xref: /linux/arch/x86/mm/init_64.c (revision c953efdbb1b4f6804a476329a2df8bdab3a76019)
1 /*
2  *  linux/arch/x86_64/mm/init.c
3  *
4  *  Copyright (C) 1995  Linus Torvalds
5  *  Copyright (C) 2000  Pavel Machek <pavel@ucw.cz>
6  *  Copyright (C) 2002,2003 Andi Kleen <ak@suse.de>
7  */
8 
9 #include <linux/signal.h>
10 #include <linux/sched.h>
11 #include <linux/kernel.h>
12 #include <linux/errno.h>
13 #include <linux/string.h>
14 #include <linux/types.h>
15 #include <linux/ptrace.h>
16 #include <linux/mman.h>
17 #include <linux/mm.h>
18 #include <linux/swap.h>
19 #include <linux/smp.h>
20 #include <linux/init.h>
21 #include <linux/initrd.h>
22 #include <linux/pagemap.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/proc_fs.h>
26 #include <linux/pci.h>
27 #include <linux/pfn.h>
28 #include <linux/poison.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/module.h>
31 #include <linux/memory.h>
32 #include <linux/memory_hotplug.h>
33 #include <linux/nmi.h>
34 #include <linux/gfp.h>
35 
36 #include <asm/processor.h>
37 #include <asm/bios_ebda.h>
38 #include <asm/system.h>
39 #include <asm/uaccess.h>
40 #include <asm/pgtable.h>
41 #include <asm/pgalloc.h>
42 #include <asm/dma.h>
43 #include <asm/fixmap.h>
44 #include <asm/e820.h>
45 #include <asm/apic.h>
46 #include <asm/tlb.h>
47 #include <asm/mmu_context.h>
48 #include <asm/proto.h>
49 #include <asm/smp.h>
50 #include <asm/sections.h>
51 #include <asm/kdebug.h>
52 #include <asm/numa.h>
53 #include <asm/cacheflush.h>
54 #include <asm/init.h>
55 #include <asm/uv/uv.h>
56 #include <asm/setup.h>
57 
58 static int __init parse_direct_gbpages_off(char *arg)
59 {
60 	direct_gbpages = 0;
61 	return 0;
62 }
63 early_param("nogbpages", parse_direct_gbpages_off);
64 
65 static int __init parse_direct_gbpages_on(char *arg)
66 {
67 	direct_gbpages = 1;
68 	return 0;
69 }
70 early_param("gbpages", parse_direct_gbpages_on);
71 
72 /*
73  * NOTE: pagetable_init alloc all the fixmap pagetables contiguous on the
74  * physical space so we can cache the place of the first one and move
75  * around without checking the pgd every time.
76  */
77 
78 pteval_t __supported_pte_mask __read_mostly = ~_PAGE_IOMAP;
79 EXPORT_SYMBOL_GPL(__supported_pte_mask);
80 
81 int force_personality32;
82 
83 /*
84  * noexec32=on|off
85  * Control non executable heap for 32bit processes.
86  * To control the stack too use noexec=off
87  *
88  * on	PROT_READ does not imply PROT_EXEC for 32-bit processes (default)
89  * off	PROT_READ implies PROT_EXEC
90  */
91 static int __init nonx32_setup(char *str)
92 {
93 	if (!strcmp(str, "on"))
94 		force_personality32 &= ~READ_IMPLIES_EXEC;
95 	else if (!strcmp(str, "off"))
96 		force_personality32 |= READ_IMPLIES_EXEC;
97 	return 1;
98 }
99 __setup("noexec32=", nonx32_setup);
100 
101 /*
102  * When memory was added/removed make sure all the processes MM have
103  * suitable PGD entries in the local PGD level page.
104  */
105 void sync_global_pgds(unsigned long start, unsigned long end)
106 {
107 	unsigned long address;
108 
109 	for (address = start; address <= end; address += PGDIR_SIZE) {
110 		const pgd_t *pgd_ref = pgd_offset_k(address);
111 		struct page *page;
112 
113 		if (pgd_none(*pgd_ref))
114 			continue;
115 
116 		spin_lock(&pgd_lock);
117 		list_for_each_entry(page, &pgd_list, lru) {
118 			pgd_t *pgd;
119 			spinlock_t *pgt_lock;
120 
121 			pgd = (pgd_t *)page_address(page) + pgd_index(address);
122 			/* the pgt_lock only for Xen */
123 			pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
124 			spin_lock(pgt_lock);
125 
126 			if (pgd_none(*pgd))
127 				set_pgd(pgd, *pgd_ref);
128 			else
129 				BUG_ON(pgd_page_vaddr(*pgd)
130 				       != pgd_page_vaddr(*pgd_ref));
131 
132 			spin_unlock(pgt_lock);
133 		}
134 		spin_unlock(&pgd_lock);
135 	}
136 }
137 
138 /*
139  * NOTE: This function is marked __ref because it calls __init function
140  * (alloc_bootmem_pages). It's safe to do it ONLY when after_bootmem == 0.
141  */
142 static __ref void *spp_getpage(void)
143 {
144 	void *ptr;
145 
146 	if (after_bootmem)
147 		ptr = (void *) get_zeroed_page(GFP_ATOMIC | __GFP_NOTRACK);
148 	else
149 		ptr = alloc_bootmem_pages(PAGE_SIZE);
150 
151 	if (!ptr || ((unsigned long)ptr & ~PAGE_MASK)) {
152 		panic("set_pte_phys: cannot allocate page data %s\n",
153 			after_bootmem ? "after bootmem" : "");
154 	}
155 
156 	pr_debug("spp_getpage %p\n", ptr);
157 
158 	return ptr;
159 }
160 
161 static pud_t *fill_pud(pgd_t *pgd, unsigned long vaddr)
162 {
163 	if (pgd_none(*pgd)) {
164 		pud_t *pud = (pud_t *)spp_getpage();
165 		pgd_populate(&init_mm, pgd, pud);
166 		if (pud != pud_offset(pgd, 0))
167 			printk(KERN_ERR "PAGETABLE BUG #00! %p <-> %p\n",
168 			       pud, pud_offset(pgd, 0));
169 	}
170 	return pud_offset(pgd, vaddr);
171 }
172 
173 static pmd_t *fill_pmd(pud_t *pud, unsigned long vaddr)
174 {
175 	if (pud_none(*pud)) {
176 		pmd_t *pmd = (pmd_t *) spp_getpage();
177 		pud_populate(&init_mm, pud, pmd);
178 		if (pmd != pmd_offset(pud, 0))
179 			printk(KERN_ERR "PAGETABLE BUG #01! %p <-> %p\n",
180 			       pmd, pmd_offset(pud, 0));
181 	}
182 	return pmd_offset(pud, vaddr);
183 }
184 
185 static pte_t *fill_pte(pmd_t *pmd, unsigned long vaddr)
186 {
187 	if (pmd_none(*pmd)) {
188 		pte_t *pte = (pte_t *) spp_getpage();
189 		pmd_populate_kernel(&init_mm, pmd, pte);
190 		if (pte != pte_offset_kernel(pmd, 0))
191 			printk(KERN_ERR "PAGETABLE BUG #02!\n");
192 	}
193 	return pte_offset_kernel(pmd, vaddr);
194 }
195 
196 void set_pte_vaddr_pud(pud_t *pud_page, unsigned long vaddr, pte_t new_pte)
197 {
198 	pud_t *pud;
199 	pmd_t *pmd;
200 	pte_t *pte;
201 
202 	pud = pud_page + pud_index(vaddr);
203 	pmd = fill_pmd(pud, vaddr);
204 	pte = fill_pte(pmd, vaddr);
205 
206 	set_pte(pte, new_pte);
207 
208 	/*
209 	 * It's enough to flush this one mapping.
210 	 * (PGE mappings get flushed as well)
211 	 */
212 	__flush_tlb_one(vaddr);
213 }
214 
215 void set_pte_vaddr(unsigned long vaddr, pte_t pteval)
216 {
217 	pgd_t *pgd;
218 	pud_t *pud_page;
219 
220 	pr_debug("set_pte_vaddr %lx to %lx\n", vaddr, native_pte_val(pteval));
221 
222 	pgd = pgd_offset_k(vaddr);
223 	if (pgd_none(*pgd)) {
224 		printk(KERN_ERR
225 			"PGD FIXMAP MISSING, it should be setup in head.S!\n");
226 		return;
227 	}
228 	pud_page = (pud_t*)pgd_page_vaddr(*pgd);
229 	set_pte_vaddr_pud(pud_page, vaddr, pteval);
230 }
231 
232 pmd_t * __init populate_extra_pmd(unsigned long vaddr)
233 {
234 	pgd_t *pgd;
235 	pud_t *pud;
236 
237 	pgd = pgd_offset_k(vaddr);
238 	pud = fill_pud(pgd, vaddr);
239 	return fill_pmd(pud, vaddr);
240 }
241 
242 pte_t * __init populate_extra_pte(unsigned long vaddr)
243 {
244 	pmd_t *pmd;
245 
246 	pmd = populate_extra_pmd(vaddr);
247 	return fill_pte(pmd, vaddr);
248 }
249 
250 /*
251  * Create large page table mappings for a range of physical addresses.
252  */
253 static void __init __init_extra_mapping(unsigned long phys, unsigned long size,
254 						pgprot_t prot)
255 {
256 	pgd_t *pgd;
257 	pud_t *pud;
258 	pmd_t *pmd;
259 
260 	BUG_ON((phys & ~PMD_MASK) || (size & ~PMD_MASK));
261 	for (; size; phys += PMD_SIZE, size -= PMD_SIZE) {
262 		pgd = pgd_offset_k((unsigned long)__va(phys));
263 		if (pgd_none(*pgd)) {
264 			pud = (pud_t *) spp_getpage();
265 			set_pgd(pgd, __pgd(__pa(pud) | _KERNPG_TABLE |
266 						_PAGE_USER));
267 		}
268 		pud = pud_offset(pgd, (unsigned long)__va(phys));
269 		if (pud_none(*pud)) {
270 			pmd = (pmd_t *) spp_getpage();
271 			set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE |
272 						_PAGE_USER));
273 		}
274 		pmd = pmd_offset(pud, phys);
275 		BUG_ON(!pmd_none(*pmd));
276 		set_pmd(pmd, __pmd(phys | pgprot_val(prot)));
277 	}
278 }
279 
280 void __init init_extra_mapping_wb(unsigned long phys, unsigned long size)
281 {
282 	__init_extra_mapping(phys, size, PAGE_KERNEL_LARGE);
283 }
284 
285 void __init init_extra_mapping_uc(unsigned long phys, unsigned long size)
286 {
287 	__init_extra_mapping(phys, size, PAGE_KERNEL_LARGE_NOCACHE);
288 }
289 
290 /*
291  * The head.S code sets up the kernel high mapping:
292  *
293  *   from __START_KERNEL_map to __START_KERNEL_map + size (== _end-_text)
294  *
295  * phys_addr holds the negative offset to the kernel, which is added
296  * to the compile time generated pmds. This results in invalid pmds up
297  * to the point where we hit the physaddr 0 mapping.
298  *
299  * We limit the mappings to the region from _text to _brk_end.  _brk_end
300  * is rounded up to the 2MB boundary. This catches the invalid pmds as
301  * well, as they are located before _text:
302  */
303 void __init cleanup_highmap(void)
304 {
305 	unsigned long vaddr = __START_KERNEL_map;
306 	unsigned long vaddr_end = __START_KERNEL_map + (max_pfn_mapped << PAGE_SHIFT);
307 	unsigned long end = roundup((unsigned long)_brk_end, PMD_SIZE) - 1;
308 	pmd_t *pmd = level2_kernel_pgt;
309 
310 	for (; vaddr + PMD_SIZE - 1 < vaddr_end; pmd++, vaddr += PMD_SIZE) {
311 		if (pmd_none(*pmd))
312 			continue;
313 		if (vaddr < (unsigned long) _text || vaddr > end)
314 			set_pmd(pmd, __pmd(0));
315 	}
316 }
317 
318 static __ref void *alloc_low_page(unsigned long *phys)
319 {
320 	unsigned long pfn = pgt_buf_end++;
321 	void *adr;
322 
323 	if (after_bootmem) {
324 		adr = (void *)get_zeroed_page(GFP_ATOMIC | __GFP_NOTRACK);
325 		*phys = __pa(adr);
326 
327 		return adr;
328 	}
329 
330 	if (pfn >= pgt_buf_top)
331 		panic("alloc_low_page: ran out of memory");
332 
333 	adr = early_memremap(pfn * PAGE_SIZE, PAGE_SIZE);
334 	clear_page(adr);
335 	*phys  = pfn * PAGE_SIZE;
336 	return adr;
337 }
338 
339 static __ref void *map_low_page(void *virt)
340 {
341 	void *adr;
342 	unsigned long phys, left;
343 
344 	if (after_bootmem)
345 		return virt;
346 
347 	phys = __pa(virt);
348 	left = phys & (PAGE_SIZE - 1);
349 	adr = early_memremap(phys & PAGE_MASK, PAGE_SIZE);
350 	adr = (void *)(((unsigned long)adr) | left);
351 
352 	return adr;
353 }
354 
355 static __ref void unmap_low_page(void *adr)
356 {
357 	if (after_bootmem)
358 		return;
359 
360 	early_iounmap((void *)((unsigned long)adr & PAGE_MASK), PAGE_SIZE);
361 }
362 
363 static unsigned long __meminit
364 phys_pte_init(pte_t *pte_page, unsigned long addr, unsigned long end,
365 	      pgprot_t prot)
366 {
367 	unsigned pages = 0;
368 	unsigned long last_map_addr = end;
369 	int i;
370 
371 	pte_t *pte = pte_page + pte_index(addr);
372 
373 	for(i = pte_index(addr); i < PTRS_PER_PTE; i++, addr += PAGE_SIZE, pte++) {
374 
375 		if (addr >= end) {
376 			if (!after_bootmem) {
377 				for(; i < PTRS_PER_PTE; i++, pte++)
378 					set_pte(pte, __pte(0));
379 			}
380 			break;
381 		}
382 
383 		/*
384 		 * We will re-use the existing mapping.
385 		 * Xen for example has some special requirements, like mapping
386 		 * pagetable pages as RO. So assume someone who pre-setup
387 		 * these mappings are more intelligent.
388 		 */
389 		if (pte_val(*pte)) {
390 			pages++;
391 			continue;
392 		}
393 
394 		if (0)
395 			printk("   pte=%p addr=%lx pte=%016lx\n",
396 			       pte, addr, pfn_pte(addr >> PAGE_SHIFT, PAGE_KERNEL).pte);
397 		pages++;
398 		set_pte(pte, pfn_pte(addr >> PAGE_SHIFT, prot));
399 		last_map_addr = (addr & PAGE_MASK) + PAGE_SIZE;
400 	}
401 
402 	update_page_count(PG_LEVEL_4K, pages);
403 
404 	return last_map_addr;
405 }
406 
407 static unsigned long __meminit
408 phys_pmd_init(pmd_t *pmd_page, unsigned long address, unsigned long end,
409 	      unsigned long page_size_mask, pgprot_t prot)
410 {
411 	unsigned long pages = 0;
412 	unsigned long last_map_addr = end;
413 
414 	int i = pmd_index(address);
415 
416 	for (; i < PTRS_PER_PMD; i++, address += PMD_SIZE) {
417 		unsigned long pte_phys;
418 		pmd_t *pmd = pmd_page + pmd_index(address);
419 		pte_t *pte;
420 		pgprot_t new_prot = prot;
421 
422 		if (address >= end) {
423 			if (!after_bootmem) {
424 				for (; i < PTRS_PER_PMD; i++, pmd++)
425 					set_pmd(pmd, __pmd(0));
426 			}
427 			break;
428 		}
429 
430 		if (pmd_val(*pmd)) {
431 			if (!pmd_large(*pmd)) {
432 				spin_lock(&init_mm.page_table_lock);
433 				pte = map_low_page((pte_t *)pmd_page_vaddr(*pmd));
434 				last_map_addr = phys_pte_init(pte, address,
435 								end, prot);
436 				unmap_low_page(pte);
437 				spin_unlock(&init_mm.page_table_lock);
438 				continue;
439 			}
440 			/*
441 			 * If we are ok with PG_LEVEL_2M mapping, then we will
442 			 * use the existing mapping,
443 			 *
444 			 * Otherwise, we will split the large page mapping but
445 			 * use the same existing protection bits except for
446 			 * large page, so that we don't violate Intel's TLB
447 			 * Application note (317080) which says, while changing
448 			 * the page sizes, new and old translations should
449 			 * not differ with respect to page frame and
450 			 * attributes.
451 			 */
452 			if (page_size_mask & (1 << PG_LEVEL_2M)) {
453 				pages++;
454 				continue;
455 			}
456 			new_prot = pte_pgprot(pte_clrhuge(*(pte_t *)pmd));
457 		}
458 
459 		if (page_size_mask & (1<<PG_LEVEL_2M)) {
460 			pages++;
461 			spin_lock(&init_mm.page_table_lock);
462 			set_pte((pte_t *)pmd,
463 				pfn_pte(address >> PAGE_SHIFT,
464 					__pgprot(pgprot_val(prot) | _PAGE_PSE)));
465 			spin_unlock(&init_mm.page_table_lock);
466 			last_map_addr = (address & PMD_MASK) + PMD_SIZE;
467 			continue;
468 		}
469 
470 		pte = alloc_low_page(&pte_phys);
471 		last_map_addr = phys_pte_init(pte, address, end, new_prot);
472 		unmap_low_page(pte);
473 
474 		spin_lock(&init_mm.page_table_lock);
475 		pmd_populate_kernel(&init_mm, pmd, __va(pte_phys));
476 		spin_unlock(&init_mm.page_table_lock);
477 	}
478 	update_page_count(PG_LEVEL_2M, pages);
479 	return last_map_addr;
480 }
481 
482 static unsigned long __meminit
483 phys_pud_init(pud_t *pud_page, unsigned long addr, unsigned long end,
484 			 unsigned long page_size_mask)
485 {
486 	unsigned long pages = 0;
487 	unsigned long last_map_addr = end;
488 	int i = pud_index(addr);
489 
490 	for (; i < PTRS_PER_PUD; i++, addr = (addr & PUD_MASK) + PUD_SIZE) {
491 		unsigned long pmd_phys;
492 		pud_t *pud = pud_page + pud_index(addr);
493 		pmd_t *pmd;
494 		pgprot_t prot = PAGE_KERNEL;
495 
496 		if (addr >= end)
497 			break;
498 
499 		if (!after_bootmem &&
500 				!e820_any_mapped(addr, addr+PUD_SIZE, 0)) {
501 			set_pud(pud, __pud(0));
502 			continue;
503 		}
504 
505 		if (pud_val(*pud)) {
506 			if (!pud_large(*pud)) {
507 				pmd = map_low_page(pmd_offset(pud, 0));
508 				last_map_addr = phys_pmd_init(pmd, addr, end,
509 							 page_size_mask, prot);
510 				unmap_low_page(pmd);
511 				__flush_tlb_all();
512 				continue;
513 			}
514 			/*
515 			 * If we are ok with PG_LEVEL_1G mapping, then we will
516 			 * use the existing mapping.
517 			 *
518 			 * Otherwise, we will split the gbpage mapping but use
519 			 * the same existing protection  bits except for large
520 			 * page, so that we don't violate Intel's TLB
521 			 * Application note (317080) which says, while changing
522 			 * the page sizes, new and old translations should
523 			 * not differ with respect to page frame and
524 			 * attributes.
525 			 */
526 			if (page_size_mask & (1 << PG_LEVEL_1G)) {
527 				pages++;
528 				continue;
529 			}
530 			prot = pte_pgprot(pte_clrhuge(*(pte_t *)pud));
531 		}
532 
533 		if (page_size_mask & (1<<PG_LEVEL_1G)) {
534 			pages++;
535 			spin_lock(&init_mm.page_table_lock);
536 			set_pte((pte_t *)pud,
537 				pfn_pte(addr >> PAGE_SHIFT, PAGE_KERNEL_LARGE));
538 			spin_unlock(&init_mm.page_table_lock);
539 			last_map_addr = (addr & PUD_MASK) + PUD_SIZE;
540 			continue;
541 		}
542 
543 		pmd = alloc_low_page(&pmd_phys);
544 		last_map_addr = phys_pmd_init(pmd, addr, end, page_size_mask,
545 					      prot);
546 		unmap_low_page(pmd);
547 
548 		spin_lock(&init_mm.page_table_lock);
549 		pud_populate(&init_mm, pud, __va(pmd_phys));
550 		spin_unlock(&init_mm.page_table_lock);
551 	}
552 	__flush_tlb_all();
553 
554 	update_page_count(PG_LEVEL_1G, pages);
555 
556 	return last_map_addr;
557 }
558 
559 unsigned long __meminit
560 kernel_physical_mapping_init(unsigned long start,
561 			     unsigned long end,
562 			     unsigned long page_size_mask)
563 {
564 	bool pgd_changed = false;
565 	unsigned long next, last_map_addr = end;
566 	unsigned long addr;
567 
568 	start = (unsigned long)__va(start);
569 	end = (unsigned long)__va(end);
570 	addr = start;
571 
572 	for (; start < end; start = next) {
573 		pgd_t *pgd = pgd_offset_k(start);
574 		unsigned long pud_phys;
575 		pud_t *pud;
576 
577 		next = (start + PGDIR_SIZE) & PGDIR_MASK;
578 		if (next > end)
579 			next = end;
580 
581 		if (pgd_val(*pgd)) {
582 			pud = map_low_page((pud_t *)pgd_page_vaddr(*pgd));
583 			last_map_addr = phys_pud_init(pud, __pa(start),
584 						 __pa(end), page_size_mask);
585 			unmap_low_page(pud);
586 			continue;
587 		}
588 
589 		pud = alloc_low_page(&pud_phys);
590 		last_map_addr = phys_pud_init(pud, __pa(start), __pa(next),
591 						 page_size_mask);
592 		unmap_low_page(pud);
593 
594 		spin_lock(&init_mm.page_table_lock);
595 		pgd_populate(&init_mm, pgd, __va(pud_phys));
596 		spin_unlock(&init_mm.page_table_lock);
597 		pgd_changed = true;
598 	}
599 
600 	if (pgd_changed)
601 		sync_global_pgds(addr, end);
602 
603 	__flush_tlb_all();
604 
605 	return last_map_addr;
606 }
607 
608 #ifndef CONFIG_NUMA
609 void __init initmem_init(void)
610 {
611 	memblock_set_node(0, (phys_addr_t)ULLONG_MAX, 0);
612 }
613 #endif
614 
615 void __init paging_init(void)
616 {
617 	sparse_memory_present_with_active_regions(MAX_NUMNODES);
618 	sparse_init();
619 
620 	/*
621 	 * clear the default setting with node 0
622 	 * note: don't use nodes_clear here, that is really clearing when
623 	 *	 numa support is not compiled in, and later node_set_state
624 	 *	 will not set it back.
625 	 */
626 	node_clear_state(0, N_NORMAL_MEMORY);
627 
628 	zone_sizes_init();
629 }
630 
631 /*
632  * Memory hotplug specific functions
633  */
634 #ifdef CONFIG_MEMORY_HOTPLUG
635 /*
636  * After memory hotplug the variables max_pfn, max_low_pfn and high_memory need
637  * updating.
638  */
639 static void  update_end_of_memory_vars(u64 start, u64 size)
640 {
641 	unsigned long end_pfn = PFN_UP(start + size);
642 
643 	if (end_pfn > max_pfn) {
644 		max_pfn = end_pfn;
645 		max_low_pfn = end_pfn;
646 		high_memory = (void *)__va(max_pfn * PAGE_SIZE - 1) + 1;
647 	}
648 }
649 
650 /*
651  * Memory is added always to NORMAL zone. This means you will never get
652  * additional DMA/DMA32 memory.
653  */
654 int arch_add_memory(int nid, u64 start, u64 size)
655 {
656 	struct pglist_data *pgdat = NODE_DATA(nid);
657 	struct zone *zone = pgdat->node_zones + ZONE_NORMAL;
658 	unsigned long last_mapped_pfn, start_pfn = start >> PAGE_SHIFT;
659 	unsigned long nr_pages = size >> PAGE_SHIFT;
660 	int ret;
661 
662 	last_mapped_pfn = init_memory_mapping(start, start + size);
663 	if (last_mapped_pfn > max_pfn_mapped)
664 		max_pfn_mapped = last_mapped_pfn;
665 
666 	ret = __add_pages(nid, zone, start_pfn, nr_pages);
667 	WARN_ON_ONCE(ret);
668 
669 	/* update max_pfn, max_low_pfn and high_memory */
670 	update_end_of_memory_vars(start, size);
671 
672 	return ret;
673 }
674 EXPORT_SYMBOL_GPL(arch_add_memory);
675 
676 #endif /* CONFIG_MEMORY_HOTPLUG */
677 
678 static struct kcore_list kcore_vsyscall;
679 
680 void __init mem_init(void)
681 {
682 	long codesize, reservedpages, datasize, initsize;
683 	unsigned long absent_pages;
684 
685 	pci_iommu_alloc();
686 
687 	/* clear_bss() already clear the empty_zero_page */
688 
689 	reservedpages = 0;
690 
691 	/* this will put all low memory onto the freelists */
692 #ifdef CONFIG_NUMA
693 	totalram_pages = numa_free_all_bootmem();
694 #else
695 	totalram_pages = free_all_bootmem();
696 #endif
697 
698 	absent_pages = absent_pages_in_range(0, max_pfn);
699 	reservedpages = max_pfn - totalram_pages - absent_pages;
700 	after_bootmem = 1;
701 
702 	codesize =  (unsigned long) &_etext - (unsigned long) &_text;
703 	datasize =  (unsigned long) &_edata - (unsigned long) &_etext;
704 	initsize =  (unsigned long) &__init_end - (unsigned long) &__init_begin;
705 
706 	/* Register memory areas for /proc/kcore */
707 	kclist_add(&kcore_vsyscall, (void *)VSYSCALL_START,
708 			 VSYSCALL_END - VSYSCALL_START, KCORE_OTHER);
709 
710 	printk(KERN_INFO "Memory: %luk/%luk available (%ldk kernel code, "
711 			 "%ldk absent, %ldk reserved, %ldk data, %ldk init)\n",
712 		nr_free_pages() << (PAGE_SHIFT-10),
713 		max_pfn << (PAGE_SHIFT-10),
714 		codesize >> 10,
715 		absent_pages << (PAGE_SHIFT-10),
716 		reservedpages << (PAGE_SHIFT-10),
717 		datasize >> 10,
718 		initsize >> 10);
719 }
720 
721 #ifdef CONFIG_DEBUG_RODATA
722 const int rodata_test_data = 0xC3;
723 EXPORT_SYMBOL_GPL(rodata_test_data);
724 
725 int kernel_set_to_readonly;
726 
727 void set_kernel_text_rw(void)
728 {
729 	unsigned long start = PFN_ALIGN(_text);
730 	unsigned long end = PFN_ALIGN(__stop___ex_table);
731 
732 	if (!kernel_set_to_readonly)
733 		return;
734 
735 	pr_debug("Set kernel text: %lx - %lx for read write\n",
736 		 start, end);
737 
738 	/*
739 	 * Make the kernel identity mapping for text RW. Kernel text
740 	 * mapping will always be RO. Refer to the comment in
741 	 * static_protections() in pageattr.c
742 	 */
743 	set_memory_rw(start, (end - start) >> PAGE_SHIFT);
744 }
745 
746 void set_kernel_text_ro(void)
747 {
748 	unsigned long start = PFN_ALIGN(_text);
749 	unsigned long end = PFN_ALIGN(__stop___ex_table);
750 
751 	if (!kernel_set_to_readonly)
752 		return;
753 
754 	pr_debug("Set kernel text: %lx - %lx for read only\n",
755 		 start, end);
756 
757 	/*
758 	 * Set the kernel identity mapping for text RO.
759 	 */
760 	set_memory_ro(start, (end - start) >> PAGE_SHIFT);
761 }
762 
763 void mark_rodata_ro(void)
764 {
765 	unsigned long start = PFN_ALIGN(_text);
766 	unsigned long rodata_start =
767 		((unsigned long)__start_rodata + PAGE_SIZE - 1) & PAGE_MASK;
768 	unsigned long end = (unsigned long) &__end_rodata_hpage_align;
769 	unsigned long text_end = PAGE_ALIGN((unsigned long) &__stop___ex_table);
770 	unsigned long rodata_end = PAGE_ALIGN((unsigned long) &__end_rodata);
771 	unsigned long data_start = (unsigned long) &_sdata;
772 
773 	printk(KERN_INFO "Write protecting the kernel read-only data: %luk\n",
774 	       (end - start) >> 10);
775 	set_memory_ro(start, (end - start) >> PAGE_SHIFT);
776 
777 	kernel_set_to_readonly = 1;
778 
779 	/*
780 	 * The rodata section (but not the kernel text!) should also be
781 	 * not-executable.
782 	 */
783 	set_memory_nx(rodata_start, (end - rodata_start) >> PAGE_SHIFT);
784 
785 	rodata_test();
786 
787 #ifdef CONFIG_CPA_DEBUG
788 	printk(KERN_INFO "Testing CPA: undo %lx-%lx\n", start, end);
789 	set_memory_rw(start, (end-start) >> PAGE_SHIFT);
790 
791 	printk(KERN_INFO "Testing CPA: again\n");
792 	set_memory_ro(start, (end-start) >> PAGE_SHIFT);
793 #endif
794 
795 	free_init_pages("unused kernel memory",
796 			(unsigned long) page_address(virt_to_page(text_end)),
797 			(unsigned long)
798 				 page_address(virt_to_page(rodata_start)));
799 	free_init_pages("unused kernel memory",
800 			(unsigned long) page_address(virt_to_page(rodata_end)),
801 			(unsigned long) page_address(virt_to_page(data_start)));
802 }
803 
804 #endif
805 
806 int kern_addr_valid(unsigned long addr)
807 {
808 	unsigned long above = ((long)addr) >> __VIRTUAL_MASK_SHIFT;
809 	pgd_t *pgd;
810 	pud_t *pud;
811 	pmd_t *pmd;
812 	pte_t *pte;
813 
814 	if (above != 0 && above != -1UL)
815 		return 0;
816 
817 	pgd = pgd_offset_k(addr);
818 	if (pgd_none(*pgd))
819 		return 0;
820 
821 	pud = pud_offset(pgd, addr);
822 	if (pud_none(*pud))
823 		return 0;
824 
825 	pmd = pmd_offset(pud, addr);
826 	if (pmd_none(*pmd))
827 		return 0;
828 
829 	if (pmd_large(*pmd))
830 		return pfn_valid(pmd_pfn(*pmd));
831 
832 	pte = pte_offset_kernel(pmd, addr);
833 	if (pte_none(*pte))
834 		return 0;
835 
836 	return pfn_valid(pte_pfn(*pte));
837 }
838 
839 /*
840  * A pseudo VMA to allow ptrace access for the vsyscall page.  This only
841  * covers the 64bit vsyscall page now. 32bit has a real VMA now and does
842  * not need special handling anymore:
843  */
844 static struct vm_area_struct gate_vma = {
845 	.vm_start	= VSYSCALL_START,
846 	.vm_end		= VSYSCALL_START + (VSYSCALL_MAPPED_PAGES * PAGE_SIZE),
847 	.vm_page_prot	= PAGE_READONLY_EXEC,
848 	.vm_flags	= VM_READ | VM_EXEC
849 };
850 
851 struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
852 {
853 #ifdef CONFIG_IA32_EMULATION
854 	if (!mm || mm->context.ia32_compat)
855 		return NULL;
856 #endif
857 	return &gate_vma;
858 }
859 
860 int in_gate_area(struct mm_struct *mm, unsigned long addr)
861 {
862 	struct vm_area_struct *vma = get_gate_vma(mm);
863 
864 	if (!vma)
865 		return 0;
866 
867 	return (addr >= vma->vm_start) && (addr < vma->vm_end);
868 }
869 
870 /*
871  * Use this when you have no reliable mm, typically from interrupt
872  * context. It is less reliable than using a task's mm and may give
873  * false positives.
874  */
875 int in_gate_area_no_mm(unsigned long addr)
876 {
877 	return (addr >= VSYSCALL_START) && (addr < VSYSCALL_END);
878 }
879 
880 const char *arch_vma_name(struct vm_area_struct *vma)
881 {
882 	if (vma->vm_mm && vma->vm_start == (long)vma->vm_mm->context.vdso)
883 		return "[vdso]";
884 	if (vma == &gate_vma)
885 		return "[vsyscall]";
886 	return NULL;
887 }
888 
889 #ifdef CONFIG_X86_UV
890 unsigned long memory_block_size_bytes(void)
891 {
892 	if (is_uv_system()) {
893 		printk(KERN_INFO "UV: memory block size 2GB\n");
894 		return 2UL * 1024 * 1024 * 1024;
895 	}
896 	return MIN_MEMORY_BLOCK_SIZE;
897 }
898 #endif
899 
900 #ifdef CONFIG_SPARSEMEM_VMEMMAP
901 /*
902  * Initialise the sparsemem vmemmap using huge-pages at the PMD level.
903  */
904 static long __meminitdata addr_start, addr_end;
905 static void __meminitdata *p_start, *p_end;
906 static int __meminitdata node_start;
907 
908 int __meminit
909 vmemmap_populate(struct page *start_page, unsigned long size, int node)
910 {
911 	unsigned long addr = (unsigned long)start_page;
912 	unsigned long end = (unsigned long)(start_page + size);
913 	unsigned long next;
914 	pgd_t *pgd;
915 	pud_t *pud;
916 	pmd_t *pmd;
917 
918 	for (; addr < end; addr = next) {
919 		void *p = NULL;
920 
921 		pgd = vmemmap_pgd_populate(addr, node);
922 		if (!pgd)
923 			return -ENOMEM;
924 
925 		pud = vmemmap_pud_populate(pgd, addr, node);
926 		if (!pud)
927 			return -ENOMEM;
928 
929 		if (!cpu_has_pse) {
930 			next = (addr + PAGE_SIZE) & PAGE_MASK;
931 			pmd = vmemmap_pmd_populate(pud, addr, node);
932 
933 			if (!pmd)
934 				return -ENOMEM;
935 
936 			p = vmemmap_pte_populate(pmd, addr, node);
937 
938 			if (!p)
939 				return -ENOMEM;
940 
941 			addr_end = addr + PAGE_SIZE;
942 			p_end = p + PAGE_SIZE;
943 		} else {
944 			next = pmd_addr_end(addr, end);
945 
946 			pmd = pmd_offset(pud, addr);
947 			if (pmd_none(*pmd)) {
948 				pte_t entry;
949 
950 				p = vmemmap_alloc_block_buf(PMD_SIZE, node);
951 				if (!p)
952 					return -ENOMEM;
953 
954 				entry = pfn_pte(__pa(p) >> PAGE_SHIFT,
955 						PAGE_KERNEL_LARGE);
956 				set_pmd(pmd, __pmd(pte_val(entry)));
957 
958 				/* check to see if we have contiguous blocks */
959 				if (p_end != p || node_start != node) {
960 					if (p_start)
961 						printk(KERN_DEBUG " [%lx-%lx] PMD -> [%p-%p] on node %d\n",
962 						       addr_start, addr_end-1, p_start, p_end-1, node_start);
963 					addr_start = addr;
964 					node_start = node;
965 					p_start = p;
966 				}
967 
968 				addr_end = addr + PMD_SIZE;
969 				p_end = p + PMD_SIZE;
970 			} else
971 				vmemmap_verify((pte_t *)pmd, node, addr, next);
972 		}
973 
974 	}
975 	sync_global_pgds((unsigned long)start_page, end);
976 	return 0;
977 }
978 
979 void __meminit vmemmap_populate_print_last(void)
980 {
981 	if (p_start) {
982 		printk(KERN_DEBUG " [%lx-%lx] PMD -> [%p-%p] on node %d\n",
983 			addr_start, addr_end-1, p_start, p_end-1, node_start);
984 		p_start = NULL;
985 		p_end = NULL;
986 		node_start = 0;
987 	}
988 }
989 #endif
990