1 /* 2 * linux/arch/x86_64/mm/init.c 3 * 4 * Copyright (C) 1995 Linus Torvalds 5 * Copyright (C) 2000 Pavel Machek <pavel@ucw.cz> 6 * Copyright (C) 2002,2003 Andi Kleen <ak@suse.de> 7 */ 8 9 #include <linux/signal.h> 10 #include <linux/sched.h> 11 #include <linux/kernel.h> 12 #include <linux/errno.h> 13 #include <linux/string.h> 14 #include <linux/types.h> 15 #include <linux/ptrace.h> 16 #include <linux/mman.h> 17 #include <linux/mm.h> 18 #include <linux/swap.h> 19 #include <linux/smp.h> 20 #include <linux/init.h> 21 #include <linux/initrd.h> 22 #include <linux/pagemap.h> 23 #include <linux/bootmem.h> 24 #include <linux/memblock.h> 25 #include <linux/proc_fs.h> 26 #include <linux/pci.h> 27 #include <linux/pfn.h> 28 #include <linux/poison.h> 29 #include <linux/dma-mapping.h> 30 #include <linux/module.h> 31 #include <linux/memory.h> 32 #include <linux/memory_hotplug.h> 33 #include <linux/nmi.h> 34 #include <linux/gfp.h> 35 #include <linux/kcore.h> 36 37 #include <asm/processor.h> 38 #include <asm/bios_ebda.h> 39 #include <asm/uaccess.h> 40 #include <asm/pgtable.h> 41 #include <asm/pgalloc.h> 42 #include <asm/dma.h> 43 #include <asm/fixmap.h> 44 #include <asm/e820.h> 45 #include <asm/apic.h> 46 #include <asm/tlb.h> 47 #include <asm/mmu_context.h> 48 #include <asm/proto.h> 49 #include <asm/smp.h> 50 #include <asm/sections.h> 51 #include <asm/kdebug.h> 52 #include <asm/numa.h> 53 #include <asm/cacheflush.h> 54 #include <asm/init.h> 55 #include <asm/setup.h> 56 57 #include "mm_internal.h" 58 59 static void ident_pmd_init(unsigned long pmd_flag, pmd_t *pmd_page, 60 unsigned long addr, unsigned long end) 61 { 62 addr &= PMD_MASK; 63 for (; addr < end; addr += PMD_SIZE) { 64 pmd_t *pmd = pmd_page + pmd_index(addr); 65 66 if (!pmd_present(*pmd)) 67 set_pmd(pmd, __pmd(addr | pmd_flag)); 68 } 69 } 70 static int ident_pud_init(struct x86_mapping_info *info, pud_t *pud_page, 71 unsigned long addr, unsigned long end) 72 { 73 unsigned long next; 74 75 for (; addr < end; addr = next) { 76 pud_t *pud = pud_page + pud_index(addr); 77 pmd_t *pmd; 78 79 next = (addr & PUD_MASK) + PUD_SIZE; 80 if (next > end) 81 next = end; 82 83 if (pud_present(*pud)) { 84 pmd = pmd_offset(pud, 0); 85 ident_pmd_init(info->pmd_flag, pmd, addr, next); 86 continue; 87 } 88 pmd = (pmd_t *)info->alloc_pgt_page(info->context); 89 if (!pmd) 90 return -ENOMEM; 91 ident_pmd_init(info->pmd_flag, pmd, addr, next); 92 set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE)); 93 } 94 95 return 0; 96 } 97 98 int kernel_ident_mapping_init(struct x86_mapping_info *info, pgd_t *pgd_page, 99 unsigned long addr, unsigned long end) 100 { 101 unsigned long next; 102 int result; 103 int off = info->kernel_mapping ? pgd_index(__PAGE_OFFSET) : 0; 104 105 for (; addr < end; addr = next) { 106 pgd_t *pgd = pgd_page + pgd_index(addr) + off; 107 pud_t *pud; 108 109 next = (addr & PGDIR_MASK) + PGDIR_SIZE; 110 if (next > end) 111 next = end; 112 113 if (pgd_present(*pgd)) { 114 pud = pud_offset(pgd, 0); 115 result = ident_pud_init(info, pud, addr, next); 116 if (result) 117 return result; 118 continue; 119 } 120 121 pud = (pud_t *)info->alloc_pgt_page(info->context); 122 if (!pud) 123 return -ENOMEM; 124 result = ident_pud_init(info, pud, addr, next); 125 if (result) 126 return result; 127 set_pgd(pgd, __pgd(__pa(pud) | _KERNPG_TABLE)); 128 } 129 130 return 0; 131 } 132 133 /* 134 * NOTE: pagetable_init alloc all the fixmap pagetables contiguous on the 135 * physical space so we can cache the place of the first one and move 136 * around without checking the pgd every time. 137 */ 138 139 pteval_t __supported_pte_mask __read_mostly = ~0; 140 EXPORT_SYMBOL_GPL(__supported_pte_mask); 141 142 int force_personality32; 143 144 /* 145 * noexec32=on|off 146 * Control non executable heap for 32bit processes. 147 * To control the stack too use noexec=off 148 * 149 * on PROT_READ does not imply PROT_EXEC for 32-bit processes (default) 150 * off PROT_READ implies PROT_EXEC 151 */ 152 static int __init nonx32_setup(char *str) 153 { 154 if (!strcmp(str, "on")) 155 force_personality32 &= ~READ_IMPLIES_EXEC; 156 else if (!strcmp(str, "off")) 157 force_personality32 |= READ_IMPLIES_EXEC; 158 return 1; 159 } 160 __setup("noexec32=", nonx32_setup); 161 162 /* 163 * When memory was added/removed make sure all the processes MM have 164 * suitable PGD entries in the local PGD level page. 165 */ 166 void sync_global_pgds(unsigned long start, unsigned long end, int removed) 167 { 168 unsigned long address; 169 170 for (address = start; address <= end; address += PGDIR_SIZE) { 171 const pgd_t *pgd_ref = pgd_offset_k(address); 172 struct page *page; 173 174 /* 175 * When it is called after memory hot remove, pgd_none() 176 * returns true. In this case (removed == 1), we must clear 177 * the PGD entries in the local PGD level page. 178 */ 179 if (pgd_none(*pgd_ref) && !removed) 180 continue; 181 182 spin_lock(&pgd_lock); 183 list_for_each_entry(page, &pgd_list, lru) { 184 pgd_t *pgd; 185 spinlock_t *pgt_lock; 186 187 pgd = (pgd_t *)page_address(page) + pgd_index(address); 188 /* the pgt_lock only for Xen */ 189 pgt_lock = &pgd_page_get_mm(page)->page_table_lock; 190 spin_lock(pgt_lock); 191 192 if (!pgd_none(*pgd_ref) && !pgd_none(*pgd)) 193 BUG_ON(pgd_page_vaddr(*pgd) 194 != pgd_page_vaddr(*pgd_ref)); 195 196 if (removed) { 197 if (pgd_none(*pgd_ref) && !pgd_none(*pgd)) 198 pgd_clear(pgd); 199 } else { 200 if (pgd_none(*pgd)) 201 set_pgd(pgd, *pgd_ref); 202 } 203 204 spin_unlock(pgt_lock); 205 } 206 spin_unlock(&pgd_lock); 207 } 208 } 209 210 /* 211 * NOTE: This function is marked __ref because it calls __init function 212 * (alloc_bootmem_pages). It's safe to do it ONLY when after_bootmem == 0. 213 */ 214 static __ref void *spp_getpage(void) 215 { 216 void *ptr; 217 218 if (after_bootmem) 219 ptr = (void *) get_zeroed_page(GFP_ATOMIC | __GFP_NOTRACK); 220 else 221 ptr = alloc_bootmem_pages(PAGE_SIZE); 222 223 if (!ptr || ((unsigned long)ptr & ~PAGE_MASK)) { 224 panic("set_pte_phys: cannot allocate page data %s\n", 225 after_bootmem ? "after bootmem" : ""); 226 } 227 228 pr_debug("spp_getpage %p\n", ptr); 229 230 return ptr; 231 } 232 233 static pud_t *fill_pud(pgd_t *pgd, unsigned long vaddr) 234 { 235 if (pgd_none(*pgd)) { 236 pud_t *pud = (pud_t *)spp_getpage(); 237 pgd_populate(&init_mm, pgd, pud); 238 if (pud != pud_offset(pgd, 0)) 239 printk(KERN_ERR "PAGETABLE BUG #00! %p <-> %p\n", 240 pud, pud_offset(pgd, 0)); 241 } 242 return pud_offset(pgd, vaddr); 243 } 244 245 static pmd_t *fill_pmd(pud_t *pud, unsigned long vaddr) 246 { 247 if (pud_none(*pud)) { 248 pmd_t *pmd = (pmd_t *) spp_getpage(); 249 pud_populate(&init_mm, pud, pmd); 250 if (pmd != pmd_offset(pud, 0)) 251 printk(KERN_ERR "PAGETABLE BUG #01! %p <-> %p\n", 252 pmd, pmd_offset(pud, 0)); 253 } 254 return pmd_offset(pud, vaddr); 255 } 256 257 static pte_t *fill_pte(pmd_t *pmd, unsigned long vaddr) 258 { 259 if (pmd_none(*pmd)) { 260 pte_t *pte = (pte_t *) spp_getpage(); 261 pmd_populate_kernel(&init_mm, pmd, pte); 262 if (pte != pte_offset_kernel(pmd, 0)) 263 printk(KERN_ERR "PAGETABLE BUG #02!\n"); 264 } 265 return pte_offset_kernel(pmd, vaddr); 266 } 267 268 void set_pte_vaddr_pud(pud_t *pud_page, unsigned long vaddr, pte_t new_pte) 269 { 270 pud_t *pud; 271 pmd_t *pmd; 272 pte_t *pte; 273 274 pud = pud_page + pud_index(vaddr); 275 pmd = fill_pmd(pud, vaddr); 276 pte = fill_pte(pmd, vaddr); 277 278 set_pte(pte, new_pte); 279 280 /* 281 * It's enough to flush this one mapping. 282 * (PGE mappings get flushed as well) 283 */ 284 __flush_tlb_one(vaddr); 285 } 286 287 void set_pte_vaddr(unsigned long vaddr, pte_t pteval) 288 { 289 pgd_t *pgd; 290 pud_t *pud_page; 291 292 pr_debug("set_pte_vaddr %lx to %lx\n", vaddr, native_pte_val(pteval)); 293 294 pgd = pgd_offset_k(vaddr); 295 if (pgd_none(*pgd)) { 296 printk(KERN_ERR 297 "PGD FIXMAP MISSING, it should be setup in head.S!\n"); 298 return; 299 } 300 pud_page = (pud_t*)pgd_page_vaddr(*pgd); 301 set_pte_vaddr_pud(pud_page, vaddr, pteval); 302 } 303 304 pmd_t * __init populate_extra_pmd(unsigned long vaddr) 305 { 306 pgd_t *pgd; 307 pud_t *pud; 308 309 pgd = pgd_offset_k(vaddr); 310 pud = fill_pud(pgd, vaddr); 311 return fill_pmd(pud, vaddr); 312 } 313 314 pte_t * __init populate_extra_pte(unsigned long vaddr) 315 { 316 pmd_t *pmd; 317 318 pmd = populate_extra_pmd(vaddr); 319 return fill_pte(pmd, vaddr); 320 } 321 322 /* 323 * Create large page table mappings for a range of physical addresses. 324 */ 325 static void __init __init_extra_mapping(unsigned long phys, unsigned long size, 326 enum page_cache_mode cache) 327 { 328 pgd_t *pgd; 329 pud_t *pud; 330 pmd_t *pmd; 331 pgprot_t prot; 332 333 pgprot_val(prot) = pgprot_val(PAGE_KERNEL_LARGE) | 334 pgprot_val(pgprot_4k_2_large(cachemode2pgprot(cache))); 335 BUG_ON((phys & ~PMD_MASK) || (size & ~PMD_MASK)); 336 for (; size; phys += PMD_SIZE, size -= PMD_SIZE) { 337 pgd = pgd_offset_k((unsigned long)__va(phys)); 338 if (pgd_none(*pgd)) { 339 pud = (pud_t *) spp_getpage(); 340 set_pgd(pgd, __pgd(__pa(pud) | _KERNPG_TABLE | 341 _PAGE_USER)); 342 } 343 pud = pud_offset(pgd, (unsigned long)__va(phys)); 344 if (pud_none(*pud)) { 345 pmd = (pmd_t *) spp_getpage(); 346 set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE | 347 _PAGE_USER)); 348 } 349 pmd = pmd_offset(pud, phys); 350 BUG_ON(!pmd_none(*pmd)); 351 set_pmd(pmd, __pmd(phys | pgprot_val(prot))); 352 } 353 } 354 355 void __init init_extra_mapping_wb(unsigned long phys, unsigned long size) 356 { 357 __init_extra_mapping(phys, size, _PAGE_CACHE_MODE_WB); 358 } 359 360 void __init init_extra_mapping_uc(unsigned long phys, unsigned long size) 361 { 362 __init_extra_mapping(phys, size, _PAGE_CACHE_MODE_UC); 363 } 364 365 /* 366 * The head.S code sets up the kernel high mapping: 367 * 368 * from __START_KERNEL_map to __START_KERNEL_map + size (== _end-_text) 369 * 370 * phys_base holds the negative offset to the kernel, which is added 371 * to the compile time generated pmds. This results in invalid pmds up 372 * to the point where we hit the physaddr 0 mapping. 373 * 374 * We limit the mappings to the region from _text to _brk_end. _brk_end 375 * is rounded up to the 2MB boundary. This catches the invalid pmds as 376 * well, as they are located before _text: 377 */ 378 void __init cleanup_highmap(void) 379 { 380 unsigned long vaddr = __START_KERNEL_map; 381 unsigned long vaddr_end = __START_KERNEL_map + KERNEL_IMAGE_SIZE; 382 unsigned long end = roundup((unsigned long)_brk_end, PMD_SIZE) - 1; 383 pmd_t *pmd = level2_kernel_pgt; 384 385 /* 386 * Native path, max_pfn_mapped is not set yet. 387 * Xen has valid max_pfn_mapped set in 388 * arch/x86/xen/mmu.c:xen_setup_kernel_pagetable(). 389 */ 390 if (max_pfn_mapped) 391 vaddr_end = __START_KERNEL_map + (max_pfn_mapped << PAGE_SHIFT); 392 393 for (; vaddr + PMD_SIZE - 1 < vaddr_end; pmd++, vaddr += PMD_SIZE) { 394 if (pmd_none(*pmd)) 395 continue; 396 if (vaddr < (unsigned long) _text || vaddr > end) 397 set_pmd(pmd, __pmd(0)); 398 } 399 } 400 401 static unsigned long __meminit 402 phys_pte_init(pte_t *pte_page, unsigned long addr, unsigned long end, 403 pgprot_t prot) 404 { 405 unsigned long pages = 0, next; 406 unsigned long last_map_addr = end; 407 int i; 408 409 pte_t *pte = pte_page + pte_index(addr); 410 411 for (i = pte_index(addr); i < PTRS_PER_PTE; i++, addr = next, pte++) { 412 next = (addr & PAGE_MASK) + PAGE_SIZE; 413 if (addr >= end) { 414 if (!after_bootmem && 415 !e820_any_mapped(addr & PAGE_MASK, next, E820_RAM) && 416 !e820_any_mapped(addr & PAGE_MASK, next, E820_RESERVED_KERN)) 417 set_pte(pte, __pte(0)); 418 continue; 419 } 420 421 /* 422 * We will re-use the existing mapping. 423 * Xen for example has some special requirements, like mapping 424 * pagetable pages as RO. So assume someone who pre-setup 425 * these mappings are more intelligent. 426 */ 427 if (pte_val(*pte)) { 428 if (!after_bootmem) 429 pages++; 430 continue; 431 } 432 433 if (0) 434 printk(" pte=%p addr=%lx pte=%016lx\n", 435 pte, addr, pfn_pte(addr >> PAGE_SHIFT, PAGE_KERNEL).pte); 436 pages++; 437 set_pte(pte, pfn_pte(addr >> PAGE_SHIFT, prot)); 438 last_map_addr = (addr & PAGE_MASK) + PAGE_SIZE; 439 } 440 441 update_page_count(PG_LEVEL_4K, pages); 442 443 return last_map_addr; 444 } 445 446 static unsigned long __meminit 447 phys_pmd_init(pmd_t *pmd_page, unsigned long address, unsigned long end, 448 unsigned long page_size_mask, pgprot_t prot) 449 { 450 unsigned long pages = 0, next; 451 unsigned long last_map_addr = end; 452 453 int i = pmd_index(address); 454 455 for (; i < PTRS_PER_PMD; i++, address = next) { 456 pmd_t *pmd = pmd_page + pmd_index(address); 457 pte_t *pte; 458 pgprot_t new_prot = prot; 459 460 next = (address & PMD_MASK) + PMD_SIZE; 461 if (address >= end) { 462 if (!after_bootmem && 463 !e820_any_mapped(address & PMD_MASK, next, E820_RAM) && 464 !e820_any_mapped(address & PMD_MASK, next, E820_RESERVED_KERN)) 465 set_pmd(pmd, __pmd(0)); 466 continue; 467 } 468 469 if (pmd_val(*pmd)) { 470 if (!pmd_large(*pmd)) { 471 spin_lock(&init_mm.page_table_lock); 472 pte = (pte_t *)pmd_page_vaddr(*pmd); 473 last_map_addr = phys_pte_init(pte, address, 474 end, prot); 475 spin_unlock(&init_mm.page_table_lock); 476 continue; 477 } 478 /* 479 * If we are ok with PG_LEVEL_2M mapping, then we will 480 * use the existing mapping, 481 * 482 * Otherwise, we will split the large page mapping but 483 * use the same existing protection bits except for 484 * large page, so that we don't violate Intel's TLB 485 * Application note (317080) which says, while changing 486 * the page sizes, new and old translations should 487 * not differ with respect to page frame and 488 * attributes. 489 */ 490 if (page_size_mask & (1 << PG_LEVEL_2M)) { 491 if (!after_bootmem) 492 pages++; 493 last_map_addr = next; 494 continue; 495 } 496 new_prot = pte_pgprot(pte_clrhuge(*(pte_t *)pmd)); 497 } 498 499 if (page_size_mask & (1<<PG_LEVEL_2M)) { 500 pages++; 501 spin_lock(&init_mm.page_table_lock); 502 set_pte((pte_t *)pmd, 503 pfn_pte((address & PMD_MASK) >> PAGE_SHIFT, 504 __pgprot(pgprot_val(prot) | _PAGE_PSE))); 505 spin_unlock(&init_mm.page_table_lock); 506 last_map_addr = next; 507 continue; 508 } 509 510 pte = alloc_low_page(); 511 last_map_addr = phys_pte_init(pte, address, end, new_prot); 512 513 spin_lock(&init_mm.page_table_lock); 514 pmd_populate_kernel(&init_mm, pmd, pte); 515 spin_unlock(&init_mm.page_table_lock); 516 } 517 update_page_count(PG_LEVEL_2M, pages); 518 return last_map_addr; 519 } 520 521 static unsigned long __meminit 522 phys_pud_init(pud_t *pud_page, unsigned long addr, unsigned long end, 523 unsigned long page_size_mask) 524 { 525 unsigned long pages = 0, next; 526 unsigned long last_map_addr = end; 527 int i = pud_index(addr); 528 529 for (; i < PTRS_PER_PUD; i++, addr = next) { 530 pud_t *pud = pud_page + pud_index(addr); 531 pmd_t *pmd; 532 pgprot_t prot = PAGE_KERNEL; 533 534 next = (addr & PUD_MASK) + PUD_SIZE; 535 if (addr >= end) { 536 if (!after_bootmem && 537 !e820_any_mapped(addr & PUD_MASK, next, E820_RAM) && 538 !e820_any_mapped(addr & PUD_MASK, next, E820_RESERVED_KERN)) 539 set_pud(pud, __pud(0)); 540 continue; 541 } 542 543 if (pud_val(*pud)) { 544 if (!pud_large(*pud)) { 545 pmd = pmd_offset(pud, 0); 546 last_map_addr = phys_pmd_init(pmd, addr, end, 547 page_size_mask, prot); 548 __flush_tlb_all(); 549 continue; 550 } 551 /* 552 * If we are ok with PG_LEVEL_1G mapping, then we will 553 * use the existing mapping. 554 * 555 * Otherwise, we will split the gbpage mapping but use 556 * the same existing protection bits except for large 557 * page, so that we don't violate Intel's TLB 558 * Application note (317080) which says, while changing 559 * the page sizes, new and old translations should 560 * not differ with respect to page frame and 561 * attributes. 562 */ 563 if (page_size_mask & (1 << PG_LEVEL_1G)) { 564 if (!after_bootmem) 565 pages++; 566 last_map_addr = next; 567 continue; 568 } 569 prot = pte_pgprot(pte_clrhuge(*(pte_t *)pud)); 570 } 571 572 if (page_size_mask & (1<<PG_LEVEL_1G)) { 573 pages++; 574 spin_lock(&init_mm.page_table_lock); 575 set_pte((pte_t *)pud, 576 pfn_pte((addr & PUD_MASK) >> PAGE_SHIFT, 577 PAGE_KERNEL_LARGE)); 578 spin_unlock(&init_mm.page_table_lock); 579 last_map_addr = next; 580 continue; 581 } 582 583 pmd = alloc_low_page(); 584 last_map_addr = phys_pmd_init(pmd, addr, end, page_size_mask, 585 prot); 586 587 spin_lock(&init_mm.page_table_lock); 588 pud_populate(&init_mm, pud, pmd); 589 spin_unlock(&init_mm.page_table_lock); 590 } 591 __flush_tlb_all(); 592 593 update_page_count(PG_LEVEL_1G, pages); 594 595 return last_map_addr; 596 } 597 598 unsigned long __meminit 599 kernel_physical_mapping_init(unsigned long start, 600 unsigned long end, 601 unsigned long page_size_mask) 602 { 603 bool pgd_changed = false; 604 unsigned long next, last_map_addr = end; 605 unsigned long addr; 606 607 start = (unsigned long)__va(start); 608 end = (unsigned long)__va(end); 609 addr = start; 610 611 for (; start < end; start = next) { 612 pgd_t *pgd = pgd_offset_k(start); 613 pud_t *pud; 614 615 next = (start & PGDIR_MASK) + PGDIR_SIZE; 616 617 if (pgd_val(*pgd)) { 618 pud = (pud_t *)pgd_page_vaddr(*pgd); 619 last_map_addr = phys_pud_init(pud, __pa(start), 620 __pa(end), page_size_mask); 621 continue; 622 } 623 624 pud = alloc_low_page(); 625 last_map_addr = phys_pud_init(pud, __pa(start), __pa(end), 626 page_size_mask); 627 628 spin_lock(&init_mm.page_table_lock); 629 pgd_populate(&init_mm, pgd, pud); 630 spin_unlock(&init_mm.page_table_lock); 631 pgd_changed = true; 632 } 633 634 if (pgd_changed) 635 sync_global_pgds(addr, end - 1, 0); 636 637 __flush_tlb_all(); 638 639 return last_map_addr; 640 } 641 642 #ifndef CONFIG_NUMA 643 void __init initmem_init(void) 644 { 645 memblock_set_node(0, (phys_addr_t)ULLONG_MAX, &memblock.memory, 0); 646 } 647 #endif 648 649 void __init paging_init(void) 650 { 651 sparse_memory_present_with_active_regions(MAX_NUMNODES); 652 sparse_init(); 653 654 /* 655 * clear the default setting with node 0 656 * note: don't use nodes_clear here, that is really clearing when 657 * numa support is not compiled in, and later node_set_state 658 * will not set it back. 659 */ 660 node_clear_state(0, N_MEMORY); 661 if (N_MEMORY != N_NORMAL_MEMORY) 662 node_clear_state(0, N_NORMAL_MEMORY); 663 664 zone_sizes_init(); 665 } 666 667 /* 668 * Memory hotplug specific functions 669 */ 670 #ifdef CONFIG_MEMORY_HOTPLUG 671 /* 672 * After memory hotplug the variables max_pfn, max_low_pfn and high_memory need 673 * updating. 674 */ 675 static void update_end_of_memory_vars(u64 start, u64 size) 676 { 677 unsigned long end_pfn = PFN_UP(start + size); 678 679 if (end_pfn > max_pfn) { 680 max_pfn = end_pfn; 681 max_low_pfn = end_pfn; 682 high_memory = (void *)__va(max_pfn * PAGE_SIZE - 1) + 1; 683 } 684 } 685 686 /* 687 * Memory is added always to NORMAL zone. This means you will never get 688 * additional DMA/DMA32 memory. 689 */ 690 int arch_add_memory(int nid, u64 start, u64 size) 691 { 692 struct pglist_data *pgdat = NODE_DATA(nid); 693 struct zone *zone = pgdat->node_zones + 694 zone_for_memory(nid, start, size, ZONE_NORMAL); 695 unsigned long start_pfn = start >> PAGE_SHIFT; 696 unsigned long nr_pages = size >> PAGE_SHIFT; 697 int ret; 698 699 init_memory_mapping(start, start + size); 700 701 ret = __add_pages(nid, zone, start_pfn, nr_pages); 702 WARN_ON_ONCE(ret); 703 704 /* update max_pfn, max_low_pfn and high_memory */ 705 update_end_of_memory_vars(start, size); 706 707 return ret; 708 } 709 EXPORT_SYMBOL_GPL(arch_add_memory); 710 711 #define PAGE_INUSE 0xFD 712 713 static void __meminit free_pagetable(struct page *page, int order) 714 { 715 unsigned long magic; 716 unsigned int nr_pages = 1 << order; 717 718 /* bootmem page has reserved flag */ 719 if (PageReserved(page)) { 720 __ClearPageReserved(page); 721 722 magic = (unsigned long)page->lru.next; 723 if (magic == SECTION_INFO || magic == MIX_SECTION_INFO) { 724 while (nr_pages--) 725 put_page_bootmem(page++); 726 } else 727 while (nr_pages--) 728 free_reserved_page(page++); 729 } else 730 free_pages((unsigned long)page_address(page), order); 731 } 732 733 static void __meminit free_pte_table(pte_t *pte_start, pmd_t *pmd) 734 { 735 pte_t *pte; 736 int i; 737 738 for (i = 0; i < PTRS_PER_PTE; i++) { 739 pte = pte_start + i; 740 if (pte_val(*pte)) 741 return; 742 } 743 744 /* free a pte talbe */ 745 free_pagetable(pmd_page(*pmd), 0); 746 spin_lock(&init_mm.page_table_lock); 747 pmd_clear(pmd); 748 spin_unlock(&init_mm.page_table_lock); 749 } 750 751 static void __meminit free_pmd_table(pmd_t *pmd_start, pud_t *pud) 752 { 753 pmd_t *pmd; 754 int i; 755 756 for (i = 0; i < PTRS_PER_PMD; i++) { 757 pmd = pmd_start + i; 758 if (pmd_val(*pmd)) 759 return; 760 } 761 762 /* free a pmd talbe */ 763 free_pagetable(pud_page(*pud), 0); 764 spin_lock(&init_mm.page_table_lock); 765 pud_clear(pud); 766 spin_unlock(&init_mm.page_table_lock); 767 } 768 769 /* Return true if pgd is changed, otherwise return false. */ 770 static bool __meminit free_pud_table(pud_t *pud_start, pgd_t *pgd) 771 { 772 pud_t *pud; 773 int i; 774 775 for (i = 0; i < PTRS_PER_PUD; i++) { 776 pud = pud_start + i; 777 if (pud_val(*pud)) 778 return false; 779 } 780 781 /* free a pud table */ 782 free_pagetable(pgd_page(*pgd), 0); 783 spin_lock(&init_mm.page_table_lock); 784 pgd_clear(pgd); 785 spin_unlock(&init_mm.page_table_lock); 786 787 return true; 788 } 789 790 static void __meminit 791 remove_pte_table(pte_t *pte_start, unsigned long addr, unsigned long end, 792 bool direct) 793 { 794 unsigned long next, pages = 0; 795 pte_t *pte; 796 void *page_addr; 797 phys_addr_t phys_addr; 798 799 pte = pte_start + pte_index(addr); 800 for (; addr < end; addr = next, pte++) { 801 next = (addr + PAGE_SIZE) & PAGE_MASK; 802 if (next > end) 803 next = end; 804 805 if (!pte_present(*pte)) 806 continue; 807 808 /* 809 * We mapped [0,1G) memory as identity mapping when 810 * initializing, in arch/x86/kernel/head_64.S. These 811 * pagetables cannot be removed. 812 */ 813 phys_addr = pte_val(*pte) + (addr & PAGE_MASK); 814 if (phys_addr < (phys_addr_t)0x40000000) 815 return; 816 817 if (IS_ALIGNED(addr, PAGE_SIZE) && 818 IS_ALIGNED(next, PAGE_SIZE)) { 819 /* 820 * Do not free direct mapping pages since they were 821 * freed when offlining, or simplely not in use. 822 */ 823 if (!direct) 824 free_pagetable(pte_page(*pte), 0); 825 826 spin_lock(&init_mm.page_table_lock); 827 pte_clear(&init_mm, addr, pte); 828 spin_unlock(&init_mm.page_table_lock); 829 830 /* For non-direct mapping, pages means nothing. */ 831 pages++; 832 } else { 833 /* 834 * If we are here, we are freeing vmemmap pages since 835 * direct mapped memory ranges to be freed are aligned. 836 * 837 * If we are not removing the whole page, it means 838 * other page structs in this page are being used and 839 * we canot remove them. So fill the unused page_structs 840 * with 0xFD, and remove the page when it is wholly 841 * filled with 0xFD. 842 */ 843 memset((void *)addr, PAGE_INUSE, next - addr); 844 845 page_addr = page_address(pte_page(*pte)); 846 if (!memchr_inv(page_addr, PAGE_INUSE, PAGE_SIZE)) { 847 free_pagetable(pte_page(*pte), 0); 848 849 spin_lock(&init_mm.page_table_lock); 850 pte_clear(&init_mm, addr, pte); 851 spin_unlock(&init_mm.page_table_lock); 852 } 853 } 854 } 855 856 /* Call free_pte_table() in remove_pmd_table(). */ 857 flush_tlb_all(); 858 if (direct) 859 update_page_count(PG_LEVEL_4K, -pages); 860 } 861 862 static void __meminit 863 remove_pmd_table(pmd_t *pmd_start, unsigned long addr, unsigned long end, 864 bool direct) 865 { 866 unsigned long next, pages = 0; 867 pte_t *pte_base; 868 pmd_t *pmd; 869 void *page_addr; 870 871 pmd = pmd_start + pmd_index(addr); 872 for (; addr < end; addr = next, pmd++) { 873 next = pmd_addr_end(addr, end); 874 875 if (!pmd_present(*pmd)) 876 continue; 877 878 if (pmd_large(*pmd)) { 879 if (IS_ALIGNED(addr, PMD_SIZE) && 880 IS_ALIGNED(next, PMD_SIZE)) { 881 if (!direct) 882 free_pagetable(pmd_page(*pmd), 883 get_order(PMD_SIZE)); 884 885 spin_lock(&init_mm.page_table_lock); 886 pmd_clear(pmd); 887 spin_unlock(&init_mm.page_table_lock); 888 pages++; 889 } else { 890 /* If here, we are freeing vmemmap pages. */ 891 memset((void *)addr, PAGE_INUSE, next - addr); 892 893 page_addr = page_address(pmd_page(*pmd)); 894 if (!memchr_inv(page_addr, PAGE_INUSE, 895 PMD_SIZE)) { 896 free_pagetable(pmd_page(*pmd), 897 get_order(PMD_SIZE)); 898 899 spin_lock(&init_mm.page_table_lock); 900 pmd_clear(pmd); 901 spin_unlock(&init_mm.page_table_lock); 902 } 903 } 904 905 continue; 906 } 907 908 pte_base = (pte_t *)pmd_page_vaddr(*pmd); 909 remove_pte_table(pte_base, addr, next, direct); 910 free_pte_table(pte_base, pmd); 911 } 912 913 /* Call free_pmd_table() in remove_pud_table(). */ 914 if (direct) 915 update_page_count(PG_LEVEL_2M, -pages); 916 } 917 918 static void __meminit 919 remove_pud_table(pud_t *pud_start, unsigned long addr, unsigned long end, 920 bool direct) 921 { 922 unsigned long next, pages = 0; 923 pmd_t *pmd_base; 924 pud_t *pud; 925 void *page_addr; 926 927 pud = pud_start + pud_index(addr); 928 for (; addr < end; addr = next, pud++) { 929 next = pud_addr_end(addr, end); 930 931 if (!pud_present(*pud)) 932 continue; 933 934 if (pud_large(*pud)) { 935 if (IS_ALIGNED(addr, PUD_SIZE) && 936 IS_ALIGNED(next, PUD_SIZE)) { 937 if (!direct) 938 free_pagetable(pud_page(*pud), 939 get_order(PUD_SIZE)); 940 941 spin_lock(&init_mm.page_table_lock); 942 pud_clear(pud); 943 spin_unlock(&init_mm.page_table_lock); 944 pages++; 945 } else { 946 /* If here, we are freeing vmemmap pages. */ 947 memset((void *)addr, PAGE_INUSE, next - addr); 948 949 page_addr = page_address(pud_page(*pud)); 950 if (!memchr_inv(page_addr, PAGE_INUSE, 951 PUD_SIZE)) { 952 free_pagetable(pud_page(*pud), 953 get_order(PUD_SIZE)); 954 955 spin_lock(&init_mm.page_table_lock); 956 pud_clear(pud); 957 spin_unlock(&init_mm.page_table_lock); 958 } 959 } 960 961 continue; 962 } 963 964 pmd_base = (pmd_t *)pud_page_vaddr(*pud); 965 remove_pmd_table(pmd_base, addr, next, direct); 966 free_pmd_table(pmd_base, pud); 967 } 968 969 if (direct) 970 update_page_count(PG_LEVEL_1G, -pages); 971 } 972 973 /* start and end are both virtual address. */ 974 static void __meminit 975 remove_pagetable(unsigned long start, unsigned long end, bool direct) 976 { 977 unsigned long next; 978 unsigned long addr; 979 pgd_t *pgd; 980 pud_t *pud; 981 bool pgd_changed = false; 982 983 for (addr = start; addr < end; addr = next) { 984 next = pgd_addr_end(addr, end); 985 986 pgd = pgd_offset_k(addr); 987 if (!pgd_present(*pgd)) 988 continue; 989 990 pud = (pud_t *)pgd_page_vaddr(*pgd); 991 remove_pud_table(pud, addr, next, direct); 992 if (free_pud_table(pud, pgd)) 993 pgd_changed = true; 994 } 995 996 if (pgd_changed) 997 sync_global_pgds(start, end - 1, 1); 998 999 flush_tlb_all(); 1000 } 1001 1002 void __ref vmemmap_free(unsigned long start, unsigned long end) 1003 { 1004 remove_pagetable(start, end, false); 1005 } 1006 1007 #ifdef CONFIG_MEMORY_HOTREMOVE 1008 static void __meminit 1009 kernel_physical_mapping_remove(unsigned long start, unsigned long end) 1010 { 1011 start = (unsigned long)__va(start); 1012 end = (unsigned long)__va(end); 1013 1014 remove_pagetable(start, end, true); 1015 } 1016 1017 int __ref arch_remove_memory(u64 start, u64 size) 1018 { 1019 unsigned long start_pfn = start >> PAGE_SHIFT; 1020 unsigned long nr_pages = size >> PAGE_SHIFT; 1021 struct zone *zone; 1022 int ret; 1023 1024 zone = page_zone(pfn_to_page(start_pfn)); 1025 kernel_physical_mapping_remove(start, start + size); 1026 ret = __remove_pages(zone, start_pfn, nr_pages); 1027 WARN_ON_ONCE(ret); 1028 1029 return ret; 1030 } 1031 #endif 1032 #endif /* CONFIG_MEMORY_HOTPLUG */ 1033 1034 static struct kcore_list kcore_vsyscall; 1035 1036 static void __init register_page_bootmem_info(void) 1037 { 1038 #ifdef CONFIG_NUMA 1039 int i; 1040 1041 for_each_online_node(i) 1042 register_page_bootmem_info_node(NODE_DATA(i)); 1043 #endif 1044 } 1045 1046 void __init mem_init(void) 1047 { 1048 pci_iommu_alloc(); 1049 1050 /* clear_bss() already clear the empty_zero_page */ 1051 1052 register_page_bootmem_info(); 1053 1054 /* this will put all memory onto the freelists */ 1055 free_all_bootmem(); 1056 after_bootmem = 1; 1057 1058 /* Register memory areas for /proc/kcore */ 1059 kclist_add(&kcore_vsyscall, (void *)VSYSCALL_ADDR, 1060 PAGE_SIZE, KCORE_OTHER); 1061 1062 mem_init_print_info(NULL); 1063 } 1064 1065 #ifdef CONFIG_DEBUG_RODATA 1066 const int rodata_test_data = 0xC3; 1067 EXPORT_SYMBOL_GPL(rodata_test_data); 1068 1069 int kernel_set_to_readonly; 1070 1071 void set_kernel_text_rw(void) 1072 { 1073 unsigned long start = PFN_ALIGN(_text); 1074 unsigned long end = PFN_ALIGN(__stop___ex_table); 1075 1076 if (!kernel_set_to_readonly) 1077 return; 1078 1079 pr_debug("Set kernel text: %lx - %lx for read write\n", 1080 start, end); 1081 1082 /* 1083 * Make the kernel identity mapping for text RW. Kernel text 1084 * mapping will always be RO. Refer to the comment in 1085 * static_protections() in pageattr.c 1086 */ 1087 set_memory_rw(start, (end - start) >> PAGE_SHIFT); 1088 } 1089 1090 void set_kernel_text_ro(void) 1091 { 1092 unsigned long start = PFN_ALIGN(_text); 1093 unsigned long end = PFN_ALIGN(__stop___ex_table); 1094 1095 if (!kernel_set_to_readonly) 1096 return; 1097 1098 pr_debug("Set kernel text: %lx - %lx for read only\n", 1099 start, end); 1100 1101 /* 1102 * Set the kernel identity mapping for text RO. 1103 */ 1104 set_memory_ro(start, (end - start) >> PAGE_SHIFT); 1105 } 1106 1107 void mark_rodata_ro(void) 1108 { 1109 unsigned long start = PFN_ALIGN(_text); 1110 unsigned long rodata_start = PFN_ALIGN(__start_rodata); 1111 unsigned long end = (unsigned long) &__end_rodata_hpage_align; 1112 unsigned long text_end = PFN_ALIGN(&__stop___ex_table); 1113 unsigned long rodata_end = PFN_ALIGN(&__end_rodata); 1114 unsigned long all_end; 1115 1116 printk(KERN_INFO "Write protecting the kernel read-only data: %luk\n", 1117 (end - start) >> 10); 1118 set_memory_ro(start, (end - start) >> PAGE_SHIFT); 1119 1120 kernel_set_to_readonly = 1; 1121 1122 /* 1123 * The rodata/data/bss/brk section (but not the kernel text!) 1124 * should also be not-executable. 1125 * 1126 * We align all_end to PMD_SIZE because the existing mapping 1127 * is a full PMD. If we would align _brk_end to PAGE_SIZE we 1128 * split the PMD and the reminder between _brk_end and the end 1129 * of the PMD will remain mapped executable. 1130 * 1131 * Any PMD which was setup after the one which covers _brk_end 1132 * has been zapped already via cleanup_highmem(). 1133 */ 1134 all_end = roundup((unsigned long)_brk_end, PMD_SIZE); 1135 set_memory_nx(rodata_start, (all_end - rodata_start) >> PAGE_SHIFT); 1136 1137 rodata_test(); 1138 1139 #ifdef CONFIG_CPA_DEBUG 1140 printk(KERN_INFO "Testing CPA: undo %lx-%lx\n", start, end); 1141 set_memory_rw(start, (end-start) >> PAGE_SHIFT); 1142 1143 printk(KERN_INFO "Testing CPA: again\n"); 1144 set_memory_ro(start, (end-start) >> PAGE_SHIFT); 1145 #endif 1146 1147 free_init_pages("unused kernel", 1148 (unsigned long) __va(__pa_symbol(text_end)), 1149 (unsigned long) __va(__pa_symbol(rodata_start))); 1150 free_init_pages("unused kernel", 1151 (unsigned long) __va(__pa_symbol(rodata_end)), 1152 (unsigned long) __va(__pa_symbol(_sdata))); 1153 } 1154 1155 #endif 1156 1157 int kern_addr_valid(unsigned long addr) 1158 { 1159 unsigned long above = ((long)addr) >> __VIRTUAL_MASK_SHIFT; 1160 pgd_t *pgd; 1161 pud_t *pud; 1162 pmd_t *pmd; 1163 pte_t *pte; 1164 1165 if (above != 0 && above != -1UL) 1166 return 0; 1167 1168 pgd = pgd_offset_k(addr); 1169 if (pgd_none(*pgd)) 1170 return 0; 1171 1172 pud = pud_offset(pgd, addr); 1173 if (pud_none(*pud)) 1174 return 0; 1175 1176 if (pud_large(*pud)) 1177 return pfn_valid(pud_pfn(*pud)); 1178 1179 pmd = pmd_offset(pud, addr); 1180 if (pmd_none(*pmd)) 1181 return 0; 1182 1183 if (pmd_large(*pmd)) 1184 return pfn_valid(pmd_pfn(*pmd)); 1185 1186 pte = pte_offset_kernel(pmd, addr); 1187 if (pte_none(*pte)) 1188 return 0; 1189 1190 return pfn_valid(pte_pfn(*pte)); 1191 } 1192 1193 static unsigned long probe_memory_block_size(void) 1194 { 1195 /* start from 2g */ 1196 unsigned long bz = 1UL<<31; 1197 1198 if (totalram_pages >= (64ULL << (30 - PAGE_SHIFT))) { 1199 pr_info("Using 2GB memory block size for large-memory system\n"); 1200 return 2UL * 1024 * 1024 * 1024; 1201 } 1202 1203 /* less than 64g installed */ 1204 if ((max_pfn << PAGE_SHIFT) < (16UL << 32)) 1205 return MIN_MEMORY_BLOCK_SIZE; 1206 1207 /* get the tail size */ 1208 while (bz > MIN_MEMORY_BLOCK_SIZE) { 1209 if (!((max_pfn << PAGE_SHIFT) & (bz - 1))) 1210 break; 1211 bz >>= 1; 1212 } 1213 1214 printk(KERN_DEBUG "memory block size : %ldMB\n", bz >> 20); 1215 1216 return bz; 1217 } 1218 1219 static unsigned long memory_block_size_probed; 1220 unsigned long memory_block_size_bytes(void) 1221 { 1222 if (!memory_block_size_probed) 1223 memory_block_size_probed = probe_memory_block_size(); 1224 1225 return memory_block_size_probed; 1226 } 1227 1228 #ifdef CONFIG_SPARSEMEM_VMEMMAP 1229 /* 1230 * Initialise the sparsemem vmemmap using huge-pages at the PMD level. 1231 */ 1232 static long __meminitdata addr_start, addr_end; 1233 static void __meminitdata *p_start, *p_end; 1234 static int __meminitdata node_start; 1235 1236 static int __meminit vmemmap_populate_hugepages(unsigned long start, 1237 unsigned long end, int node) 1238 { 1239 unsigned long addr; 1240 unsigned long next; 1241 pgd_t *pgd; 1242 pud_t *pud; 1243 pmd_t *pmd; 1244 1245 for (addr = start; addr < end; addr = next) { 1246 next = pmd_addr_end(addr, end); 1247 1248 pgd = vmemmap_pgd_populate(addr, node); 1249 if (!pgd) 1250 return -ENOMEM; 1251 1252 pud = vmemmap_pud_populate(pgd, addr, node); 1253 if (!pud) 1254 return -ENOMEM; 1255 1256 pmd = pmd_offset(pud, addr); 1257 if (pmd_none(*pmd)) { 1258 void *p; 1259 1260 p = vmemmap_alloc_block_buf(PMD_SIZE, node); 1261 if (p) { 1262 pte_t entry; 1263 1264 entry = pfn_pte(__pa(p) >> PAGE_SHIFT, 1265 PAGE_KERNEL_LARGE); 1266 set_pmd(pmd, __pmd(pte_val(entry))); 1267 1268 /* check to see if we have contiguous blocks */ 1269 if (p_end != p || node_start != node) { 1270 if (p_start) 1271 printk(KERN_DEBUG " [%lx-%lx] PMD -> [%p-%p] on node %d\n", 1272 addr_start, addr_end-1, p_start, p_end-1, node_start); 1273 addr_start = addr; 1274 node_start = node; 1275 p_start = p; 1276 } 1277 1278 addr_end = addr + PMD_SIZE; 1279 p_end = p + PMD_SIZE; 1280 continue; 1281 } 1282 } else if (pmd_large(*pmd)) { 1283 vmemmap_verify((pte_t *)pmd, node, addr, next); 1284 continue; 1285 } 1286 pr_warn_once("vmemmap: falling back to regular page backing\n"); 1287 if (vmemmap_populate_basepages(addr, next, node)) 1288 return -ENOMEM; 1289 } 1290 return 0; 1291 } 1292 1293 int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node) 1294 { 1295 int err; 1296 1297 if (cpu_has_pse) 1298 err = vmemmap_populate_hugepages(start, end, node); 1299 else 1300 err = vmemmap_populate_basepages(start, end, node); 1301 if (!err) 1302 sync_global_pgds(start, end - 1, 0); 1303 return err; 1304 } 1305 1306 #if defined(CONFIG_MEMORY_HOTPLUG_SPARSE) && defined(CONFIG_HAVE_BOOTMEM_INFO_NODE) 1307 void register_page_bootmem_memmap(unsigned long section_nr, 1308 struct page *start_page, unsigned long size) 1309 { 1310 unsigned long addr = (unsigned long)start_page; 1311 unsigned long end = (unsigned long)(start_page + size); 1312 unsigned long next; 1313 pgd_t *pgd; 1314 pud_t *pud; 1315 pmd_t *pmd; 1316 unsigned int nr_pages; 1317 struct page *page; 1318 1319 for (; addr < end; addr = next) { 1320 pte_t *pte = NULL; 1321 1322 pgd = pgd_offset_k(addr); 1323 if (pgd_none(*pgd)) { 1324 next = (addr + PAGE_SIZE) & PAGE_MASK; 1325 continue; 1326 } 1327 get_page_bootmem(section_nr, pgd_page(*pgd), MIX_SECTION_INFO); 1328 1329 pud = pud_offset(pgd, addr); 1330 if (pud_none(*pud)) { 1331 next = (addr + PAGE_SIZE) & PAGE_MASK; 1332 continue; 1333 } 1334 get_page_bootmem(section_nr, pud_page(*pud), MIX_SECTION_INFO); 1335 1336 if (!cpu_has_pse) { 1337 next = (addr + PAGE_SIZE) & PAGE_MASK; 1338 pmd = pmd_offset(pud, addr); 1339 if (pmd_none(*pmd)) 1340 continue; 1341 get_page_bootmem(section_nr, pmd_page(*pmd), 1342 MIX_SECTION_INFO); 1343 1344 pte = pte_offset_kernel(pmd, addr); 1345 if (pte_none(*pte)) 1346 continue; 1347 get_page_bootmem(section_nr, pte_page(*pte), 1348 SECTION_INFO); 1349 } else { 1350 next = pmd_addr_end(addr, end); 1351 1352 pmd = pmd_offset(pud, addr); 1353 if (pmd_none(*pmd)) 1354 continue; 1355 1356 nr_pages = 1 << (get_order(PMD_SIZE)); 1357 page = pmd_page(*pmd); 1358 while (nr_pages--) 1359 get_page_bootmem(section_nr, page++, 1360 SECTION_INFO); 1361 } 1362 } 1363 } 1364 #endif 1365 1366 void __meminit vmemmap_populate_print_last(void) 1367 { 1368 if (p_start) { 1369 printk(KERN_DEBUG " [%lx-%lx] PMD -> [%p-%p] on node %d\n", 1370 addr_start, addr_end-1, p_start, p_end-1, node_start); 1371 p_start = NULL; 1372 p_end = NULL; 1373 node_start = 0; 1374 } 1375 } 1376 #endif 1377