 /* Use the vm area unlocked, assuming the caller 463 ensures there isn't another iounmap for the same address 464 in parallel. Reuse of the virtual address is prevented by 465 leaving it in the global lists until we're done with it. 466 cpa takes care of the direct mappings. */ 467 p = find_vm_area((void __force *)addr); 468 469 if (!p) { 470 printk(KERN_ERR "iounmap: bad address %p\n", addr); 471 dump_stack(); 472 return; 473 } 474 475 memtype_free(p->phys_addr, p->phys_addr + get_vm_area_size(p)); 476 477 /* Finally remove it */ 478 o = remove_vm_area((void __force *)addr); 479 BUG_ON(p != o || o == NULL); 480 kfree(p); 481 } 482 EXPORT_SYMBOL(iounmap); 483 484 int __init arch_ioremap_p4d_supported(void) 485 { 486 return 0; 487 } 488 489 int __init arch_ioremap_pud_supported(void) 490 { 491 #ifdef CONFIG_X86_64 492 return boot_cpu_has(X86_FEATURE_GBPAGES); 493 #else 494 return 0; 495 #endif 496 } 497 498 int __init arch_ioremap_pmd_supported(void) 499 { 500 return boot_cpu_has(X86_FEATURE_PSE); 501 } 502 503 /* 504 * Convert a physical pointer to a virtual kernel pointer for /dev/mem 505 * access 506 */ 507 void *xlate_dev_mem_ptr(phys_addr_t phys) 508 { 509 unsigned long start = phys & PAGE_MASK; 510 unsigned long offset = phys & ~PAGE_MASK; 511 void *vaddr; 512 513 /* memremap() maps if RAM, otherwise falls back to ioremap() */ 514 vaddr = memremap(start, PAGE_SIZE, MEMREMAP_WB); 515 516 /* Only add the offset on success and return NULL if memremap() failed */ 517 if (vaddr) 518 vaddr += offset; 519 520 return vaddr; 521 } 522 523 void unxlate_dev_mem_ptr(phys_addr_t phys, void *addr) 524 { 525 memunmap((void *)((unsigned long)addr & PAGE_MASK)); 526 } 527 528 /* 529 * Examine the physical address to determine if it is an area of memory 530 * that should be mapped decrypted. If the memory is not part of the 531 * kernel usable area it was accessed and created decrypted, so these 532 * areas should be mapped decrypted. And since the encryption key can 533 * change across reboots, persistent memory should also be mapped 534 * decrypted. 535 * 536 * If SEV is active, that implies that BIOS/UEFI also ran encrypted so 537 * only persistent memory should be mapped decrypted. 538 */ 539 static bool memremap_should_map_decrypted(resource_size_t phys_addr, 540 unsigned long size) 541 { 542 int is_pmem; 543 544 /* 545 * Check if the address is part of a persistent memory region. 546 * This check covers areas added by E820, EFI and ACPI. 547 */ 548 is_pmem = region_intersects(phys_addr, size, IORESOURCE_MEM, 549 IORES_DESC_PERSISTENT_MEMORY); 550 if (is_pmem != REGION_DISJOINT) 551 return true; 552 553 /* 554 * Check if the non-volatile attribute is set for an EFI 555 * reserved area. 556 */ 557 if (efi_enabled(EFI_BOOT)) { 558 switch (efi_mem_type(phys_addr)) { 559 case EFI_RESERVED_TYPE: 560 if (efi_mem_attributes(phys_addr) & EFI_MEMORY_NV) 561 return true; 562 break; 563 default: 564 break; 565 } 566 } 567 568 /* Check if the address is outside kernel usable area */ 569 switch (e820__get_entry_type(phys_addr, phys_addr + size - 1)) { 570 case E820_TYPE_RESERVED: 571 case E820_TYPE_ACPI: 572 case E820_TYPE_NVS: 573 case E820_TYPE_UNUSABLE: 574 /* For SEV, these areas are encrypted */ 575 if (sev_active()) 576 break; 577 /* Fallthrough */ 578 579 case E820_TYPE_PRAM: 580 return true; 581 default: 582 break; 583 } 584 585 return false; 586 } 587 588 /* 589 * Examine the physical address to determine if it is EFI data. Check 590 * it against the boot params structure and EFI tables and memory types. 591 */ 592 static bool memremap_is_efi_data(resource_size_t phys_addr, 593 unsigned long size) 594 { 595 u64 paddr; 596 597 /* Check if the address is part of EFI boot/runtime data */ 598 if (!efi_enabled(EFI_BOOT)) 599 return false; 600 601 paddr = boot_params.efi_info.efi_memmap_hi; 602 paddr <<= 32; 603 paddr |= boot_params.efi_info.efi_memmap; 604 if (phys_addr == paddr) 605 return true; 606 607 paddr = boot_params.efi_info.efi_systab_hi; 608 paddr <<= 32; 609 paddr |= boot_params.efi_info.efi_systab; 610 if (phys_addr == paddr) 611 return true; 612 613 if (efi_is_table_address(phys_addr)) 614 return true; 615 616 switch (efi_mem_type(phys_addr)) { 617 case EFI_BOOT_SERVICES_DATA: 618 case EFI_RUNTIME_SERVICES_DATA: 619 return true; 620 default: 621 break; 622 } 623 624 return false; 625 } 626 627 /* 628 * Examine the physical address to determine if it is boot data by checking 629 * it against the boot params setup_data chain. 630 */ 631 static bool memremap_is_setup_data(resource_size_t phys_addr, 632 unsigned long size) 633 { 634 struct setup_data *data; 635 u64 paddr, paddr_next; 636 637 paddr = boot_params.hdr.setup_data; 638 while (paddr) { 639 unsigned int len; 640 641 if (phys_addr == paddr) 642 return true; 643 644 data = memremap(paddr, sizeof(*data), 645 MEMREMAP_WB | MEMREMAP_DEC); 646 647 paddr_next = data->next; 648 len = data->len; 649 650 if ((phys_addr > paddr) && (phys_addr < (paddr + len))) { 651 memunmap(data); 652 return true; 653 } 654 655 if (data->type == SETUP_INDIRECT && 656 ((struct setup_indirect *)data->data)->type != SETUP_INDIRECT) { 657 paddr = ((struct setup_indirect *)data->data)->addr; 658 len = ((struct setup_indirect *)data->data)->len; 659 } 660 661 memunmap(data); 662 663 if ((phys_addr > paddr) && (phys_addr < (paddr + len))) 664 return true; 665 666 paddr = paddr_next; 667 } 668 669 return false; 670 } 671 672 /* 673 * Examine the physical address to determine if it is boot data by checking 674 * it against the boot params setup_data chain (early boot version). 675 */ 676 static bool __init early_memremap_is_setup_data(resource_size_t phys_addr, 677 unsigned long size) 678 { 679 struct setup_data *data; 680 u64 paddr, paddr_next; 681 682 paddr = boot_params.hdr.setup_data; 683 while (paddr) { 684 unsigned int len; 685 686 if (phys_addr == paddr) 687 return true; 688 689 data = early_memremap_decrypted(paddr, sizeof(*data)); 690 691 paddr_next = data->next; 692 len = data->len; 693 694 early_memunmap(data, sizeof(*data)); 695 696 if ((phys_addr > paddr) && (phys_addr < (paddr + len))) 697 return true; 698 699 paddr = paddr_next; 700 } 701 702 return false; 703 } 704 705 /* 706 * Architecture function to determine if RAM remap is allowed. By default, a 707 * RAM remap will map the data as encrypted. Determine if a RAM remap should 708 * not be done so that the data will be mapped decrypted. 709 */ 710 bool arch_memremap_can_ram_remap(resource_size_t phys_addr, unsigned long size, 711 unsigned long flags) 712 { 713 if (!mem_encrypt_active()) 714 return true; 715 716 if (flags & MEMREMAP_ENC) 717 return true; 718 719 if (flags & MEMREMAP_DEC) 720 return false; 721 722 if (sme_active()) { 723 if (memremap_is_setup_data(phys_addr, size) || 724 memremap_is_efi_data(phys_addr, size)) 725 return false; 726 } 727 728 return !memremap_should_map_decrypted(phys_addr, size); 729 } 730 731 /* 732 * Architecture override of __weak function to adjust the protection attributes 733 * used when remapping memory. By default, early_memremap() will map the data 734 * as encrypted. Determine if an encrypted mapping should not be done and set 735 * the appropriate protection attributes. 736 */ 737 pgprot_t __init early_memremap_pgprot_adjust(resource_size_t phys_addr, 738 unsigned long size, 739 pgprot_t prot) 740 { 741 bool encrypted_prot; 742 743 if (!mem_encrypt_active()) 744 return prot; 745 746 encrypted_prot = true; 747 748 if (sme_active()) { 749 if (early_memremap_is_setup_data(phys_addr, size) || 750 memremap_is_efi_data(phys_addr, size)) 751 encrypted_prot = false; 752 } 753 754 if (encrypted_prot && memremap_should_map_decrypted(phys_addr, size)) 755 encrypted_prot = false; 756 757 return encrypted_prot ? pgprot_encrypted(prot) 758 : pgprot_decrypted(prot); 759 } 760 761 bool phys_mem_access_encrypted(unsigned long phys_addr, unsigned long size) 762 { 763 return arch_memremap_can_ram_remap(phys_addr, size, 0); 764 } 765 766 #ifdef CONFIG_AMD_MEM_ENCRYPT 767 /* Remap memory with encryption */ 768 void __init *early_memremap_encrypted(resource_size_t phys_addr, 769 unsigned long size) 770 { 771 return early_memremap_prot(phys_addr, size, __PAGE_KERNEL_ENC); 772 } 773 774 /* 775 * Remap memory with encryption and write-protected - cannot be called 776 * before pat_init() is called 777 */ 778 void __init *early_memremap_encrypted_wp(resource_size_t phys_addr, 779 unsigned long size) 780 { 781 if (!x86_has_pat_wp()) 782 return NULL; 783 return early_memremap_prot(phys_addr, size, __PAGE_KERNEL_ENC_WP); 784 } 785 786 /* Remap memory without encryption */ 787 void __init *early_memremap_decrypted(resource_size_t phys_addr, 788 unsigned long size) 789 { 790 return early_memremap_prot(phys_addr, size, __PAGE_KERNEL_NOENC); 791 } 792 793 /* 794 * Remap memory without encryption and write-protected - cannot be called 795 * before pat_init() is called 796 */ 797 void __init *early_memremap_decrypted_wp(resource_size_t phys_addr, 798 unsigned long size) 799 { 800 if (!x86_has_pat_wp()) 801 return NULL; 802 return early_memremap_prot(phys_addr, size, __PAGE_KERNEL_NOENC_WP); 803 } 804 #endif /* CONFIG_AMD_MEM_ENCRYPT */ 805 806 static pte_t bm_pte[PAGE_SIZE/sizeof(pte_t)] __page_aligned_bss; 807 808 static inline pmd_t * __init early_ioremap_pmd(unsigned long addr) 809 { 810 /* Don't assume we're using swapper_pg_dir at this point */ 811 pgd_t *base = __va(read_cr3_pa()); 812 pgd_t *pgd = &base[pgd_index(addr)]; 813 p4d_t *p4d = p4d_offset(pgd, addr); 814 pud_t *pud = pud_offset(p4d, addr); 815 pmd_t *pmd = pmd_offset(pud, addr); 816 817 return pmd; 818 } 819 820 static inline pte_t * __init early_ioremap_pte(unsigned long addr) 821 { 822 return &bm_pte[pte_index(addr)]; 823 } 824 825 bool __init is_early_ioremap_ptep(pte_t *ptep) 826 { 827 return ptep >= &bm_pte[0] && ptep < &bm_pte[PAGE_SIZE/sizeof(pte_t)]; 828 } 829 830 void __init early_ioremap_init(void) 831 { 832 pmd_t *pmd; 833 834 #ifdef CONFIG_X86_64 835 BUILD_BUG_ON((fix_to_virt(0) + PAGE_SIZE) & ((1 << PMD_SHIFT) - 1)); 836 #else 837 WARN_ON((fix_to_virt(0) + PAGE_SIZE) & ((1 << PMD_SHIFT) - 1)); 838 #endif 839 840 early_ioremap_setup(); 841 842 pmd = early_ioremap_pmd(fix_to_virt(FIX_BTMAP_BEGIN)); 843 memset(bm_pte, 0, sizeof(bm_pte)); 844 pmd_populate_kernel(&init_mm, pmd, bm_pte); 845 846 /* 847 * The boot-ioremap range spans multiple pmds, for which 848 * we are not prepared: 849 */ 850 #define __FIXADDR_TOP (-PAGE_SIZE) 851 BUILD_BUG_ON((__fix_to_virt(FIX_BTMAP_BEGIN) >> PMD_SHIFT) 852 != (__fix_to_virt(FIX_BTMAP_END) >> PMD_SHIFT)); 853 #undef __FIXADDR_TOP 854 if (pmd != early_ioremap_pmd(fix_to_virt(FIX_BTMAP_END))) { 855 WARN_ON(1); 856 printk(KERN_WARNING "pmd %p != %p\n", 857 pmd, early_ioremap_pmd(fix_to_virt(FIX_BTMAP_END))); 858 printk(KERN_WARNING "fix_to_virt(FIX_BTMAP_BEGIN): %08lx\n", 859 fix_to_virt(FIX_BTMAP_BEGIN)); 860 printk(KERN_WARNING "fix_to_virt(FIX_BTMAP_END): %08lx\n", 861 fix_to_virt(FIX_BTMAP_END)); 862 863 printk(KERN_WARNING "FIX_BTMAP_END: %d\n", FIX_BTMAP_END); 864 printk(KERN_WARNING "FIX_BTMAP_BEGIN: %d\n", 865 FIX_BTMAP_BEGIN); 866 } 867 } 868 869 void __init __early_set_fixmap(enum fixed_addresses idx, 870 phys_addr_t phys, pgprot_t flags) 871 { 872 unsigned long addr = __fix_to_virt(idx); 873 pte_t *pte; 874 875 if (idx >= __end_of_fixed_addresses) { 876 BUG(); 877 return; 878 } 879 pte = early_ioremap_pte(addr); 880 881 /* Sanitize 'prot' against any unsupported bits: */ 882 pgprot_val(flags) &= __supported_pte_mask; 883 884 if (pgprot_val(flags)) 885 set_pte(pte, pfn_pte(phys >> PAGE_SHIFT, flags)); 886 else 887 pte_clear(&init_mm, addr, pte); 888 flush_tlb_one_kernel(addr); 889 } 890