xref: /linux/arch/x86/mm/init_64.c (revision cc3ae7b0af27118994c1e491382b253be3b762bf)
1 /*
2  *  linux/arch/x86_64/mm/init.c
3  *
4  *  Copyright (C) 1995  Linus Torvalds
5  *  Copyright (C) 2000  Pavel Machek <pavel@ucw.cz>
6  *  Copyright (C) 2002,2003 Andi Kleen <ak@suse.de>
7  */
8 
9 #include <linux/signal.h>
10 #include <linux/sched.h>
11 #include <linux/kernel.h>
12 #include <linux/errno.h>
13 #include <linux/string.h>
14 #include <linux/types.h>
15 #include <linux/ptrace.h>
16 #include <linux/mman.h>
17 #include <linux/mm.h>
18 #include <linux/swap.h>
19 #include <linux/smp.h>
20 #include <linux/init.h>
21 #include <linux/initrd.h>
22 #include <linux/pagemap.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/proc_fs.h>
26 #include <linux/pci.h>
27 #include <linux/pfn.h>
28 #include <linux/poison.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/memory.h>
31 #include <linux/memory_hotplug.h>
32 #include <linux/memremap.h>
33 #include <linux/nmi.h>
34 #include <linux/gfp.h>
35 #include <linux/kcore.h>
36 
37 #include <asm/processor.h>
38 #include <asm/bios_ebda.h>
39 #include <asm/uaccess.h>
40 #include <asm/pgtable.h>
41 #include <asm/pgalloc.h>
42 #include <asm/dma.h>
43 #include <asm/fixmap.h>
44 #include <asm/e820.h>
45 #include <asm/apic.h>
46 #include <asm/tlb.h>
47 #include <asm/mmu_context.h>
48 #include <asm/proto.h>
49 #include <asm/smp.h>
50 #include <asm/sections.h>
51 #include <asm/kdebug.h>
52 #include <asm/numa.h>
53 #include <asm/cacheflush.h>
54 #include <asm/init.h>
55 #include <asm/uv/uv.h>
56 #include <asm/setup.h>
57 
58 #include "mm_internal.h"
59 
60 #include "ident_map.c"
61 
62 /*
63  * NOTE: pagetable_init alloc all the fixmap pagetables contiguous on the
64  * physical space so we can cache the place of the first one and move
65  * around without checking the pgd every time.
66  */
67 
68 pteval_t __supported_pte_mask __read_mostly = ~0;
69 EXPORT_SYMBOL_GPL(__supported_pte_mask);
70 
71 int force_personality32;
72 
73 /*
74  * noexec32=on|off
75  * Control non executable heap for 32bit processes.
76  * To control the stack too use noexec=off
77  *
78  * on	PROT_READ does not imply PROT_EXEC for 32-bit processes (default)
79  * off	PROT_READ implies PROT_EXEC
80  */
81 static int __init nonx32_setup(char *str)
82 {
83 	if (!strcmp(str, "on"))
84 		force_personality32 &= ~READ_IMPLIES_EXEC;
85 	else if (!strcmp(str, "off"))
86 		force_personality32 |= READ_IMPLIES_EXEC;
87 	return 1;
88 }
89 __setup("noexec32=", nonx32_setup);
90 
91 /*
92  * When memory was added/removed make sure all the processes MM have
93  * suitable PGD entries in the local PGD level page.
94  */
95 void sync_global_pgds(unsigned long start, unsigned long end, int removed)
96 {
97 	unsigned long address;
98 
99 	for (address = start; address <= end; address += PGDIR_SIZE) {
100 		const pgd_t *pgd_ref = pgd_offset_k(address);
101 		struct page *page;
102 
103 		/*
104 		 * When it is called after memory hot remove, pgd_none()
105 		 * returns true. In this case (removed == 1), we must clear
106 		 * the PGD entries in the local PGD level page.
107 		 */
108 		if (pgd_none(*pgd_ref) && !removed)
109 			continue;
110 
111 		spin_lock(&pgd_lock);
112 		list_for_each_entry(page, &pgd_list, lru) {
113 			pgd_t *pgd;
114 			spinlock_t *pgt_lock;
115 
116 			pgd = (pgd_t *)page_address(page) + pgd_index(address);
117 			/* the pgt_lock only for Xen */
118 			pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
119 			spin_lock(pgt_lock);
120 
121 			if (!pgd_none(*pgd_ref) && !pgd_none(*pgd))
122 				BUG_ON(pgd_page_vaddr(*pgd)
123 				       != pgd_page_vaddr(*pgd_ref));
124 
125 			if (removed) {
126 				if (pgd_none(*pgd_ref) && !pgd_none(*pgd))
127 					pgd_clear(pgd);
128 			} else {
129 				if (pgd_none(*pgd))
130 					set_pgd(pgd, *pgd_ref);
131 			}
132 
133 			spin_unlock(pgt_lock);
134 		}
135 		spin_unlock(&pgd_lock);
136 	}
137 }
138 
139 /*
140  * NOTE: This function is marked __ref because it calls __init function
141  * (alloc_bootmem_pages). It's safe to do it ONLY when after_bootmem == 0.
142  */
143 static __ref void *spp_getpage(void)
144 {
145 	void *ptr;
146 
147 	if (after_bootmem)
148 		ptr = (void *) get_zeroed_page(GFP_ATOMIC | __GFP_NOTRACK);
149 	else
150 		ptr = alloc_bootmem_pages(PAGE_SIZE);
151 
152 	if (!ptr || ((unsigned long)ptr & ~PAGE_MASK)) {
153 		panic("set_pte_phys: cannot allocate page data %s\n",
154 			after_bootmem ? "after bootmem" : "");
155 	}
156 
157 	pr_debug("spp_getpage %p\n", ptr);
158 
159 	return ptr;
160 }
161 
162 static pud_t *fill_pud(pgd_t *pgd, unsigned long vaddr)
163 {
164 	if (pgd_none(*pgd)) {
165 		pud_t *pud = (pud_t *)spp_getpage();
166 		pgd_populate(&init_mm, pgd, pud);
167 		if (pud != pud_offset(pgd, 0))
168 			printk(KERN_ERR "PAGETABLE BUG #00! %p <-> %p\n",
169 			       pud, pud_offset(pgd, 0));
170 	}
171 	return pud_offset(pgd, vaddr);
172 }
173 
174 static pmd_t *fill_pmd(pud_t *pud, unsigned long vaddr)
175 {
176 	if (pud_none(*pud)) {
177 		pmd_t *pmd = (pmd_t *) spp_getpage();
178 		pud_populate(&init_mm, pud, pmd);
179 		if (pmd != pmd_offset(pud, 0))
180 			printk(KERN_ERR "PAGETABLE BUG #01! %p <-> %p\n",
181 			       pmd, pmd_offset(pud, 0));
182 	}
183 	return pmd_offset(pud, vaddr);
184 }
185 
186 static pte_t *fill_pte(pmd_t *pmd, unsigned long vaddr)
187 {
188 	if (pmd_none(*pmd)) {
189 		pte_t *pte = (pte_t *) spp_getpage();
190 		pmd_populate_kernel(&init_mm, pmd, pte);
191 		if (pte != pte_offset_kernel(pmd, 0))
192 			printk(KERN_ERR "PAGETABLE BUG #02!\n");
193 	}
194 	return pte_offset_kernel(pmd, vaddr);
195 }
196 
197 void set_pte_vaddr_pud(pud_t *pud_page, unsigned long vaddr, pte_t new_pte)
198 {
199 	pud_t *pud;
200 	pmd_t *pmd;
201 	pte_t *pte;
202 
203 	pud = pud_page + pud_index(vaddr);
204 	pmd = fill_pmd(pud, vaddr);
205 	pte = fill_pte(pmd, vaddr);
206 
207 	set_pte(pte, new_pte);
208 
209 	/*
210 	 * It's enough to flush this one mapping.
211 	 * (PGE mappings get flushed as well)
212 	 */
213 	__flush_tlb_one(vaddr);
214 }
215 
216 void set_pte_vaddr(unsigned long vaddr, pte_t pteval)
217 {
218 	pgd_t *pgd;
219 	pud_t *pud_page;
220 
221 	pr_debug("set_pte_vaddr %lx to %lx\n", vaddr, native_pte_val(pteval));
222 
223 	pgd = pgd_offset_k(vaddr);
224 	if (pgd_none(*pgd)) {
225 		printk(KERN_ERR
226 			"PGD FIXMAP MISSING, it should be setup in head.S!\n");
227 		return;
228 	}
229 	pud_page = (pud_t*)pgd_page_vaddr(*pgd);
230 	set_pte_vaddr_pud(pud_page, vaddr, pteval);
231 }
232 
233 pmd_t * __init populate_extra_pmd(unsigned long vaddr)
234 {
235 	pgd_t *pgd;
236 	pud_t *pud;
237 
238 	pgd = pgd_offset_k(vaddr);
239 	pud = fill_pud(pgd, vaddr);
240 	return fill_pmd(pud, vaddr);
241 }
242 
243 pte_t * __init populate_extra_pte(unsigned long vaddr)
244 {
245 	pmd_t *pmd;
246 
247 	pmd = populate_extra_pmd(vaddr);
248 	return fill_pte(pmd, vaddr);
249 }
250 
251 /*
252  * Create large page table mappings for a range of physical addresses.
253  */
254 static void __init __init_extra_mapping(unsigned long phys, unsigned long size,
255 					enum page_cache_mode cache)
256 {
257 	pgd_t *pgd;
258 	pud_t *pud;
259 	pmd_t *pmd;
260 	pgprot_t prot;
261 
262 	pgprot_val(prot) = pgprot_val(PAGE_KERNEL_LARGE) |
263 		pgprot_val(pgprot_4k_2_large(cachemode2pgprot(cache)));
264 	BUG_ON((phys & ~PMD_MASK) || (size & ~PMD_MASK));
265 	for (; size; phys += PMD_SIZE, size -= PMD_SIZE) {
266 		pgd = pgd_offset_k((unsigned long)__va(phys));
267 		if (pgd_none(*pgd)) {
268 			pud = (pud_t *) spp_getpage();
269 			set_pgd(pgd, __pgd(__pa(pud) | _KERNPG_TABLE |
270 						_PAGE_USER));
271 		}
272 		pud = pud_offset(pgd, (unsigned long)__va(phys));
273 		if (pud_none(*pud)) {
274 			pmd = (pmd_t *) spp_getpage();
275 			set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE |
276 						_PAGE_USER));
277 		}
278 		pmd = pmd_offset(pud, phys);
279 		BUG_ON(!pmd_none(*pmd));
280 		set_pmd(pmd, __pmd(phys | pgprot_val(prot)));
281 	}
282 }
283 
284 void __init init_extra_mapping_wb(unsigned long phys, unsigned long size)
285 {
286 	__init_extra_mapping(phys, size, _PAGE_CACHE_MODE_WB);
287 }
288 
289 void __init init_extra_mapping_uc(unsigned long phys, unsigned long size)
290 {
291 	__init_extra_mapping(phys, size, _PAGE_CACHE_MODE_UC);
292 }
293 
294 /*
295  * The head.S code sets up the kernel high mapping:
296  *
297  *   from __START_KERNEL_map to __START_KERNEL_map + size (== _end-_text)
298  *
299  * phys_base holds the negative offset to the kernel, which is added
300  * to the compile time generated pmds. This results in invalid pmds up
301  * to the point where we hit the physaddr 0 mapping.
302  *
303  * We limit the mappings to the region from _text to _brk_end.  _brk_end
304  * is rounded up to the 2MB boundary. This catches the invalid pmds as
305  * well, as they are located before _text:
306  */
307 void __init cleanup_highmap(void)
308 {
309 	unsigned long vaddr = __START_KERNEL_map;
310 	unsigned long vaddr_end = __START_KERNEL_map + KERNEL_IMAGE_SIZE;
311 	unsigned long end = roundup((unsigned long)_brk_end, PMD_SIZE) - 1;
312 	pmd_t *pmd = level2_kernel_pgt;
313 
314 	/*
315 	 * Native path, max_pfn_mapped is not set yet.
316 	 * Xen has valid max_pfn_mapped set in
317 	 *	arch/x86/xen/mmu.c:xen_setup_kernel_pagetable().
318 	 */
319 	if (max_pfn_mapped)
320 		vaddr_end = __START_KERNEL_map + (max_pfn_mapped << PAGE_SHIFT);
321 
322 	for (; vaddr + PMD_SIZE - 1 < vaddr_end; pmd++, vaddr += PMD_SIZE) {
323 		if (pmd_none(*pmd))
324 			continue;
325 		if (vaddr < (unsigned long) _text || vaddr > end)
326 			set_pmd(pmd, __pmd(0));
327 	}
328 }
329 
330 static unsigned long __meminit
331 phys_pte_init(pte_t *pte_page, unsigned long addr, unsigned long end,
332 	      pgprot_t prot)
333 {
334 	unsigned long pages = 0, next;
335 	unsigned long last_map_addr = end;
336 	int i;
337 
338 	pte_t *pte = pte_page + pte_index(addr);
339 
340 	for (i = pte_index(addr); i < PTRS_PER_PTE; i++, addr = next, pte++) {
341 		next = (addr & PAGE_MASK) + PAGE_SIZE;
342 		if (addr >= end) {
343 			if (!after_bootmem &&
344 			    !e820_any_mapped(addr & PAGE_MASK, next, E820_RAM) &&
345 			    !e820_any_mapped(addr & PAGE_MASK, next, E820_RESERVED_KERN))
346 				set_pte(pte, __pte(0));
347 			continue;
348 		}
349 
350 		/*
351 		 * We will re-use the existing mapping.
352 		 * Xen for example has some special requirements, like mapping
353 		 * pagetable pages as RO. So assume someone who pre-setup
354 		 * these mappings are more intelligent.
355 		 */
356 		if (pte_val(*pte)) {
357 			if (!after_bootmem)
358 				pages++;
359 			continue;
360 		}
361 
362 		if (0)
363 			printk("   pte=%p addr=%lx pte=%016lx\n",
364 			       pte, addr, pfn_pte(addr >> PAGE_SHIFT, PAGE_KERNEL).pte);
365 		pages++;
366 		set_pte(pte, pfn_pte(addr >> PAGE_SHIFT, prot));
367 		last_map_addr = (addr & PAGE_MASK) + PAGE_SIZE;
368 	}
369 
370 	update_page_count(PG_LEVEL_4K, pages);
371 
372 	return last_map_addr;
373 }
374 
375 static unsigned long __meminit
376 phys_pmd_init(pmd_t *pmd_page, unsigned long address, unsigned long end,
377 	      unsigned long page_size_mask, pgprot_t prot)
378 {
379 	unsigned long pages = 0, next;
380 	unsigned long last_map_addr = end;
381 
382 	int i = pmd_index(address);
383 
384 	for (; i < PTRS_PER_PMD; i++, address = next) {
385 		pmd_t *pmd = pmd_page + pmd_index(address);
386 		pte_t *pte;
387 		pgprot_t new_prot = prot;
388 
389 		next = (address & PMD_MASK) + PMD_SIZE;
390 		if (address >= end) {
391 			if (!after_bootmem &&
392 			    !e820_any_mapped(address & PMD_MASK, next, E820_RAM) &&
393 			    !e820_any_mapped(address & PMD_MASK, next, E820_RESERVED_KERN))
394 				set_pmd(pmd, __pmd(0));
395 			continue;
396 		}
397 
398 		if (pmd_val(*pmd)) {
399 			if (!pmd_large(*pmd)) {
400 				spin_lock(&init_mm.page_table_lock);
401 				pte = (pte_t *)pmd_page_vaddr(*pmd);
402 				last_map_addr = phys_pte_init(pte, address,
403 								end, prot);
404 				spin_unlock(&init_mm.page_table_lock);
405 				continue;
406 			}
407 			/*
408 			 * If we are ok with PG_LEVEL_2M mapping, then we will
409 			 * use the existing mapping,
410 			 *
411 			 * Otherwise, we will split the large page mapping but
412 			 * use the same existing protection bits except for
413 			 * large page, so that we don't violate Intel's TLB
414 			 * Application note (317080) which says, while changing
415 			 * the page sizes, new and old translations should
416 			 * not differ with respect to page frame and
417 			 * attributes.
418 			 */
419 			if (page_size_mask & (1 << PG_LEVEL_2M)) {
420 				if (!after_bootmem)
421 					pages++;
422 				last_map_addr = next;
423 				continue;
424 			}
425 			new_prot = pte_pgprot(pte_clrhuge(*(pte_t *)pmd));
426 		}
427 
428 		if (page_size_mask & (1<<PG_LEVEL_2M)) {
429 			pages++;
430 			spin_lock(&init_mm.page_table_lock);
431 			set_pte((pte_t *)pmd,
432 				pfn_pte((address & PMD_MASK) >> PAGE_SHIFT,
433 					__pgprot(pgprot_val(prot) | _PAGE_PSE)));
434 			spin_unlock(&init_mm.page_table_lock);
435 			last_map_addr = next;
436 			continue;
437 		}
438 
439 		pte = alloc_low_page();
440 		last_map_addr = phys_pte_init(pte, address, end, new_prot);
441 
442 		spin_lock(&init_mm.page_table_lock);
443 		pmd_populate_kernel(&init_mm, pmd, pte);
444 		spin_unlock(&init_mm.page_table_lock);
445 	}
446 	update_page_count(PG_LEVEL_2M, pages);
447 	return last_map_addr;
448 }
449 
450 static unsigned long __meminit
451 phys_pud_init(pud_t *pud_page, unsigned long addr, unsigned long end,
452 			 unsigned long page_size_mask)
453 {
454 	unsigned long pages = 0, next;
455 	unsigned long last_map_addr = end;
456 	int i = pud_index(addr);
457 
458 	for (; i < PTRS_PER_PUD; i++, addr = next) {
459 		pud_t *pud = pud_page + pud_index(addr);
460 		pmd_t *pmd;
461 		pgprot_t prot = PAGE_KERNEL;
462 
463 		next = (addr & PUD_MASK) + PUD_SIZE;
464 		if (addr >= end) {
465 			if (!after_bootmem &&
466 			    !e820_any_mapped(addr & PUD_MASK, next, E820_RAM) &&
467 			    !e820_any_mapped(addr & PUD_MASK, next, E820_RESERVED_KERN))
468 				set_pud(pud, __pud(0));
469 			continue;
470 		}
471 
472 		if (pud_val(*pud)) {
473 			if (!pud_large(*pud)) {
474 				pmd = pmd_offset(pud, 0);
475 				last_map_addr = phys_pmd_init(pmd, addr, end,
476 							 page_size_mask, prot);
477 				__flush_tlb_all();
478 				continue;
479 			}
480 			/*
481 			 * If we are ok with PG_LEVEL_1G mapping, then we will
482 			 * use the existing mapping.
483 			 *
484 			 * Otherwise, we will split the gbpage mapping but use
485 			 * the same existing protection  bits except for large
486 			 * page, so that we don't violate Intel's TLB
487 			 * Application note (317080) which says, while changing
488 			 * the page sizes, new and old translations should
489 			 * not differ with respect to page frame and
490 			 * attributes.
491 			 */
492 			if (page_size_mask & (1 << PG_LEVEL_1G)) {
493 				if (!after_bootmem)
494 					pages++;
495 				last_map_addr = next;
496 				continue;
497 			}
498 			prot = pte_pgprot(pte_clrhuge(*(pte_t *)pud));
499 		}
500 
501 		if (page_size_mask & (1<<PG_LEVEL_1G)) {
502 			pages++;
503 			spin_lock(&init_mm.page_table_lock);
504 			set_pte((pte_t *)pud,
505 				pfn_pte((addr & PUD_MASK) >> PAGE_SHIFT,
506 					PAGE_KERNEL_LARGE));
507 			spin_unlock(&init_mm.page_table_lock);
508 			last_map_addr = next;
509 			continue;
510 		}
511 
512 		pmd = alloc_low_page();
513 		last_map_addr = phys_pmd_init(pmd, addr, end, page_size_mask,
514 					      prot);
515 
516 		spin_lock(&init_mm.page_table_lock);
517 		pud_populate(&init_mm, pud, pmd);
518 		spin_unlock(&init_mm.page_table_lock);
519 	}
520 	__flush_tlb_all();
521 
522 	update_page_count(PG_LEVEL_1G, pages);
523 
524 	return last_map_addr;
525 }
526 
527 unsigned long __meminit
528 kernel_physical_mapping_init(unsigned long start,
529 			     unsigned long end,
530 			     unsigned long page_size_mask)
531 {
532 	bool pgd_changed = false;
533 	unsigned long next, last_map_addr = end;
534 	unsigned long addr;
535 
536 	start = (unsigned long)__va(start);
537 	end = (unsigned long)__va(end);
538 	addr = start;
539 
540 	for (; start < end; start = next) {
541 		pgd_t *pgd = pgd_offset_k(start);
542 		pud_t *pud;
543 
544 		next = (start & PGDIR_MASK) + PGDIR_SIZE;
545 
546 		if (pgd_val(*pgd)) {
547 			pud = (pud_t *)pgd_page_vaddr(*pgd);
548 			last_map_addr = phys_pud_init(pud, __pa(start),
549 						 __pa(end), page_size_mask);
550 			continue;
551 		}
552 
553 		pud = alloc_low_page();
554 		last_map_addr = phys_pud_init(pud, __pa(start), __pa(end),
555 						 page_size_mask);
556 
557 		spin_lock(&init_mm.page_table_lock);
558 		pgd_populate(&init_mm, pgd, pud);
559 		spin_unlock(&init_mm.page_table_lock);
560 		pgd_changed = true;
561 	}
562 
563 	if (pgd_changed)
564 		sync_global_pgds(addr, end - 1, 0);
565 
566 	__flush_tlb_all();
567 
568 	return last_map_addr;
569 }
570 
571 #ifndef CONFIG_NUMA
572 void __init initmem_init(void)
573 {
574 	memblock_set_node(0, (phys_addr_t)ULLONG_MAX, &memblock.memory, 0);
575 }
576 #endif
577 
578 void __init paging_init(void)
579 {
580 	sparse_memory_present_with_active_regions(MAX_NUMNODES);
581 	sparse_init();
582 
583 	/*
584 	 * clear the default setting with node 0
585 	 * note: don't use nodes_clear here, that is really clearing when
586 	 *	 numa support is not compiled in, and later node_set_state
587 	 *	 will not set it back.
588 	 */
589 	node_clear_state(0, N_MEMORY);
590 	if (N_MEMORY != N_NORMAL_MEMORY)
591 		node_clear_state(0, N_NORMAL_MEMORY);
592 
593 	zone_sizes_init();
594 }
595 
596 /*
597  * Memory hotplug specific functions
598  */
599 #ifdef CONFIG_MEMORY_HOTPLUG
600 /*
601  * After memory hotplug the variables max_pfn, max_low_pfn and high_memory need
602  * updating.
603  */
604 static void  update_end_of_memory_vars(u64 start, u64 size)
605 {
606 	unsigned long end_pfn = PFN_UP(start + size);
607 
608 	if (end_pfn > max_pfn) {
609 		max_pfn = end_pfn;
610 		max_low_pfn = end_pfn;
611 		high_memory = (void *)__va(max_pfn * PAGE_SIZE - 1) + 1;
612 	}
613 }
614 
615 /*
616  * Memory is added always to NORMAL zone. This means you will never get
617  * additional DMA/DMA32 memory.
618  */
619 int arch_add_memory(int nid, u64 start, u64 size, bool for_device)
620 {
621 	struct pglist_data *pgdat = NODE_DATA(nid);
622 	struct zone *zone = pgdat->node_zones +
623 		zone_for_memory(nid, start, size, ZONE_NORMAL, for_device);
624 	unsigned long start_pfn = start >> PAGE_SHIFT;
625 	unsigned long nr_pages = size >> PAGE_SHIFT;
626 	int ret;
627 
628 	init_memory_mapping(start, start + size);
629 
630 	ret = __add_pages(nid, zone, start_pfn, nr_pages);
631 	WARN_ON_ONCE(ret);
632 
633 	/* update max_pfn, max_low_pfn and high_memory */
634 	update_end_of_memory_vars(start, size);
635 
636 	return ret;
637 }
638 EXPORT_SYMBOL_GPL(arch_add_memory);
639 
640 #define PAGE_INUSE 0xFD
641 
642 static void __meminit free_pagetable(struct page *page, int order)
643 {
644 	unsigned long magic;
645 	unsigned int nr_pages = 1 << order;
646 	struct vmem_altmap *altmap = to_vmem_altmap((unsigned long) page);
647 
648 	if (altmap) {
649 		vmem_altmap_free(altmap, nr_pages);
650 		return;
651 	}
652 
653 	/* bootmem page has reserved flag */
654 	if (PageReserved(page)) {
655 		__ClearPageReserved(page);
656 
657 		magic = (unsigned long)page->lru.next;
658 		if (magic == SECTION_INFO || magic == MIX_SECTION_INFO) {
659 			while (nr_pages--)
660 				put_page_bootmem(page++);
661 		} else
662 			while (nr_pages--)
663 				free_reserved_page(page++);
664 	} else
665 		free_pages((unsigned long)page_address(page), order);
666 }
667 
668 static void __meminit free_pte_table(pte_t *pte_start, pmd_t *pmd)
669 {
670 	pte_t *pte;
671 	int i;
672 
673 	for (i = 0; i < PTRS_PER_PTE; i++) {
674 		pte = pte_start + i;
675 		if (pte_val(*pte))
676 			return;
677 	}
678 
679 	/* free a pte talbe */
680 	free_pagetable(pmd_page(*pmd), 0);
681 	spin_lock(&init_mm.page_table_lock);
682 	pmd_clear(pmd);
683 	spin_unlock(&init_mm.page_table_lock);
684 }
685 
686 static void __meminit free_pmd_table(pmd_t *pmd_start, pud_t *pud)
687 {
688 	pmd_t *pmd;
689 	int i;
690 
691 	for (i = 0; i < PTRS_PER_PMD; i++) {
692 		pmd = pmd_start + i;
693 		if (pmd_val(*pmd))
694 			return;
695 	}
696 
697 	/* free a pmd talbe */
698 	free_pagetable(pud_page(*pud), 0);
699 	spin_lock(&init_mm.page_table_lock);
700 	pud_clear(pud);
701 	spin_unlock(&init_mm.page_table_lock);
702 }
703 
704 /* Return true if pgd is changed, otherwise return false. */
705 static bool __meminit free_pud_table(pud_t *pud_start, pgd_t *pgd)
706 {
707 	pud_t *pud;
708 	int i;
709 
710 	for (i = 0; i < PTRS_PER_PUD; i++) {
711 		pud = pud_start + i;
712 		if (pud_val(*pud))
713 			return false;
714 	}
715 
716 	/* free a pud table */
717 	free_pagetable(pgd_page(*pgd), 0);
718 	spin_lock(&init_mm.page_table_lock);
719 	pgd_clear(pgd);
720 	spin_unlock(&init_mm.page_table_lock);
721 
722 	return true;
723 }
724 
725 static void __meminit
726 remove_pte_table(pte_t *pte_start, unsigned long addr, unsigned long end,
727 		 bool direct)
728 {
729 	unsigned long next, pages = 0;
730 	pte_t *pte;
731 	void *page_addr;
732 	phys_addr_t phys_addr;
733 
734 	pte = pte_start + pte_index(addr);
735 	for (; addr < end; addr = next, pte++) {
736 		next = (addr + PAGE_SIZE) & PAGE_MASK;
737 		if (next > end)
738 			next = end;
739 
740 		if (!pte_present(*pte))
741 			continue;
742 
743 		/*
744 		 * We mapped [0,1G) memory as identity mapping when
745 		 * initializing, in arch/x86/kernel/head_64.S. These
746 		 * pagetables cannot be removed.
747 		 */
748 		phys_addr = pte_val(*pte) + (addr & PAGE_MASK);
749 		if (phys_addr < (phys_addr_t)0x40000000)
750 			return;
751 
752 		if (PAGE_ALIGNED(addr) && PAGE_ALIGNED(next)) {
753 			/*
754 			 * Do not free direct mapping pages since they were
755 			 * freed when offlining, or simplely not in use.
756 			 */
757 			if (!direct)
758 				free_pagetable(pte_page(*pte), 0);
759 
760 			spin_lock(&init_mm.page_table_lock);
761 			pte_clear(&init_mm, addr, pte);
762 			spin_unlock(&init_mm.page_table_lock);
763 
764 			/* For non-direct mapping, pages means nothing. */
765 			pages++;
766 		} else {
767 			/*
768 			 * If we are here, we are freeing vmemmap pages since
769 			 * direct mapped memory ranges to be freed are aligned.
770 			 *
771 			 * If we are not removing the whole page, it means
772 			 * other page structs in this page are being used and
773 			 * we canot remove them. So fill the unused page_structs
774 			 * with 0xFD, and remove the page when it is wholly
775 			 * filled with 0xFD.
776 			 */
777 			memset((void *)addr, PAGE_INUSE, next - addr);
778 
779 			page_addr = page_address(pte_page(*pte));
780 			if (!memchr_inv(page_addr, PAGE_INUSE, PAGE_SIZE)) {
781 				free_pagetable(pte_page(*pte), 0);
782 
783 				spin_lock(&init_mm.page_table_lock);
784 				pte_clear(&init_mm, addr, pte);
785 				spin_unlock(&init_mm.page_table_lock);
786 			}
787 		}
788 	}
789 
790 	/* Call free_pte_table() in remove_pmd_table(). */
791 	flush_tlb_all();
792 	if (direct)
793 		update_page_count(PG_LEVEL_4K, -pages);
794 }
795 
796 static void __meminit
797 remove_pmd_table(pmd_t *pmd_start, unsigned long addr, unsigned long end,
798 		 bool direct)
799 {
800 	unsigned long next, pages = 0;
801 	pte_t *pte_base;
802 	pmd_t *pmd;
803 	void *page_addr;
804 
805 	pmd = pmd_start + pmd_index(addr);
806 	for (; addr < end; addr = next, pmd++) {
807 		next = pmd_addr_end(addr, end);
808 
809 		if (!pmd_present(*pmd))
810 			continue;
811 
812 		if (pmd_large(*pmd)) {
813 			if (IS_ALIGNED(addr, PMD_SIZE) &&
814 			    IS_ALIGNED(next, PMD_SIZE)) {
815 				if (!direct)
816 					free_pagetable(pmd_page(*pmd),
817 						       get_order(PMD_SIZE));
818 
819 				spin_lock(&init_mm.page_table_lock);
820 				pmd_clear(pmd);
821 				spin_unlock(&init_mm.page_table_lock);
822 				pages++;
823 			} else {
824 				/* If here, we are freeing vmemmap pages. */
825 				memset((void *)addr, PAGE_INUSE, next - addr);
826 
827 				page_addr = page_address(pmd_page(*pmd));
828 				if (!memchr_inv(page_addr, PAGE_INUSE,
829 						PMD_SIZE)) {
830 					free_pagetable(pmd_page(*pmd),
831 						       get_order(PMD_SIZE));
832 
833 					spin_lock(&init_mm.page_table_lock);
834 					pmd_clear(pmd);
835 					spin_unlock(&init_mm.page_table_lock);
836 				}
837 			}
838 
839 			continue;
840 		}
841 
842 		pte_base = (pte_t *)pmd_page_vaddr(*pmd);
843 		remove_pte_table(pte_base, addr, next, direct);
844 		free_pte_table(pte_base, pmd);
845 	}
846 
847 	/* Call free_pmd_table() in remove_pud_table(). */
848 	if (direct)
849 		update_page_count(PG_LEVEL_2M, -pages);
850 }
851 
852 static void __meminit
853 remove_pud_table(pud_t *pud_start, unsigned long addr, unsigned long end,
854 		 bool direct)
855 {
856 	unsigned long next, pages = 0;
857 	pmd_t *pmd_base;
858 	pud_t *pud;
859 	void *page_addr;
860 
861 	pud = pud_start + pud_index(addr);
862 	for (; addr < end; addr = next, pud++) {
863 		next = pud_addr_end(addr, end);
864 
865 		if (!pud_present(*pud))
866 			continue;
867 
868 		if (pud_large(*pud)) {
869 			if (IS_ALIGNED(addr, PUD_SIZE) &&
870 			    IS_ALIGNED(next, PUD_SIZE)) {
871 				if (!direct)
872 					free_pagetable(pud_page(*pud),
873 						       get_order(PUD_SIZE));
874 
875 				spin_lock(&init_mm.page_table_lock);
876 				pud_clear(pud);
877 				spin_unlock(&init_mm.page_table_lock);
878 				pages++;
879 			} else {
880 				/* If here, we are freeing vmemmap pages. */
881 				memset((void *)addr, PAGE_INUSE, next - addr);
882 
883 				page_addr = page_address(pud_page(*pud));
884 				if (!memchr_inv(page_addr, PAGE_INUSE,
885 						PUD_SIZE)) {
886 					free_pagetable(pud_page(*pud),
887 						       get_order(PUD_SIZE));
888 
889 					spin_lock(&init_mm.page_table_lock);
890 					pud_clear(pud);
891 					spin_unlock(&init_mm.page_table_lock);
892 				}
893 			}
894 
895 			continue;
896 		}
897 
898 		pmd_base = (pmd_t *)pud_page_vaddr(*pud);
899 		remove_pmd_table(pmd_base, addr, next, direct);
900 		free_pmd_table(pmd_base, pud);
901 	}
902 
903 	if (direct)
904 		update_page_count(PG_LEVEL_1G, -pages);
905 }
906 
907 /* start and end are both virtual address. */
908 static void __meminit
909 remove_pagetable(unsigned long start, unsigned long end, bool direct)
910 {
911 	unsigned long next;
912 	unsigned long addr;
913 	pgd_t *pgd;
914 	pud_t *pud;
915 	bool pgd_changed = false;
916 
917 	for (addr = start; addr < end; addr = next) {
918 		next = pgd_addr_end(addr, end);
919 
920 		pgd = pgd_offset_k(addr);
921 		if (!pgd_present(*pgd))
922 			continue;
923 
924 		pud = (pud_t *)pgd_page_vaddr(*pgd);
925 		remove_pud_table(pud, addr, next, direct);
926 		if (free_pud_table(pud, pgd))
927 			pgd_changed = true;
928 	}
929 
930 	if (pgd_changed)
931 		sync_global_pgds(start, end - 1, 1);
932 
933 	flush_tlb_all();
934 }
935 
936 void __ref vmemmap_free(unsigned long start, unsigned long end)
937 {
938 	remove_pagetable(start, end, false);
939 }
940 
941 #ifdef CONFIG_MEMORY_HOTREMOVE
942 static void __meminit
943 kernel_physical_mapping_remove(unsigned long start, unsigned long end)
944 {
945 	start = (unsigned long)__va(start);
946 	end = (unsigned long)__va(end);
947 
948 	remove_pagetable(start, end, true);
949 }
950 
951 int __ref arch_remove_memory(u64 start, u64 size)
952 {
953 	unsigned long start_pfn = start >> PAGE_SHIFT;
954 	unsigned long nr_pages = size >> PAGE_SHIFT;
955 	struct page *page = pfn_to_page(start_pfn);
956 	struct vmem_altmap *altmap;
957 	struct zone *zone;
958 	int ret;
959 
960 	/* With altmap the first mapped page is offset from @start */
961 	altmap = to_vmem_altmap((unsigned long) page);
962 	if (altmap)
963 		page += vmem_altmap_offset(altmap);
964 	zone = page_zone(page);
965 	ret = __remove_pages(zone, start_pfn, nr_pages);
966 	WARN_ON_ONCE(ret);
967 	kernel_physical_mapping_remove(start, start + size);
968 
969 	return ret;
970 }
971 #endif
972 #endif /* CONFIG_MEMORY_HOTPLUG */
973 
974 static struct kcore_list kcore_vsyscall;
975 
976 static void __init register_page_bootmem_info(void)
977 {
978 #ifdef CONFIG_NUMA
979 	int i;
980 
981 	for_each_online_node(i)
982 		register_page_bootmem_info_node(NODE_DATA(i));
983 #endif
984 }
985 
986 void __init mem_init(void)
987 {
988 	pci_iommu_alloc();
989 
990 	/* clear_bss() already clear the empty_zero_page */
991 
992 	register_page_bootmem_info();
993 
994 	/* this will put all memory onto the freelists */
995 	free_all_bootmem();
996 	after_bootmem = 1;
997 
998 	/* Register memory areas for /proc/kcore */
999 	kclist_add(&kcore_vsyscall, (void *)VSYSCALL_ADDR,
1000 			 PAGE_SIZE, KCORE_OTHER);
1001 
1002 	mem_init_print_info(NULL);
1003 }
1004 
1005 const int rodata_test_data = 0xC3;
1006 EXPORT_SYMBOL_GPL(rodata_test_data);
1007 
1008 int kernel_set_to_readonly;
1009 
1010 void set_kernel_text_rw(void)
1011 {
1012 	unsigned long start = PFN_ALIGN(_text);
1013 	unsigned long end = PFN_ALIGN(__stop___ex_table);
1014 
1015 	if (!kernel_set_to_readonly)
1016 		return;
1017 
1018 	pr_debug("Set kernel text: %lx - %lx for read write\n",
1019 		 start, end);
1020 
1021 	/*
1022 	 * Make the kernel identity mapping for text RW. Kernel text
1023 	 * mapping will always be RO. Refer to the comment in
1024 	 * static_protections() in pageattr.c
1025 	 */
1026 	set_memory_rw(start, (end - start) >> PAGE_SHIFT);
1027 }
1028 
1029 void set_kernel_text_ro(void)
1030 {
1031 	unsigned long start = PFN_ALIGN(_text);
1032 	unsigned long end = PFN_ALIGN(__stop___ex_table);
1033 
1034 	if (!kernel_set_to_readonly)
1035 		return;
1036 
1037 	pr_debug("Set kernel text: %lx - %lx for read only\n",
1038 		 start, end);
1039 
1040 	/*
1041 	 * Set the kernel identity mapping for text RO.
1042 	 */
1043 	set_memory_ro(start, (end - start) >> PAGE_SHIFT);
1044 }
1045 
1046 void mark_rodata_ro(void)
1047 {
1048 	unsigned long start = PFN_ALIGN(_text);
1049 	unsigned long rodata_start = PFN_ALIGN(__start_rodata);
1050 	unsigned long end = (unsigned long) &__end_rodata_hpage_align;
1051 	unsigned long text_end = PFN_ALIGN(&__stop___ex_table);
1052 	unsigned long rodata_end = PFN_ALIGN(&__end_rodata);
1053 	unsigned long all_end;
1054 
1055 	printk(KERN_INFO "Write protecting the kernel read-only data: %luk\n",
1056 	       (end - start) >> 10);
1057 	set_memory_ro(start, (end - start) >> PAGE_SHIFT);
1058 
1059 	kernel_set_to_readonly = 1;
1060 
1061 	/*
1062 	 * The rodata/data/bss/brk section (but not the kernel text!)
1063 	 * should also be not-executable.
1064 	 *
1065 	 * We align all_end to PMD_SIZE because the existing mapping
1066 	 * is a full PMD. If we would align _brk_end to PAGE_SIZE we
1067 	 * split the PMD and the reminder between _brk_end and the end
1068 	 * of the PMD will remain mapped executable.
1069 	 *
1070 	 * Any PMD which was setup after the one which covers _brk_end
1071 	 * has been zapped already via cleanup_highmem().
1072 	 */
1073 	all_end = roundup((unsigned long)_brk_end, PMD_SIZE);
1074 	set_memory_nx(text_end, (all_end - text_end) >> PAGE_SHIFT);
1075 
1076 	rodata_test();
1077 
1078 #ifdef CONFIG_CPA_DEBUG
1079 	printk(KERN_INFO "Testing CPA: undo %lx-%lx\n", start, end);
1080 	set_memory_rw(start, (end-start) >> PAGE_SHIFT);
1081 
1082 	printk(KERN_INFO "Testing CPA: again\n");
1083 	set_memory_ro(start, (end-start) >> PAGE_SHIFT);
1084 #endif
1085 
1086 	free_init_pages("unused kernel",
1087 			(unsigned long) __va(__pa_symbol(text_end)),
1088 			(unsigned long) __va(__pa_symbol(rodata_start)));
1089 	free_init_pages("unused kernel",
1090 			(unsigned long) __va(__pa_symbol(rodata_end)),
1091 			(unsigned long) __va(__pa_symbol(_sdata)));
1092 
1093 	debug_checkwx();
1094 }
1095 
1096 int kern_addr_valid(unsigned long addr)
1097 {
1098 	unsigned long above = ((long)addr) >> __VIRTUAL_MASK_SHIFT;
1099 	pgd_t *pgd;
1100 	pud_t *pud;
1101 	pmd_t *pmd;
1102 	pte_t *pte;
1103 
1104 	if (above != 0 && above != -1UL)
1105 		return 0;
1106 
1107 	pgd = pgd_offset_k(addr);
1108 	if (pgd_none(*pgd))
1109 		return 0;
1110 
1111 	pud = pud_offset(pgd, addr);
1112 	if (pud_none(*pud))
1113 		return 0;
1114 
1115 	if (pud_large(*pud))
1116 		return pfn_valid(pud_pfn(*pud));
1117 
1118 	pmd = pmd_offset(pud, addr);
1119 	if (pmd_none(*pmd))
1120 		return 0;
1121 
1122 	if (pmd_large(*pmd))
1123 		return pfn_valid(pmd_pfn(*pmd));
1124 
1125 	pte = pte_offset_kernel(pmd, addr);
1126 	if (pte_none(*pte))
1127 		return 0;
1128 
1129 	return pfn_valid(pte_pfn(*pte));
1130 }
1131 
1132 static unsigned long probe_memory_block_size(void)
1133 {
1134 	unsigned long bz = MIN_MEMORY_BLOCK_SIZE;
1135 
1136 	/* if system is UV or has 64GB of RAM or more, use large blocks */
1137 	if (is_uv_system() || ((max_pfn << PAGE_SHIFT) >= (64UL << 30)))
1138 		bz = 2UL << 30; /* 2GB */
1139 
1140 	pr_info("x86/mm: Memory block size: %ldMB\n", bz >> 20);
1141 
1142 	return bz;
1143 }
1144 
1145 static unsigned long memory_block_size_probed;
1146 unsigned long memory_block_size_bytes(void)
1147 {
1148 	if (!memory_block_size_probed)
1149 		memory_block_size_probed = probe_memory_block_size();
1150 
1151 	return memory_block_size_probed;
1152 }
1153 
1154 #ifdef CONFIG_SPARSEMEM_VMEMMAP
1155 /*
1156  * Initialise the sparsemem vmemmap using huge-pages at the PMD level.
1157  */
1158 static long __meminitdata addr_start, addr_end;
1159 static void __meminitdata *p_start, *p_end;
1160 static int __meminitdata node_start;
1161 
1162 static int __meminit vmemmap_populate_hugepages(unsigned long start,
1163 		unsigned long end, int node, struct vmem_altmap *altmap)
1164 {
1165 	unsigned long addr;
1166 	unsigned long next;
1167 	pgd_t *pgd;
1168 	pud_t *pud;
1169 	pmd_t *pmd;
1170 
1171 	for (addr = start; addr < end; addr = next) {
1172 		next = pmd_addr_end(addr, end);
1173 
1174 		pgd = vmemmap_pgd_populate(addr, node);
1175 		if (!pgd)
1176 			return -ENOMEM;
1177 
1178 		pud = vmemmap_pud_populate(pgd, addr, node);
1179 		if (!pud)
1180 			return -ENOMEM;
1181 
1182 		pmd = pmd_offset(pud, addr);
1183 		if (pmd_none(*pmd)) {
1184 			void *p;
1185 
1186 			p = __vmemmap_alloc_block_buf(PMD_SIZE, node, altmap);
1187 			if (p) {
1188 				pte_t entry;
1189 
1190 				entry = pfn_pte(__pa(p) >> PAGE_SHIFT,
1191 						PAGE_KERNEL_LARGE);
1192 				set_pmd(pmd, __pmd(pte_val(entry)));
1193 
1194 				/* check to see if we have contiguous blocks */
1195 				if (p_end != p || node_start != node) {
1196 					if (p_start)
1197 						pr_debug(" [%lx-%lx] PMD -> [%p-%p] on node %d\n",
1198 						       addr_start, addr_end-1, p_start, p_end-1, node_start);
1199 					addr_start = addr;
1200 					node_start = node;
1201 					p_start = p;
1202 				}
1203 
1204 				addr_end = addr + PMD_SIZE;
1205 				p_end = p + PMD_SIZE;
1206 				continue;
1207 			} else if (altmap)
1208 				return -ENOMEM; /* no fallback */
1209 		} else if (pmd_large(*pmd)) {
1210 			vmemmap_verify((pte_t *)pmd, node, addr, next);
1211 			continue;
1212 		}
1213 		pr_warn_once("vmemmap: falling back to regular page backing\n");
1214 		if (vmemmap_populate_basepages(addr, next, node))
1215 			return -ENOMEM;
1216 	}
1217 	return 0;
1218 }
1219 
1220 int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node)
1221 {
1222 	struct vmem_altmap *altmap = to_vmem_altmap(start);
1223 	int err;
1224 
1225 	if (boot_cpu_has(X86_FEATURE_PSE))
1226 		err = vmemmap_populate_hugepages(start, end, node, altmap);
1227 	else if (altmap) {
1228 		pr_err_once("%s: no cpu support for altmap allocations\n",
1229 				__func__);
1230 		err = -ENOMEM;
1231 	} else
1232 		err = vmemmap_populate_basepages(start, end, node);
1233 	if (!err)
1234 		sync_global_pgds(start, end - 1, 0);
1235 	return err;
1236 }
1237 
1238 #if defined(CONFIG_MEMORY_HOTPLUG_SPARSE) && defined(CONFIG_HAVE_BOOTMEM_INFO_NODE)
1239 void register_page_bootmem_memmap(unsigned long section_nr,
1240 				  struct page *start_page, unsigned long size)
1241 {
1242 	unsigned long addr = (unsigned long)start_page;
1243 	unsigned long end = (unsigned long)(start_page + size);
1244 	unsigned long next;
1245 	pgd_t *pgd;
1246 	pud_t *pud;
1247 	pmd_t *pmd;
1248 	unsigned int nr_pages;
1249 	struct page *page;
1250 
1251 	for (; addr < end; addr = next) {
1252 		pte_t *pte = NULL;
1253 
1254 		pgd = pgd_offset_k(addr);
1255 		if (pgd_none(*pgd)) {
1256 			next = (addr + PAGE_SIZE) & PAGE_MASK;
1257 			continue;
1258 		}
1259 		get_page_bootmem(section_nr, pgd_page(*pgd), MIX_SECTION_INFO);
1260 
1261 		pud = pud_offset(pgd, addr);
1262 		if (pud_none(*pud)) {
1263 			next = (addr + PAGE_SIZE) & PAGE_MASK;
1264 			continue;
1265 		}
1266 		get_page_bootmem(section_nr, pud_page(*pud), MIX_SECTION_INFO);
1267 
1268 		if (!boot_cpu_has(X86_FEATURE_PSE)) {
1269 			next = (addr + PAGE_SIZE) & PAGE_MASK;
1270 			pmd = pmd_offset(pud, addr);
1271 			if (pmd_none(*pmd))
1272 				continue;
1273 			get_page_bootmem(section_nr, pmd_page(*pmd),
1274 					 MIX_SECTION_INFO);
1275 
1276 			pte = pte_offset_kernel(pmd, addr);
1277 			if (pte_none(*pte))
1278 				continue;
1279 			get_page_bootmem(section_nr, pte_page(*pte),
1280 					 SECTION_INFO);
1281 		} else {
1282 			next = pmd_addr_end(addr, end);
1283 
1284 			pmd = pmd_offset(pud, addr);
1285 			if (pmd_none(*pmd))
1286 				continue;
1287 
1288 			nr_pages = 1 << (get_order(PMD_SIZE));
1289 			page = pmd_page(*pmd);
1290 			while (nr_pages--)
1291 				get_page_bootmem(section_nr, page++,
1292 						 SECTION_INFO);
1293 		}
1294 	}
1295 }
1296 #endif
1297 
1298 void __meminit vmemmap_populate_print_last(void)
1299 {
1300 	if (p_start) {
1301 		pr_debug(" [%lx-%lx] PMD -> [%p-%p] on node %d\n",
1302 			addr_start, addr_end-1, p_start, p_end-1, node_start);
1303 		p_start = NULL;
1304 		p_end = NULL;
1305 		node_start = 0;
1306 	}
1307 }
1308 #endif
1309