1 /* 2 * Re-map IO memory to kernel address space so that we can access it. 3 * This is needed for high PCI addresses that aren't mapped in the 4 * 640k-1MB IO memory area on PC's 5 * 6 * (C) Copyright 1995 1996 Linus Torvalds 7 */ 8 9 #include <linux/bootmem.h> 10 #include <linux/init.h> 11 #include <linux/io.h> 12 #include <linux/module.h> 13 #include <linux/slab.h> 14 #include <linux/vmalloc.h> 15 #include <linux/mmiotrace.h> 16 17 #include <asm/cacheflush.h> 18 #include <asm/e820.h> 19 #include <asm/fixmap.h> 20 #include <asm/pgtable.h> 21 #include <asm/tlbflush.h> 22 #include <asm/pgalloc.h> 23 #include <asm/pat.h> 24 25 #include "physaddr.h" 26 27 /* 28 * Fix up the linear direct mapping of the kernel to avoid cache attribute 29 * conflicts. 30 */ 31 int ioremap_change_attr(unsigned long vaddr, unsigned long size, 32 enum page_cache_mode pcm) 33 { 34 unsigned long nrpages = size >> PAGE_SHIFT; 35 int err; 36 37 switch (pcm) { 38 case _PAGE_CACHE_MODE_UC: 39 default: 40 err = _set_memory_uc(vaddr, nrpages); 41 break; 42 case _PAGE_CACHE_MODE_WC: 43 err = _set_memory_wc(vaddr, nrpages); 44 break; 45 case _PAGE_CACHE_MODE_WT: 46 err = _set_memory_wt(vaddr, nrpages); 47 break; 48 case _PAGE_CACHE_MODE_WB: 49 err = _set_memory_wb(vaddr, nrpages); 50 break; 51 } 52 53 return err; 54 } 55 56 static int __ioremap_check_ram(unsigned long start_pfn, unsigned long nr_pages, 57 void *arg) 58 { 59 unsigned long i; 60 61 for (i = 0; i < nr_pages; ++i) 62 if (pfn_valid(start_pfn + i) && 63 !PageReserved(pfn_to_page(start_pfn + i))) 64 return 1; 65 66 WARN_ONCE(1, "ioremap on RAM pfn 0x%lx\n", start_pfn); 67 68 return 0; 69 } 70 71 /* 72 * Remap an arbitrary physical address space into the kernel virtual 73 * address space. It transparently creates kernel huge I/O mapping when 74 * the physical address is aligned by a huge page size (1GB or 2MB) and 75 * the requested size is at least the huge page size. 76 * 77 * NOTE: MTRRs can override PAT memory types with a 4KB granularity. 78 * Therefore, the mapping code falls back to use a smaller page toward 4KB 79 * when a mapping range is covered by non-WB type of MTRRs. 80 * 81 * NOTE! We need to allow non-page-aligned mappings too: we will obviously 82 * have to convert them into an offset in a page-aligned mapping, but the 83 * caller shouldn't need to know that small detail. 84 */ 85 static void __iomem *__ioremap_caller(resource_size_t phys_addr, 86 unsigned long size, enum page_cache_mode pcm, void *caller) 87 { 88 unsigned long offset, vaddr; 89 resource_size_t pfn, last_pfn, last_addr; 90 const resource_size_t unaligned_phys_addr = phys_addr; 91 const unsigned long unaligned_size = size; 92 struct vm_struct *area; 93 enum page_cache_mode new_pcm; 94 pgprot_t prot; 95 int retval; 96 void __iomem *ret_addr; 97 int ram_region; 98 99 /* Don't allow wraparound or zero size */ 100 last_addr = phys_addr + size - 1; 101 if (!size || last_addr < phys_addr) 102 return NULL; 103 104 if (!phys_addr_valid(phys_addr)) { 105 printk(KERN_WARNING "ioremap: invalid physical address %llx\n", 106 (unsigned long long)phys_addr); 107 WARN_ON_ONCE(1); 108 return NULL; 109 } 110 111 /* 112 * Don't remap the low PCI/ISA area, it's always mapped.. 113 */ 114 if (is_ISA_range(phys_addr, last_addr)) 115 return (__force void __iomem *)phys_to_virt(phys_addr); 116 117 /* 118 * Don't allow anybody to remap normal RAM that we're using.. 119 */ 120 /* First check if whole region can be identified as RAM or not */ 121 ram_region = region_is_ram(phys_addr, size); 122 if (ram_region > 0) { 123 WARN_ONCE(1, "ioremap on RAM at 0x%lx - 0x%lx\n", 124 (unsigned long int)phys_addr, 125 (unsigned long int)last_addr); 126 return NULL; 127 } 128 129 /* If could not be identified(-1), check page by page */ 130 if (ram_region < 0) { 131 pfn = phys_addr >> PAGE_SHIFT; 132 last_pfn = last_addr >> PAGE_SHIFT; 133 if (walk_system_ram_range(pfn, last_pfn - pfn + 1, NULL, 134 __ioremap_check_ram) == 1) 135 return NULL; 136 } 137 /* 138 * Mappings have to be page-aligned 139 */ 140 offset = phys_addr & ~PAGE_MASK; 141 phys_addr &= PHYSICAL_PAGE_MASK; 142 size = PAGE_ALIGN(last_addr+1) - phys_addr; 143 144 retval = reserve_memtype(phys_addr, (u64)phys_addr + size, 145 pcm, &new_pcm); 146 if (retval) { 147 printk(KERN_ERR "ioremap reserve_memtype failed %d\n", retval); 148 return NULL; 149 } 150 151 if (pcm != new_pcm) { 152 if (!is_new_memtype_allowed(phys_addr, size, pcm, new_pcm)) { 153 printk(KERN_ERR 154 "ioremap error for 0x%llx-0x%llx, requested 0x%x, got 0x%x\n", 155 (unsigned long long)phys_addr, 156 (unsigned long long)(phys_addr + size), 157 pcm, new_pcm); 158 goto err_free_memtype; 159 } 160 pcm = new_pcm; 161 } 162 163 prot = PAGE_KERNEL_IO; 164 switch (pcm) { 165 case _PAGE_CACHE_MODE_UC: 166 default: 167 prot = __pgprot(pgprot_val(prot) | 168 cachemode2protval(_PAGE_CACHE_MODE_UC)); 169 break; 170 case _PAGE_CACHE_MODE_UC_MINUS: 171 prot = __pgprot(pgprot_val(prot) | 172 cachemode2protval(_PAGE_CACHE_MODE_UC_MINUS)); 173 break; 174 case _PAGE_CACHE_MODE_WC: 175 prot = __pgprot(pgprot_val(prot) | 176 cachemode2protval(_PAGE_CACHE_MODE_WC)); 177 break; 178 case _PAGE_CACHE_MODE_WT: 179 prot = __pgprot(pgprot_val(prot) | 180 cachemode2protval(_PAGE_CACHE_MODE_WT)); 181 break; 182 case _PAGE_CACHE_MODE_WB: 183 break; 184 } 185 186 /* 187 * Ok, go for it.. 188 */ 189 area = get_vm_area_caller(size, VM_IOREMAP, caller); 190 if (!area) 191 goto err_free_memtype; 192 area->phys_addr = phys_addr; 193 vaddr = (unsigned long) area->addr; 194 195 if (kernel_map_sync_memtype(phys_addr, size, pcm)) 196 goto err_free_area; 197 198 if (ioremap_page_range(vaddr, vaddr + size, phys_addr, prot)) 199 goto err_free_area; 200 201 ret_addr = (void __iomem *) (vaddr + offset); 202 mmiotrace_ioremap(unaligned_phys_addr, unaligned_size, ret_addr); 203 204 /* 205 * Check if the request spans more than any BAR in the iomem resource 206 * tree. 207 */ 208 WARN_ONCE(iomem_map_sanity_check(unaligned_phys_addr, unaligned_size), 209 KERN_INFO "Info: mapping multiple BARs. Your kernel is fine."); 210 211 return ret_addr; 212 err_free_area: 213 free_vm_area(area); 214 err_free_memtype: 215 free_memtype(phys_addr, phys_addr + size); 216 return NULL; 217 } 218 219 /** 220 * ioremap_nocache - map bus memory into CPU space 221 * @phys_addr: bus address of the memory 222 * @size: size of the resource to map 223 * 224 * ioremap_nocache performs a platform specific sequence of operations to 225 * make bus memory CPU accessible via the readb/readw/readl/writeb/ 226 * writew/writel functions and the other mmio helpers. The returned 227 * address is not guaranteed to be usable directly as a virtual 228 * address. 229 * 230 * This version of ioremap ensures that the memory is marked uncachable 231 * on the CPU as well as honouring existing caching rules from things like 232 * the PCI bus. Note that there are other caches and buffers on many 233 * busses. In particular driver authors should read up on PCI writes 234 * 235 * It's useful if some control registers are in such an area and 236 * write combining or read caching is not desirable: 237 * 238 * Must be freed with iounmap. 239 */ 240 void __iomem *ioremap_nocache(resource_size_t phys_addr, unsigned long size) 241 { 242 /* 243 * Ideally, this should be: 244 * pat_enabled() ? _PAGE_CACHE_MODE_UC : _PAGE_CACHE_MODE_UC_MINUS; 245 * 246 * Till we fix all X drivers to use ioremap_wc(), we will use 247 * UC MINUS. Drivers that are certain they need or can already 248 * be converted over to strong UC can use ioremap_uc(). 249 */ 250 enum page_cache_mode pcm = _PAGE_CACHE_MODE_UC_MINUS; 251 252 return __ioremap_caller(phys_addr, size, pcm, 253 __builtin_return_address(0)); 254 } 255 EXPORT_SYMBOL(ioremap_nocache); 256 257 /** 258 * ioremap_uc - map bus memory into CPU space as strongly uncachable 259 * @phys_addr: bus address of the memory 260 * @size: size of the resource to map 261 * 262 * ioremap_uc performs a platform specific sequence of operations to 263 * make bus memory CPU accessible via the readb/readw/readl/writeb/ 264 * writew/writel functions and the other mmio helpers. The returned 265 * address is not guaranteed to be usable directly as a virtual 266 * address. 267 * 268 * This version of ioremap ensures that the memory is marked with a strong 269 * preference as completely uncachable on the CPU when possible. For non-PAT 270 * systems this ends up setting page-attribute flags PCD=1, PWT=1. For PAT 271 * systems this will set the PAT entry for the pages as strong UC. This call 272 * will honor existing caching rules from things like the PCI bus. Note that 273 * there are other caches and buffers on many busses. In particular driver 274 * authors should read up on PCI writes. 275 * 276 * It's useful if some control registers are in such an area and 277 * write combining or read caching is not desirable: 278 * 279 * Must be freed with iounmap. 280 */ 281 void __iomem *ioremap_uc(resource_size_t phys_addr, unsigned long size) 282 { 283 enum page_cache_mode pcm = _PAGE_CACHE_MODE_UC; 284 285 return __ioremap_caller(phys_addr, size, pcm, 286 __builtin_return_address(0)); 287 } 288 EXPORT_SYMBOL_GPL(ioremap_uc); 289 290 /** 291 * ioremap_wc - map memory into CPU space write combined 292 * @phys_addr: bus address of the memory 293 * @size: size of the resource to map 294 * 295 * This version of ioremap ensures that the memory is marked write combining. 296 * Write combining allows faster writes to some hardware devices. 297 * 298 * Must be freed with iounmap. 299 */ 300 void __iomem *ioremap_wc(resource_size_t phys_addr, unsigned long size) 301 { 302 return __ioremap_caller(phys_addr, size, _PAGE_CACHE_MODE_WC, 303 __builtin_return_address(0)); 304 } 305 EXPORT_SYMBOL(ioremap_wc); 306 307 /** 308 * ioremap_wt - map memory into CPU space write through 309 * @phys_addr: bus address of the memory 310 * @size: size of the resource to map 311 * 312 * This version of ioremap ensures that the memory is marked write through. 313 * Write through stores data into memory while keeping the cache up-to-date. 314 * 315 * Must be freed with iounmap. 316 */ 317 void __iomem *ioremap_wt(resource_size_t phys_addr, unsigned long size) 318 { 319 return __ioremap_caller(phys_addr, size, _PAGE_CACHE_MODE_WT, 320 __builtin_return_address(0)); 321 } 322 EXPORT_SYMBOL(ioremap_wt); 323 324 void __iomem *ioremap_cache(resource_size_t phys_addr, unsigned long size) 325 { 326 return __ioremap_caller(phys_addr, size, _PAGE_CACHE_MODE_WB, 327 __builtin_return_address(0)); 328 } 329 EXPORT_SYMBOL(ioremap_cache); 330 331 void __iomem *ioremap_prot(resource_size_t phys_addr, unsigned long size, 332 unsigned long prot_val) 333 { 334 return __ioremap_caller(phys_addr, size, 335 pgprot2cachemode(__pgprot(prot_val)), 336 __builtin_return_address(0)); 337 } 338 EXPORT_SYMBOL(ioremap_prot); 339 340 /** 341 * iounmap - Free a IO remapping 342 * @addr: virtual address from ioremap_* 343 * 344 * Caller must ensure there is only one unmapping for the same pointer. 345 */ 346 void iounmap(volatile void __iomem *addr) 347 { 348 struct vm_struct *p, *o; 349 350 if ((void __force *)addr <= high_memory) 351 return; 352 353 /* 354 * __ioremap special-cases the PCI/ISA range by not instantiating a 355 * vm_area and by simply returning an address into the kernel mapping 356 * of ISA space. So handle that here. 357 */ 358 if ((void __force *)addr >= phys_to_virt(ISA_START_ADDRESS) && 359 (void __force *)addr < phys_to_virt(ISA_END_ADDRESS)) 360 return; 361 362 addr = (volatile void __iomem *) 363 (PAGE_MASK & (unsigned long __force)addr); 364 365 mmiotrace_iounmap(addr); 366 367 /* Use the vm area unlocked, assuming the caller 368 ensures there isn't another iounmap for the same address 369 in parallel. Reuse of the virtual address is prevented by 370 leaving it in the global lists until we're done with it. 371 cpa takes care of the direct mappings. */ 372 p = find_vm_area((void __force *)addr); 373 374 if (!p) { 375 printk(KERN_ERR "iounmap: bad address %p\n", addr); 376 dump_stack(); 377 return; 378 } 379 380 free_memtype(p->phys_addr, p->phys_addr + get_vm_area_size(p)); 381 382 /* Finally remove it */ 383 o = remove_vm_area((void __force *)addr); 384 BUG_ON(p != o || o == NULL); 385 kfree(p); 386 } 387 EXPORT_SYMBOL(iounmap); 388 389 int __init arch_ioremap_pud_supported(void) 390 { 391 #ifdef CONFIG_X86_64 392 return cpu_has_gbpages; 393 #else 394 return 0; 395 #endif 396 } 397 398 int __init arch_ioremap_pmd_supported(void) 399 { 400 return cpu_has_pse; 401 } 402 403 /* 404 * Convert a physical pointer to a virtual kernel pointer for /dev/mem 405 * access 406 */ 407 void *xlate_dev_mem_ptr(phys_addr_t phys) 408 { 409 unsigned long start = phys & PAGE_MASK; 410 unsigned long offset = phys & ~PAGE_MASK; 411 void *vaddr; 412 413 /* If page is RAM, we can use __va. Otherwise ioremap and unmap. */ 414 if (page_is_ram(start >> PAGE_SHIFT)) 415 return __va(phys); 416 417 vaddr = ioremap_cache(start, PAGE_SIZE); 418 /* Only add the offset on success and return NULL if the ioremap() failed: */ 419 if (vaddr) 420 vaddr += offset; 421 422 return vaddr; 423 } 424 425 void unxlate_dev_mem_ptr(phys_addr_t phys, void *addr) 426 { 427 if (page_is_ram(phys >> PAGE_SHIFT)) 428 return; 429 430 iounmap((void __iomem *)((unsigned long)addr & PAGE_MASK)); 431 } 432 433 static pte_t bm_pte[PAGE_SIZE/sizeof(pte_t)] __page_aligned_bss; 434 435 static inline pmd_t * __init early_ioremap_pmd(unsigned long addr) 436 { 437 /* Don't assume we're using swapper_pg_dir at this point */ 438 pgd_t *base = __va(read_cr3()); 439 pgd_t *pgd = &base[pgd_index(addr)]; 440 pud_t *pud = pud_offset(pgd, addr); 441 pmd_t *pmd = pmd_offset(pud, addr); 442 443 return pmd; 444 } 445 446 static inline pte_t * __init early_ioremap_pte(unsigned long addr) 447 { 448 return &bm_pte[pte_index(addr)]; 449 } 450 451 bool __init is_early_ioremap_ptep(pte_t *ptep) 452 { 453 return ptep >= &bm_pte[0] && ptep < &bm_pte[PAGE_SIZE/sizeof(pte_t)]; 454 } 455 456 void __init early_ioremap_init(void) 457 { 458 pmd_t *pmd; 459 460 #ifdef CONFIG_X86_64 461 BUILD_BUG_ON((fix_to_virt(0) + PAGE_SIZE) & ((1 << PMD_SHIFT) - 1)); 462 #else 463 WARN_ON((fix_to_virt(0) + PAGE_SIZE) & ((1 << PMD_SHIFT) - 1)); 464 #endif 465 466 early_ioremap_setup(); 467 468 pmd = early_ioremap_pmd(fix_to_virt(FIX_BTMAP_BEGIN)); 469 memset(bm_pte, 0, sizeof(bm_pte)); 470 pmd_populate_kernel(&init_mm, pmd, bm_pte); 471 472 /* 473 * The boot-ioremap range spans multiple pmds, for which 474 * we are not prepared: 475 */ 476 #define __FIXADDR_TOP (-PAGE_SIZE) 477 BUILD_BUG_ON((__fix_to_virt(FIX_BTMAP_BEGIN) >> PMD_SHIFT) 478 != (__fix_to_virt(FIX_BTMAP_END) >> PMD_SHIFT)); 479 #undef __FIXADDR_TOP 480 if (pmd != early_ioremap_pmd(fix_to_virt(FIX_BTMAP_END))) { 481 WARN_ON(1); 482 printk(KERN_WARNING "pmd %p != %p\n", 483 pmd, early_ioremap_pmd(fix_to_virt(FIX_BTMAP_END))); 484 printk(KERN_WARNING "fix_to_virt(FIX_BTMAP_BEGIN): %08lx\n", 485 fix_to_virt(FIX_BTMAP_BEGIN)); 486 printk(KERN_WARNING "fix_to_virt(FIX_BTMAP_END): %08lx\n", 487 fix_to_virt(FIX_BTMAP_END)); 488 489 printk(KERN_WARNING "FIX_BTMAP_END: %d\n", FIX_BTMAP_END); 490 printk(KERN_WARNING "FIX_BTMAP_BEGIN: %d\n", 491 FIX_BTMAP_BEGIN); 492 } 493 } 494 495 void __init __early_set_fixmap(enum fixed_addresses idx, 496 phys_addr_t phys, pgprot_t flags) 497 { 498 unsigned long addr = __fix_to_virt(idx); 499 pte_t *pte; 500 501 if (idx >= __end_of_fixed_addresses) { 502 BUG(); 503 return; 504 } 505 pte = early_ioremap_pte(addr); 506 507 if (pgprot_val(flags)) 508 set_pte(pte, pfn_pte(phys >> PAGE_SHIFT, flags)); 509 else 510 pte_clear(&init_mm, addr, pte); 511 __flush_tlb_one(addr); 512 } 513