xref: /linux/arch/x86/mm/init_64.c (revision d39d0ed196aa1685bb24771e92f78633c66ac9cb)
1 /*
2  *  linux/arch/x86_64/mm/init.c
3  *
4  *  Copyright (C) 1995  Linus Torvalds
5  *  Copyright (C) 2000  Pavel Machek <pavel@ucw.cz>
6  *  Copyright (C) 2002,2003 Andi Kleen <ak@suse.de>
7  */
8 
9 #include <linux/signal.h>
10 #include <linux/sched.h>
11 #include <linux/kernel.h>
12 #include <linux/errno.h>
13 #include <linux/string.h>
14 #include <linux/types.h>
15 #include <linux/ptrace.h>
16 #include <linux/mman.h>
17 #include <linux/mm.h>
18 #include <linux/swap.h>
19 #include <linux/smp.h>
20 #include <linux/init.h>
21 #include <linux/initrd.h>
22 #include <linux/pagemap.h>
23 #include <linux/bootmem.h>
24 #include <linux/proc_fs.h>
25 #include <linux/pci.h>
26 #include <linux/pfn.h>
27 #include <linux/poison.h>
28 #include <linux/dma-mapping.h>
29 #include <linux/module.h>
30 #include <linux/memory_hotplug.h>
31 #include <linux/nmi.h>
32 #include <linux/gfp.h>
33 
34 #include <asm/processor.h>
35 #include <asm/bios_ebda.h>
36 #include <asm/system.h>
37 #include <asm/uaccess.h>
38 #include <asm/pgtable.h>
39 #include <asm/pgalloc.h>
40 #include <asm/dma.h>
41 #include <asm/fixmap.h>
42 #include <asm/e820.h>
43 #include <asm/apic.h>
44 #include <asm/tlb.h>
45 #include <asm/mmu_context.h>
46 #include <asm/proto.h>
47 #include <asm/smp.h>
48 #include <asm/sections.h>
49 #include <asm/kdebug.h>
50 #include <asm/numa.h>
51 #include <asm/cacheflush.h>
52 #include <asm/init.h>
53 #include <linux/bootmem.h>
54 
55 static unsigned long dma_reserve __initdata;
56 
57 static int __init parse_direct_gbpages_off(char *arg)
58 {
59 	direct_gbpages = 0;
60 	return 0;
61 }
62 early_param("nogbpages", parse_direct_gbpages_off);
63 
64 static int __init parse_direct_gbpages_on(char *arg)
65 {
66 	direct_gbpages = 1;
67 	return 0;
68 }
69 early_param("gbpages", parse_direct_gbpages_on);
70 
71 /*
72  * NOTE: pagetable_init alloc all the fixmap pagetables contiguous on the
73  * physical space so we can cache the place of the first one and move
74  * around without checking the pgd every time.
75  */
76 
77 pteval_t __supported_pte_mask __read_mostly = ~_PAGE_IOMAP;
78 EXPORT_SYMBOL_GPL(__supported_pte_mask);
79 
80 int force_personality32;
81 
82 /*
83  * noexec32=on|off
84  * Control non executable heap for 32bit processes.
85  * To control the stack too use noexec=off
86  *
87  * on	PROT_READ does not imply PROT_EXEC for 32-bit processes (default)
88  * off	PROT_READ implies PROT_EXEC
89  */
90 static int __init nonx32_setup(char *str)
91 {
92 	if (!strcmp(str, "on"))
93 		force_personality32 &= ~READ_IMPLIES_EXEC;
94 	else if (!strcmp(str, "off"))
95 		force_personality32 |= READ_IMPLIES_EXEC;
96 	return 1;
97 }
98 __setup("noexec32=", nonx32_setup);
99 
100 /*
101  * NOTE: This function is marked __ref because it calls __init function
102  * (alloc_bootmem_pages). It's safe to do it ONLY when after_bootmem == 0.
103  */
104 static __ref void *spp_getpage(void)
105 {
106 	void *ptr;
107 
108 	if (after_bootmem)
109 		ptr = (void *) get_zeroed_page(GFP_ATOMIC | __GFP_NOTRACK);
110 	else
111 		ptr = alloc_bootmem_pages(PAGE_SIZE);
112 
113 	if (!ptr || ((unsigned long)ptr & ~PAGE_MASK)) {
114 		panic("set_pte_phys: cannot allocate page data %s\n",
115 			after_bootmem ? "after bootmem" : "");
116 	}
117 
118 	pr_debug("spp_getpage %p\n", ptr);
119 
120 	return ptr;
121 }
122 
123 static pud_t *fill_pud(pgd_t *pgd, unsigned long vaddr)
124 {
125 	if (pgd_none(*pgd)) {
126 		pud_t *pud = (pud_t *)spp_getpage();
127 		pgd_populate(&init_mm, pgd, pud);
128 		if (pud != pud_offset(pgd, 0))
129 			printk(KERN_ERR "PAGETABLE BUG #00! %p <-> %p\n",
130 			       pud, pud_offset(pgd, 0));
131 	}
132 	return pud_offset(pgd, vaddr);
133 }
134 
135 static pmd_t *fill_pmd(pud_t *pud, unsigned long vaddr)
136 {
137 	if (pud_none(*pud)) {
138 		pmd_t *pmd = (pmd_t *) spp_getpage();
139 		pud_populate(&init_mm, pud, pmd);
140 		if (pmd != pmd_offset(pud, 0))
141 			printk(KERN_ERR "PAGETABLE BUG #01! %p <-> %p\n",
142 			       pmd, pmd_offset(pud, 0));
143 	}
144 	return pmd_offset(pud, vaddr);
145 }
146 
147 static pte_t *fill_pte(pmd_t *pmd, unsigned long vaddr)
148 {
149 	if (pmd_none(*pmd)) {
150 		pte_t *pte = (pte_t *) spp_getpage();
151 		pmd_populate_kernel(&init_mm, pmd, pte);
152 		if (pte != pte_offset_kernel(pmd, 0))
153 			printk(KERN_ERR "PAGETABLE BUG #02!\n");
154 	}
155 	return pte_offset_kernel(pmd, vaddr);
156 }
157 
158 void set_pte_vaddr_pud(pud_t *pud_page, unsigned long vaddr, pte_t new_pte)
159 {
160 	pud_t *pud;
161 	pmd_t *pmd;
162 	pte_t *pte;
163 
164 	pud = pud_page + pud_index(vaddr);
165 	pmd = fill_pmd(pud, vaddr);
166 	pte = fill_pte(pmd, vaddr);
167 
168 	set_pte(pte, new_pte);
169 
170 	/*
171 	 * It's enough to flush this one mapping.
172 	 * (PGE mappings get flushed as well)
173 	 */
174 	__flush_tlb_one(vaddr);
175 }
176 
177 void set_pte_vaddr(unsigned long vaddr, pte_t pteval)
178 {
179 	pgd_t *pgd;
180 	pud_t *pud_page;
181 
182 	pr_debug("set_pte_vaddr %lx to %lx\n", vaddr, native_pte_val(pteval));
183 
184 	pgd = pgd_offset_k(vaddr);
185 	if (pgd_none(*pgd)) {
186 		printk(KERN_ERR
187 			"PGD FIXMAP MISSING, it should be setup in head.S!\n");
188 		return;
189 	}
190 	pud_page = (pud_t*)pgd_page_vaddr(*pgd);
191 	set_pte_vaddr_pud(pud_page, vaddr, pteval);
192 }
193 
194 pmd_t * __init populate_extra_pmd(unsigned long vaddr)
195 {
196 	pgd_t *pgd;
197 	pud_t *pud;
198 
199 	pgd = pgd_offset_k(vaddr);
200 	pud = fill_pud(pgd, vaddr);
201 	return fill_pmd(pud, vaddr);
202 }
203 
204 pte_t * __init populate_extra_pte(unsigned long vaddr)
205 {
206 	pmd_t *pmd;
207 
208 	pmd = populate_extra_pmd(vaddr);
209 	return fill_pte(pmd, vaddr);
210 }
211 
212 /*
213  * Create large page table mappings for a range of physical addresses.
214  */
215 static void __init __init_extra_mapping(unsigned long phys, unsigned long size,
216 						pgprot_t prot)
217 {
218 	pgd_t *pgd;
219 	pud_t *pud;
220 	pmd_t *pmd;
221 
222 	BUG_ON((phys & ~PMD_MASK) || (size & ~PMD_MASK));
223 	for (; size; phys += PMD_SIZE, size -= PMD_SIZE) {
224 		pgd = pgd_offset_k((unsigned long)__va(phys));
225 		if (pgd_none(*pgd)) {
226 			pud = (pud_t *) spp_getpage();
227 			set_pgd(pgd, __pgd(__pa(pud) | _KERNPG_TABLE |
228 						_PAGE_USER));
229 		}
230 		pud = pud_offset(pgd, (unsigned long)__va(phys));
231 		if (pud_none(*pud)) {
232 			pmd = (pmd_t *) spp_getpage();
233 			set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE |
234 						_PAGE_USER));
235 		}
236 		pmd = pmd_offset(pud, phys);
237 		BUG_ON(!pmd_none(*pmd));
238 		set_pmd(pmd, __pmd(phys | pgprot_val(prot)));
239 	}
240 }
241 
242 void __init init_extra_mapping_wb(unsigned long phys, unsigned long size)
243 {
244 	__init_extra_mapping(phys, size, PAGE_KERNEL_LARGE);
245 }
246 
247 void __init init_extra_mapping_uc(unsigned long phys, unsigned long size)
248 {
249 	__init_extra_mapping(phys, size, PAGE_KERNEL_LARGE_NOCACHE);
250 }
251 
252 /*
253  * The head.S code sets up the kernel high mapping:
254  *
255  *   from __START_KERNEL_map to __START_KERNEL_map + size (== _end-_text)
256  *
257  * phys_addr holds the negative offset to the kernel, which is added
258  * to the compile time generated pmds. This results in invalid pmds up
259  * to the point where we hit the physaddr 0 mapping.
260  *
261  * We limit the mappings to the region from _text to _end.  _end is
262  * rounded up to the 2MB boundary. This catches the invalid pmds as
263  * well, as they are located before _text:
264  */
265 void __init cleanup_highmap(void)
266 {
267 	unsigned long vaddr = __START_KERNEL_map;
268 	unsigned long end = roundup((unsigned long)_end, PMD_SIZE) - 1;
269 	pmd_t *pmd = level2_kernel_pgt;
270 	pmd_t *last_pmd = pmd + PTRS_PER_PMD;
271 
272 	for (; pmd < last_pmd; pmd++, vaddr += PMD_SIZE) {
273 		if (pmd_none(*pmd))
274 			continue;
275 		if (vaddr < (unsigned long) _text || vaddr > end)
276 			set_pmd(pmd, __pmd(0));
277 	}
278 }
279 
280 static __ref void *alloc_low_page(unsigned long *phys)
281 {
282 	unsigned long pfn = e820_table_end++;
283 	void *adr;
284 
285 	if (after_bootmem) {
286 		adr = (void *)get_zeroed_page(GFP_ATOMIC | __GFP_NOTRACK);
287 		*phys = __pa(adr);
288 
289 		return adr;
290 	}
291 
292 	if (pfn >= e820_table_top)
293 		panic("alloc_low_page: ran out of memory");
294 
295 	adr = early_memremap(pfn * PAGE_SIZE, PAGE_SIZE);
296 	memset(adr, 0, PAGE_SIZE);
297 	*phys  = pfn * PAGE_SIZE;
298 	return adr;
299 }
300 
301 static __ref void unmap_low_page(void *adr)
302 {
303 	if (after_bootmem)
304 		return;
305 
306 	early_iounmap(adr, PAGE_SIZE);
307 }
308 
309 static unsigned long __meminit
310 phys_pte_init(pte_t *pte_page, unsigned long addr, unsigned long end,
311 	      pgprot_t prot)
312 {
313 	unsigned pages = 0;
314 	unsigned long last_map_addr = end;
315 	int i;
316 
317 	pte_t *pte = pte_page + pte_index(addr);
318 
319 	for(i = pte_index(addr); i < PTRS_PER_PTE; i++, addr += PAGE_SIZE, pte++) {
320 
321 		if (addr >= end) {
322 			if (!after_bootmem) {
323 				for(; i < PTRS_PER_PTE; i++, pte++)
324 					set_pte(pte, __pte(0));
325 			}
326 			break;
327 		}
328 
329 		/*
330 		 * We will re-use the existing mapping.
331 		 * Xen for example has some special requirements, like mapping
332 		 * pagetable pages as RO. So assume someone who pre-setup
333 		 * these mappings are more intelligent.
334 		 */
335 		if (pte_val(*pte)) {
336 			pages++;
337 			continue;
338 		}
339 
340 		if (0)
341 			printk("   pte=%p addr=%lx pte=%016lx\n",
342 			       pte, addr, pfn_pte(addr >> PAGE_SHIFT, PAGE_KERNEL).pte);
343 		pages++;
344 		set_pte(pte, pfn_pte(addr >> PAGE_SHIFT, prot));
345 		last_map_addr = (addr & PAGE_MASK) + PAGE_SIZE;
346 	}
347 
348 	update_page_count(PG_LEVEL_4K, pages);
349 
350 	return last_map_addr;
351 }
352 
353 static unsigned long __meminit
354 phys_pte_update(pmd_t *pmd, unsigned long address, unsigned long end,
355 		pgprot_t prot)
356 {
357 	pte_t *pte = (pte_t *)pmd_page_vaddr(*pmd);
358 
359 	return phys_pte_init(pte, address, end, prot);
360 }
361 
362 static unsigned long __meminit
363 phys_pmd_init(pmd_t *pmd_page, unsigned long address, unsigned long end,
364 	      unsigned long page_size_mask, pgprot_t prot)
365 {
366 	unsigned long pages = 0;
367 	unsigned long last_map_addr = end;
368 
369 	int i = pmd_index(address);
370 
371 	for (; i < PTRS_PER_PMD; i++, address += PMD_SIZE) {
372 		unsigned long pte_phys;
373 		pmd_t *pmd = pmd_page + pmd_index(address);
374 		pte_t *pte;
375 		pgprot_t new_prot = prot;
376 
377 		if (address >= end) {
378 			if (!after_bootmem) {
379 				for (; i < PTRS_PER_PMD; i++, pmd++)
380 					set_pmd(pmd, __pmd(0));
381 			}
382 			break;
383 		}
384 
385 		if (pmd_val(*pmd)) {
386 			if (!pmd_large(*pmd)) {
387 				spin_lock(&init_mm.page_table_lock);
388 				last_map_addr = phys_pte_update(pmd, address,
389 								end, prot);
390 				spin_unlock(&init_mm.page_table_lock);
391 				continue;
392 			}
393 			/*
394 			 * If we are ok with PG_LEVEL_2M mapping, then we will
395 			 * use the existing mapping,
396 			 *
397 			 * Otherwise, we will split the large page mapping but
398 			 * use the same existing protection bits except for
399 			 * large page, so that we don't violate Intel's TLB
400 			 * Application note (317080) which says, while changing
401 			 * the page sizes, new and old translations should
402 			 * not differ with respect to page frame and
403 			 * attributes.
404 			 */
405 			if (page_size_mask & (1 << PG_LEVEL_2M)) {
406 				pages++;
407 				continue;
408 			}
409 			new_prot = pte_pgprot(pte_clrhuge(*(pte_t *)pmd));
410 		}
411 
412 		if (page_size_mask & (1<<PG_LEVEL_2M)) {
413 			pages++;
414 			spin_lock(&init_mm.page_table_lock);
415 			set_pte((pte_t *)pmd,
416 				pfn_pte(address >> PAGE_SHIFT,
417 					__pgprot(pgprot_val(prot) | _PAGE_PSE)));
418 			spin_unlock(&init_mm.page_table_lock);
419 			last_map_addr = (address & PMD_MASK) + PMD_SIZE;
420 			continue;
421 		}
422 
423 		pte = alloc_low_page(&pte_phys);
424 		last_map_addr = phys_pte_init(pte, address, end, new_prot);
425 		unmap_low_page(pte);
426 
427 		spin_lock(&init_mm.page_table_lock);
428 		pmd_populate_kernel(&init_mm, pmd, __va(pte_phys));
429 		spin_unlock(&init_mm.page_table_lock);
430 	}
431 	update_page_count(PG_LEVEL_2M, pages);
432 	return last_map_addr;
433 }
434 
435 static unsigned long __meminit
436 phys_pmd_update(pud_t *pud, unsigned long address, unsigned long end,
437 		unsigned long page_size_mask, pgprot_t prot)
438 {
439 	pmd_t *pmd = pmd_offset(pud, 0);
440 	unsigned long last_map_addr;
441 
442 	last_map_addr = phys_pmd_init(pmd, address, end, page_size_mask, prot);
443 	__flush_tlb_all();
444 	return last_map_addr;
445 }
446 
447 static unsigned long __meminit
448 phys_pud_init(pud_t *pud_page, unsigned long addr, unsigned long end,
449 			 unsigned long page_size_mask)
450 {
451 	unsigned long pages = 0;
452 	unsigned long last_map_addr = end;
453 	int i = pud_index(addr);
454 
455 	for (; i < PTRS_PER_PUD; i++, addr = (addr & PUD_MASK) + PUD_SIZE) {
456 		unsigned long pmd_phys;
457 		pud_t *pud = pud_page + pud_index(addr);
458 		pmd_t *pmd;
459 		pgprot_t prot = PAGE_KERNEL;
460 
461 		if (addr >= end)
462 			break;
463 
464 		if (!after_bootmem &&
465 				!e820_any_mapped(addr, addr+PUD_SIZE, 0)) {
466 			set_pud(pud, __pud(0));
467 			continue;
468 		}
469 
470 		if (pud_val(*pud)) {
471 			if (!pud_large(*pud)) {
472 				last_map_addr = phys_pmd_update(pud, addr, end,
473 							 page_size_mask, prot);
474 				continue;
475 			}
476 			/*
477 			 * If we are ok with PG_LEVEL_1G mapping, then we will
478 			 * use the existing mapping.
479 			 *
480 			 * Otherwise, we will split the gbpage mapping but use
481 			 * the same existing protection  bits except for large
482 			 * page, so that we don't violate Intel's TLB
483 			 * Application note (317080) which says, while changing
484 			 * the page sizes, new and old translations should
485 			 * not differ with respect to page frame and
486 			 * attributes.
487 			 */
488 			if (page_size_mask & (1 << PG_LEVEL_1G)) {
489 				pages++;
490 				continue;
491 			}
492 			prot = pte_pgprot(pte_clrhuge(*(pte_t *)pud));
493 		}
494 
495 		if (page_size_mask & (1<<PG_LEVEL_1G)) {
496 			pages++;
497 			spin_lock(&init_mm.page_table_lock);
498 			set_pte((pte_t *)pud,
499 				pfn_pte(addr >> PAGE_SHIFT, PAGE_KERNEL_LARGE));
500 			spin_unlock(&init_mm.page_table_lock);
501 			last_map_addr = (addr & PUD_MASK) + PUD_SIZE;
502 			continue;
503 		}
504 
505 		pmd = alloc_low_page(&pmd_phys);
506 		last_map_addr = phys_pmd_init(pmd, addr, end, page_size_mask,
507 					      prot);
508 		unmap_low_page(pmd);
509 
510 		spin_lock(&init_mm.page_table_lock);
511 		pud_populate(&init_mm, pud, __va(pmd_phys));
512 		spin_unlock(&init_mm.page_table_lock);
513 	}
514 	__flush_tlb_all();
515 
516 	update_page_count(PG_LEVEL_1G, pages);
517 
518 	return last_map_addr;
519 }
520 
521 static unsigned long __meminit
522 phys_pud_update(pgd_t *pgd, unsigned long addr, unsigned long end,
523 		 unsigned long page_size_mask)
524 {
525 	pud_t *pud;
526 
527 	pud = (pud_t *)pgd_page_vaddr(*pgd);
528 
529 	return phys_pud_init(pud, addr, end, page_size_mask);
530 }
531 
532 unsigned long __meminit
533 kernel_physical_mapping_init(unsigned long start,
534 			     unsigned long end,
535 			     unsigned long page_size_mask)
536 {
537 
538 	unsigned long next, last_map_addr = end;
539 
540 	start = (unsigned long)__va(start);
541 	end = (unsigned long)__va(end);
542 
543 	for (; start < end; start = next) {
544 		pgd_t *pgd = pgd_offset_k(start);
545 		unsigned long pud_phys;
546 		pud_t *pud;
547 
548 		next = (start + PGDIR_SIZE) & PGDIR_MASK;
549 		if (next > end)
550 			next = end;
551 
552 		if (pgd_val(*pgd)) {
553 			last_map_addr = phys_pud_update(pgd, __pa(start),
554 						 __pa(end), page_size_mask);
555 			continue;
556 		}
557 
558 		pud = alloc_low_page(&pud_phys);
559 		last_map_addr = phys_pud_init(pud, __pa(start), __pa(next),
560 						 page_size_mask);
561 		unmap_low_page(pud);
562 
563 		spin_lock(&init_mm.page_table_lock);
564 		pgd_populate(&init_mm, pgd, __va(pud_phys));
565 		spin_unlock(&init_mm.page_table_lock);
566 	}
567 	__flush_tlb_all();
568 
569 	return last_map_addr;
570 }
571 
572 #ifndef CONFIG_NUMA
573 void __init initmem_init(unsigned long start_pfn, unsigned long end_pfn,
574 				int acpi, int k8)
575 {
576 #ifndef CONFIG_NO_BOOTMEM
577 	unsigned long bootmap_size, bootmap;
578 
579 	bootmap_size = bootmem_bootmap_pages(end_pfn)<<PAGE_SHIFT;
580 	bootmap = find_e820_area(0, end_pfn<<PAGE_SHIFT, bootmap_size,
581 				 PAGE_SIZE);
582 	if (bootmap == -1L)
583 		panic("Cannot find bootmem map of size %ld\n", bootmap_size);
584 	reserve_early(bootmap, bootmap + bootmap_size, "BOOTMAP");
585 	/* don't touch min_low_pfn */
586 	bootmap_size = init_bootmem_node(NODE_DATA(0), bootmap >> PAGE_SHIFT,
587 					 0, end_pfn);
588 	e820_register_active_regions(0, start_pfn, end_pfn);
589 	free_bootmem_with_active_regions(0, end_pfn);
590 #else
591 	e820_register_active_regions(0, start_pfn, end_pfn);
592 #endif
593 }
594 #endif
595 
596 void __init paging_init(void)
597 {
598 	unsigned long max_zone_pfns[MAX_NR_ZONES];
599 
600 	memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
601 	max_zone_pfns[ZONE_DMA] = MAX_DMA_PFN;
602 	max_zone_pfns[ZONE_DMA32] = MAX_DMA32_PFN;
603 	max_zone_pfns[ZONE_NORMAL] = max_pfn;
604 
605 	sparse_memory_present_with_active_regions(MAX_NUMNODES);
606 	sparse_init();
607 
608 	/*
609 	 * clear the default setting with node 0
610 	 * note: don't use nodes_clear here, that is really clearing when
611 	 *	 numa support is not compiled in, and later node_set_state
612 	 *	 will not set it back.
613 	 */
614 	node_clear_state(0, N_NORMAL_MEMORY);
615 
616 	free_area_init_nodes(max_zone_pfns);
617 }
618 
619 /*
620  * Memory hotplug specific functions
621  */
622 #ifdef CONFIG_MEMORY_HOTPLUG
623 /*
624  * After memory hotplug the variables max_pfn, max_low_pfn and high_memory need
625  * updating.
626  */
627 static void  update_end_of_memory_vars(u64 start, u64 size)
628 {
629 	unsigned long end_pfn = PFN_UP(start + size);
630 
631 	if (end_pfn > max_pfn) {
632 		max_pfn = end_pfn;
633 		max_low_pfn = end_pfn;
634 		high_memory = (void *)__va(max_pfn * PAGE_SIZE - 1) + 1;
635 	}
636 }
637 
638 /*
639  * Memory is added always to NORMAL zone. This means you will never get
640  * additional DMA/DMA32 memory.
641  */
642 int arch_add_memory(int nid, u64 start, u64 size)
643 {
644 	struct pglist_data *pgdat = NODE_DATA(nid);
645 	struct zone *zone = pgdat->node_zones + ZONE_NORMAL;
646 	unsigned long last_mapped_pfn, start_pfn = start >> PAGE_SHIFT;
647 	unsigned long nr_pages = size >> PAGE_SHIFT;
648 	int ret;
649 
650 	last_mapped_pfn = init_memory_mapping(start, start + size);
651 	if (last_mapped_pfn > max_pfn_mapped)
652 		max_pfn_mapped = last_mapped_pfn;
653 
654 	ret = __add_pages(nid, zone, start_pfn, nr_pages);
655 	WARN_ON_ONCE(ret);
656 
657 	/* update max_pfn, max_low_pfn and high_memory */
658 	update_end_of_memory_vars(start, size);
659 
660 	return ret;
661 }
662 EXPORT_SYMBOL_GPL(arch_add_memory);
663 
664 #if !defined(CONFIG_ACPI_NUMA) && defined(CONFIG_NUMA)
665 int memory_add_physaddr_to_nid(u64 start)
666 {
667 	return 0;
668 }
669 EXPORT_SYMBOL_GPL(memory_add_physaddr_to_nid);
670 #endif
671 
672 #endif /* CONFIG_MEMORY_HOTPLUG */
673 
674 static struct kcore_list kcore_vsyscall;
675 
676 void __init mem_init(void)
677 {
678 	long codesize, reservedpages, datasize, initsize;
679 	unsigned long absent_pages;
680 
681 	pci_iommu_alloc();
682 
683 	/* clear_bss() already clear the empty_zero_page */
684 
685 	reservedpages = 0;
686 
687 	/* this will put all low memory onto the freelists */
688 #ifdef CONFIG_NUMA
689 	totalram_pages = numa_free_all_bootmem();
690 #else
691 	totalram_pages = free_all_bootmem();
692 #endif
693 
694 	absent_pages = absent_pages_in_range(0, max_pfn);
695 	reservedpages = max_pfn - totalram_pages - absent_pages;
696 	after_bootmem = 1;
697 
698 	codesize =  (unsigned long) &_etext - (unsigned long) &_text;
699 	datasize =  (unsigned long) &_edata - (unsigned long) &_etext;
700 	initsize =  (unsigned long) &__init_end - (unsigned long) &__init_begin;
701 
702 	/* Register memory areas for /proc/kcore */
703 	kclist_add(&kcore_vsyscall, (void *)VSYSCALL_START,
704 			 VSYSCALL_END - VSYSCALL_START, KCORE_OTHER);
705 
706 	printk(KERN_INFO "Memory: %luk/%luk available (%ldk kernel code, "
707 			 "%ldk absent, %ldk reserved, %ldk data, %ldk init)\n",
708 		nr_free_pages() << (PAGE_SHIFT-10),
709 		max_pfn << (PAGE_SHIFT-10),
710 		codesize >> 10,
711 		absent_pages << (PAGE_SHIFT-10),
712 		reservedpages << (PAGE_SHIFT-10),
713 		datasize >> 10,
714 		initsize >> 10);
715 }
716 
717 #ifdef CONFIG_DEBUG_RODATA
718 const int rodata_test_data = 0xC3;
719 EXPORT_SYMBOL_GPL(rodata_test_data);
720 
721 int kernel_set_to_readonly;
722 
723 void set_kernel_text_rw(void)
724 {
725 	unsigned long start = PFN_ALIGN(_text);
726 	unsigned long end = PFN_ALIGN(__stop___ex_table);
727 
728 	if (!kernel_set_to_readonly)
729 		return;
730 
731 	pr_debug("Set kernel text: %lx - %lx for read write\n",
732 		 start, end);
733 
734 	/*
735 	 * Make the kernel identity mapping for text RW. Kernel text
736 	 * mapping will always be RO. Refer to the comment in
737 	 * static_protections() in pageattr.c
738 	 */
739 	set_memory_rw(start, (end - start) >> PAGE_SHIFT);
740 }
741 
742 void set_kernel_text_ro(void)
743 {
744 	unsigned long start = PFN_ALIGN(_text);
745 	unsigned long end = PFN_ALIGN(__stop___ex_table);
746 
747 	if (!kernel_set_to_readonly)
748 		return;
749 
750 	pr_debug("Set kernel text: %lx - %lx for read only\n",
751 		 start, end);
752 
753 	/*
754 	 * Set the kernel identity mapping for text RO.
755 	 */
756 	set_memory_ro(start, (end - start) >> PAGE_SHIFT);
757 }
758 
759 void mark_rodata_ro(void)
760 {
761 	unsigned long start = PFN_ALIGN(_text);
762 	unsigned long rodata_start =
763 		((unsigned long)__start_rodata + PAGE_SIZE - 1) & PAGE_MASK;
764 	unsigned long end = (unsigned long) &__end_rodata_hpage_align;
765 	unsigned long text_end = PAGE_ALIGN((unsigned long) &__stop___ex_table);
766 	unsigned long rodata_end = PAGE_ALIGN((unsigned long) &__end_rodata);
767 	unsigned long data_start = (unsigned long) &_sdata;
768 
769 	printk(KERN_INFO "Write protecting the kernel read-only data: %luk\n",
770 	       (end - start) >> 10);
771 	set_memory_ro(start, (end - start) >> PAGE_SHIFT);
772 
773 	kernel_set_to_readonly = 1;
774 
775 	/*
776 	 * The rodata section (but not the kernel text!) should also be
777 	 * not-executable.
778 	 */
779 	set_memory_nx(rodata_start, (end - rodata_start) >> PAGE_SHIFT);
780 
781 	rodata_test();
782 
783 #ifdef CONFIG_CPA_DEBUG
784 	printk(KERN_INFO "Testing CPA: undo %lx-%lx\n", start, end);
785 	set_memory_rw(start, (end-start) >> PAGE_SHIFT);
786 
787 	printk(KERN_INFO "Testing CPA: again\n");
788 	set_memory_ro(start, (end-start) >> PAGE_SHIFT);
789 #endif
790 
791 	free_init_pages("unused kernel memory",
792 			(unsigned long) page_address(virt_to_page(text_end)),
793 			(unsigned long)
794 				 page_address(virt_to_page(rodata_start)));
795 	free_init_pages("unused kernel memory",
796 			(unsigned long) page_address(virt_to_page(rodata_end)),
797 			(unsigned long) page_address(virt_to_page(data_start)));
798 }
799 
800 #endif
801 
802 int __init reserve_bootmem_generic(unsigned long phys, unsigned long len,
803 				   int flags)
804 {
805 #ifdef CONFIG_NUMA
806 	int nid, next_nid;
807 	int ret;
808 #endif
809 	unsigned long pfn = phys >> PAGE_SHIFT;
810 
811 	if (pfn >= max_pfn) {
812 		/*
813 		 * This can happen with kdump kernels when accessing
814 		 * firmware tables:
815 		 */
816 		if (pfn < max_pfn_mapped)
817 			return -EFAULT;
818 
819 		printk(KERN_ERR "reserve_bootmem: illegal reserve %lx %lu\n",
820 				phys, len);
821 		return -EFAULT;
822 	}
823 
824 	/* Should check here against the e820 map to avoid double free */
825 #ifdef CONFIG_NUMA
826 	nid = phys_to_nid(phys);
827 	next_nid = phys_to_nid(phys + len - 1);
828 	if (nid == next_nid)
829 		ret = reserve_bootmem_node(NODE_DATA(nid), phys, len, flags);
830 	else
831 		ret = reserve_bootmem(phys, len, flags);
832 
833 	if (ret != 0)
834 		return ret;
835 
836 #else
837 	reserve_bootmem(phys, len, flags);
838 #endif
839 
840 	if (phys+len <= MAX_DMA_PFN*PAGE_SIZE) {
841 		dma_reserve += len / PAGE_SIZE;
842 		set_dma_reserve(dma_reserve);
843 	}
844 
845 	return 0;
846 }
847 
848 int kern_addr_valid(unsigned long addr)
849 {
850 	unsigned long above = ((long)addr) >> __VIRTUAL_MASK_SHIFT;
851 	pgd_t *pgd;
852 	pud_t *pud;
853 	pmd_t *pmd;
854 	pte_t *pte;
855 
856 	if (above != 0 && above != -1UL)
857 		return 0;
858 
859 	pgd = pgd_offset_k(addr);
860 	if (pgd_none(*pgd))
861 		return 0;
862 
863 	pud = pud_offset(pgd, addr);
864 	if (pud_none(*pud))
865 		return 0;
866 
867 	pmd = pmd_offset(pud, addr);
868 	if (pmd_none(*pmd))
869 		return 0;
870 
871 	if (pmd_large(*pmd))
872 		return pfn_valid(pmd_pfn(*pmd));
873 
874 	pte = pte_offset_kernel(pmd, addr);
875 	if (pte_none(*pte))
876 		return 0;
877 
878 	return pfn_valid(pte_pfn(*pte));
879 }
880 
881 /*
882  * A pseudo VMA to allow ptrace access for the vsyscall page.  This only
883  * covers the 64bit vsyscall page now. 32bit has a real VMA now and does
884  * not need special handling anymore:
885  */
886 static struct vm_area_struct gate_vma = {
887 	.vm_start	= VSYSCALL_START,
888 	.vm_end		= VSYSCALL_START + (VSYSCALL_MAPPED_PAGES * PAGE_SIZE),
889 	.vm_page_prot	= PAGE_READONLY_EXEC,
890 	.vm_flags	= VM_READ | VM_EXEC
891 };
892 
893 struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
894 {
895 #ifdef CONFIG_IA32_EMULATION
896 	if (test_tsk_thread_flag(tsk, TIF_IA32))
897 		return NULL;
898 #endif
899 	return &gate_vma;
900 }
901 
902 int in_gate_area(struct task_struct *task, unsigned long addr)
903 {
904 	struct vm_area_struct *vma = get_gate_vma(task);
905 
906 	if (!vma)
907 		return 0;
908 
909 	return (addr >= vma->vm_start) && (addr < vma->vm_end);
910 }
911 
912 /*
913  * Use this when you have no reliable task/vma, typically from interrupt
914  * context. It is less reliable than using the task's vma and may give
915  * false positives:
916  */
917 int in_gate_area_no_task(unsigned long addr)
918 {
919 	return (addr >= VSYSCALL_START) && (addr < VSYSCALL_END);
920 }
921 
922 const char *arch_vma_name(struct vm_area_struct *vma)
923 {
924 	if (vma->vm_mm && vma->vm_start == (long)vma->vm_mm->context.vdso)
925 		return "[vdso]";
926 	if (vma == &gate_vma)
927 		return "[vsyscall]";
928 	return NULL;
929 }
930 
931 #ifdef CONFIG_SPARSEMEM_VMEMMAP
932 /*
933  * Initialise the sparsemem vmemmap using huge-pages at the PMD level.
934  */
935 static long __meminitdata addr_start, addr_end;
936 static void __meminitdata *p_start, *p_end;
937 static int __meminitdata node_start;
938 
939 int __meminit
940 vmemmap_populate(struct page *start_page, unsigned long size, int node)
941 {
942 	unsigned long addr = (unsigned long)start_page;
943 	unsigned long end = (unsigned long)(start_page + size);
944 	unsigned long next;
945 	pgd_t *pgd;
946 	pud_t *pud;
947 	pmd_t *pmd;
948 
949 	for (; addr < end; addr = next) {
950 		void *p = NULL;
951 
952 		pgd = vmemmap_pgd_populate(addr, node);
953 		if (!pgd)
954 			return -ENOMEM;
955 
956 		pud = vmemmap_pud_populate(pgd, addr, node);
957 		if (!pud)
958 			return -ENOMEM;
959 
960 		if (!cpu_has_pse) {
961 			next = (addr + PAGE_SIZE) & PAGE_MASK;
962 			pmd = vmemmap_pmd_populate(pud, addr, node);
963 
964 			if (!pmd)
965 				return -ENOMEM;
966 
967 			p = vmemmap_pte_populate(pmd, addr, node);
968 
969 			if (!p)
970 				return -ENOMEM;
971 
972 			addr_end = addr + PAGE_SIZE;
973 			p_end = p + PAGE_SIZE;
974 		} else {
975 			next = pmd_addr_end(addr, end);
976 
977 			pmd = pmd_offset(pud, addr);
978 			if (pmd_none(*pmd)) {
979 				pte_t entry;
980 
981 				p = vmemmap_alloc_block_buf(PMD_SIZE, node);
982 				if (!p)
983 					return -ENOMEM;
984 
985 				entry = pfn_pte(__pa(p) >> PAGE_SHIFT,
986 						PAGE_KERNEL_LARGE);
987 				set_pmd(pmd, __pmd(pte_val(entry)));
988 
989 				/* check to see if we have contiguous blocks */
990 				if (p_end != p || node_start != node) {
991 					if (p_start)
992 						printk(KERN_DEBUG " [%lx-%lx] PMD -> [%p-%p] on node %d\n",
993 						       addr_start, addr_end-1, p_start, p_end-1, node_start);
994 					addr_start = addr;
995 					node_start = node;
996 					p_start = p;
997 				}
998 
999 				addr_end = addr + PMD_SIZE;
1000 				p_end = p + PMD_SIZE;
1001 			} else
1002 				vmemmap_verify((pte_t *)pmd, node, addr, next);
1003 		}
1004 
1005 	}
1006 	return 0;
1007 }
1008 
1009 void __meminit vmemmap_populate_print_last(void)
1010 {
1011 	if (p_start) {
1012 		printk(KERN_DEBUG " [%lx-%lx] PMD -> [%p-%p] on node %d\n",
1013 			addr_start, addr_end-1, p_start, p_end-1, node_start);
1014 		p_start = NULL;
1015 		p_end = NULL;
1016 		node_start = 0;
1017 	}
1018 }
1019 #endif
1020