xref: /linux/arch/x86/mm/init_64.c (revision b06ede84dd1473dec7c6af03a41c8d04d2fee437)
1 /*
2  *  linux/arch/x86_64/mm/init.c
3  *
4  *  Copyright (C) 1995  Linus Torvalds
5  *  Copyright (C) 2000  Pavel Machek <pavel@suse.cz>
6  *  Copyright (C) 2002,2003 Andi Kleen <ak@suse.de>
7  */
8 
9 #include <linux/signal.h>
10 #include <linux/sched.h>
11 #include <linux/kernel.h>
12 #include <linux/errno.h>
13 #include <linux/string.h>
14 #include <linux/types.h>
15 #include <linux/ptrace.h>
16 #include <linux/mman.h>
17 #include <linux/mm.h>
18 #include <linux/swap.h>
19 #include <linux/smp.h>
20 #include <linux/init.h>
21 #include <linux/initrd.h>
22 #include <linux/pagemap.h>
23 #include <linux/bootmem.h>
24 #include <linux/proc_fs.h>
25 #include <linux/pci.h>
26 #include <linux/pfn.h>
27 #include <linux/poison.h>
28 #include <linux/dma-mapping.h>
29 #include <linux/module.h>
30 #include <linux/memory_hotplug.h>
31 #include <linux/nmi.h>
32 
33 #include <asm/processor.h>
34 #include <asm/bios_ebda.h>
35 #include <asm/system.h>
36 #include <asm/uaccess.h>
37 #include <asm/pgtable.h>
38 #include <asm/pgalloc.h>
39 #include <asm/dma.h>
40 #include <asm/fixmap.h>
41 #include <asm/e820.h>
42 #include <asm/apic.h>
43 #include <asm/tlb.h>
44 #include <asm/mmu_context.h>
45 #include <asm/proto.h>
46 #include <asm/smp.h>
47 #include <asm/sections.h>
48 #include <asm/kdebug.h>
49 #include <asm/numa.h>
50 #include <asm/cacheflush.h>
51 #include <asm/init.h>
52 #include <linux/bootmem.h>
53 
54 static unsigned long dma_reserve __initdata;
55 
56 static int __init parse_direct_gbpages_off(char *arg)
57 {
58 	direct_gbpages = 0;
59 	return 0;
60 }
61 early_param("nogbpages", parse_direct_gbpages_off);
62 
63 static int __init parse_direct_gbpages_on(char *arg)
64 {
65 	direct_gbpages = 1;
66 	return 0;
67 }
68 early_param("gbpages", parse_direct_gbpages_on);
69 
70 /*
71  * NOTE: pagetable_init alloc all the fixmap pagetables contiguous on the
72  * physical space so we can cache the place of the first one and move
73  * around without checking the pgd every time.
74  */
75 
76 pteval_t __supported_pte_mask __read_mostly = ~_PAGE_IOMAP;
77 EXPORT_SYMBOL_GPL(__supported_pte_mask);
78 
79 int force_personality32;
80 
81 /*
82  * noexec32=on|off
83  * Control non executable heap for 32bit processes.
84  * To control the stack too use noexec=off
85  *
86  * on	PROT_READ does not imply PROT_EXEC for 32-bit processes (default)
87  * off	PROT_READ implies PROT_EXEC
88  */
89 static int __init nonx32_setup(char *str)
90 {
91 	if (!strcmp(str, "on"))
92 		force_personality32 &= ~READ_IMPLIES_EXEC;
93 	else if (!strcmp(str, "off"))
94 		force_personality32 |= READ_IMPLIES_EXEC;
95 	return 1;
96 }
97 __setup("noexec32=", nonx32_setup);
98 
99 /*
100  * NOTE: This function is marked __ref because it calls __init function
101  * (alloc_bootmem_pages). It's safe to do it ONLY when after_bootmem == 0.
102  */
103 static __ref void *spp_getpage(void)
104 {
105 	void *ptr;
106 
107 	if (after_bootmem)
108 		ptr = (void *) get_zeroed_page(GFP_ATOMIC | __GFP_NOTRACK);
109 	else
110 		ptr = alloc_bootmem_pages(PAGE_SIZE);
111 
112 	if (!ptr || ((unsigned long)ptr & ~PAGE_MASK)) {
113 		panic("set_pte_phys: cannot allocate page data %s\n",
114 			after_bootmem ? "after bootmem" : "");
115 	}
116 
117 	pr_debug("spp_getpage %p\n", ptr);
118 
119 	return ptr;
120 }
121 
122 static pud_t *fill_pud(pgd_t *pgd, unsigned long vaddr)
123 {
124 	if (pgd_none(*pgd)) {
125 		pud_t *pud = (pud_t *)spp_getpage();
126 		pgd_populate(&init_mm, pgd, pud);
127 		if (pud != pud_offset(pgd, 0))
128 			printk(KERN_ERR "PAGETABLE BUG #00! %p <-> %p\n",
129 			       pud, pud_offset(pgd, 0));
130 	}
131 	return pud_offset(pgd, vaddr);
132 }
133 
134 static pmd_t *fill_pmd(pud_t *pud, unsigned long vaddr)
135 {
136 	if (pud_none(*pud)) {
137 		pmd_t *pmd = (pmd_t *) spp_getpage();
138 		pud_populate(&init_mm, pud, pmd);
139 		if (pmd != pmd_offset(pud, 0))
140 			printk(KERN_ERR "PAGETABLE BUG #01! %p <-> %p\n",
141 			       pmd, pmd_offset(pud, 0));
142 	}
143 	return pmd_offset(pud, vaddr);
144 }
145 
146 static pte_t *fill_pte(pmd_t *pmd, unsigned long vaddr)
147 {
148 	if (pmd_none(*pmd)) {
149 		pte_t *pte = (pte_t *) spp_getpage();
150 		pmd_populate_kernel(&init_mm, pmd, pte);
151 		if (pte != pte_offset_kernel(pmd, 0))
152 			printk(KERN_ERR "PAGETABLE BUG #02!\n");
153 	}
154 	return pte_offset_kernel(pmd, vaddr);
155 }
156 
157 void set_pte_vaddr_pud(pud_t *pud_page, unsigned long vaddr, pte_t new_pte)
158 {
159 	pud_t *pud;
160 	pmd_t *pmd;
161 	pte_t *pte;
162 
163 	pud = pud_page + pud_index(vaddr);
164 	pmd = fill_pmd(pud, vaddr);
165 	pte = fill_pte(pmd, vaddr);
166 
167 	set_pte(pte, new_pte);
168 
169 	/*
170 	 * It's enough to flush this one mapping.
171 	 * (PGE mappings get flushed as well)
172 	 */
173 	__flush_tlb_one(vaddr);
174 }
175 
176 void set_pte_vaddr(unsigned long vaddr, pte_t pteval)
177 {
178 	pgd_t *pgd;
179 	pud_t *pud_page;
180 
181 	pr_debug("set_pte_vaddr %lx to %lx\n", vaddr, native_pte_val(pteval));
182 
183 	pgd = pgd_offset_k(vaddr);
184 	if (pgd_none(*pgd)) {
185 		printk(KERN_ERR
186 			"PGD FIXMAP MISSING, it should be setup in head.S!\n");
187 		return;
188 	}
189 	pud_page = (pud_t*)pgd_page_vaddr(*pgd);
190 	set_pte_vaddr_pud(pud_page, vaddr, pteval);
191 }
192 
193 pmd_t * __init populate_extra_pmd(unsigned long vaddr)
194 {
195 	pgd_t *pgd;
196 	pud_t *pud;
197 
198 	pgd = pgd_offset_k(vaddr);
199 	pud = fill_pud(pgd, vaddr);
200 	return fill_pmd(pud, vaddr);
201 }
202 
203 pte_t * __init populate_extra_pte(unsigned long vaddr)
204 {
205 	pmd_t *pmd;
206 
207 	pmd = populate_extra_pmd(vaddr);
208 	return fill_pte(pmd, vaddr);
209 }
210 
211 /*
212  * Create large page table mappings for a range of physical addresses.
213  */
214 static void __init __init_extra_mapping(unsigned long phys, unsigned long size,
215 						pgprot_t prot)
216 {
217 	pgd_t *pgd;
218 	pud_t *pud;
219 	pmd_t *pmd;
220 
221 	BUG_ON((phys & ~PMD_MASK) || (size & ~PMD_MASK));
222 	for (; size; phys += PMD_SIZE, size -= PMD_SIZE) {
223 		pgd = pgd_offset_k((unsigned long)__va(phys));
224 		if (pgd_none(*pgd)) {
225 			pud = (pud_t *) spp_getpage();
226 			set_pgd(pgd, __pgd(__pa(pud) | _KERNPG_TABLE |
227 						_PAGE_USER));
228 		}
229 		pud = pud_offset(pgd, (unsigned long)__va(phys));
230 		if (pud_none(*pud)) {
231 			pmd = (pmd_t *) spp_getpage();
232 			set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE |
233 						_PAGE_USER));
234 		}
235 		pmd = pmd_offset(pud, phys);
236 		BUG_ON(!pmd_none(*pmd));
237 		set_pmd(pmd, __pmd(phys | pgprot_val(prot)));
238 	}
239 }
240 
241 void __init init_extra_mapping_wb(unsigned long phys, unsigned long size)
242 {
243 	__init_extra_mapping(phys, size, PAGE_KERNEL_LARGE);
244 }
245 
246 void __init init_extra_mapping_uc(unsigned long phys, unsigned long size)
247 {
248 	__init_extra_mapping(phys, size, PAGE_KERNEL_LARGE_NOCACHE);
249 }
250 
251 /*
252  * The head.S code sets up the kernel high mapping:
253  *
254  *   from __START_KERNEL_map to __START_KERNEL_map + size (== _end-_text)
255  *
256  * phys_addr holds the negative offset to the kernel, which is added
257  * to the compile time generated pmds. This results in invalid pmds up
258  * to the point where we hit the physaddr 0 mapping.
259  *
260  * We limit the mappings to the region from _text to _end.  _end is
261  * rounded up to the 2MB boundary. This catches the invalid pmds as
262  * well, as they are located before _text:
263  */
264 void __init cleanup_highmap(void)
265 {
266 	unsigned long vaddr = __START_KERNEL_map;
267 	unsigned long end = roundup((unsigned long)_end, PMD_SIZE) - 1;
268 	pmd_t *pmd = level2_kernel_pgt;
269 	pmd_t *last_pmd = pmd + PTRS_PER_PMD;
270 
271 	for (; pmd < last_pmd; pmd++, vaddr += PMD_SIZE) {
272 		if (pmd_none(*pmd))
273 			continue;
274 		if (vaddr < (unsigned long) _text || vaddr > end)
275 			set_pmd(pmd, __pmd(0));
276 	}
277 }
278 
279 static __ref void *alloc_low_page(unsigned long *phys)
280 {
281 	unsigned long pfn = e820_table_end++;
282 	void *adr;
283 
284 	if (after_bootmem) {
285 		adr = (void *)get_zeroed_page(GFP_ATOMIC | __GFP_NOTRACK);
286 		*phys = __pa(adr);
287 
288 		return adr;
289 	}
290 
291 	if (pfn >= e820_table_top)
292 		panic("alloc_low_page: ran out of memory");
293 
294 	adr = early_memremap(pfn * PAGE_SIZE, PAGE_SIZE);
295 	memset(adr, 0, PAGE_SIZE);
296 	*phys  = pfn * PAGE_SIZE;
297 	return adr;
298 }
299 
300 static __ref void unmap_low_page(void *adr)
301 {
302 	if (after_bootmem)
303 		return;
304 
305 	early_iounmap(adr, PAGE_SIZE);
306 }
307 
308 static unsigned long __meminit
309 phys_pte_init(pte_t *pte_page, unsigned long addr, unsigned long end,
310 	      pgprot_t prot)
311 {
312 	unsigned pages = 0;
313 	unsigned long last_map_addr = end;
314 	int i;
315 
316 	pte_t *pte = pte_page + pte_index(addr);
317 
318 	for(i = pte_index(addr); i < PTRS_PER_PTE; i++, addr += PAGE_SIZE, pte++) {
319 
320 		if (addr >= end) {
321 			if (!after_bootmem) {
322 				for(; i < PTRS_PER_PTE; i++, pte++)
323 					set_pte(pte, __pte(0));
324 			}
325 			break;
326 		}
327 
328 		/*
329 		 * We will re-use the existing mapping.
330 		 * Xen for example has some special requirements, like mapping
331 		 * pagetable pages as RO. So assume someone who pre-setup
332 		 * these mappings are more intelligent.
333 		 */
334 		if (pte_val(*pte)) {
335 			pages++;
336 			continue;
337 		}
338 
339 		if (0)
340 			printk("   pte=%p addr=%lx pte=%016lx\n",
341 			       pte, addr, pfn_pte(addr >> PAGE_SHIFT, PAGE_KERNEL).pte);
342 		pages++;
343 		set_pte(pte, pfn_pte(addr >> PAGE_SHIFT, prot));
344 		last_map_addr = (addr & PAGE_MASK) + PAGE_SIZE;
345 	}
346 
347 	update_page_count(PG_LEVEL_4K, pages);
348 
349 	return last_map_addr;
350 }
351 
352 static unsigned long __meminit
353 phys_pte_update(pmd_t *pmd, unsigned long address, unsigned long end,
354 		pgprot_t prot)
355 {
356 	pte_t *pte = (pte_t *)pmd_page_vaddr(*pmd);
357 
358 	return phys_pte_init(pte, address, end, prot);
359 }
360 
361 static unsigned long __meminit
362 phys_pmd_init(pmd_t *pmd_page, unsigned long address, unsigned long end,
363 	      unsigned long page_size_mask, pgprot_t prot)
364 {
365 	unsigned long pages = 0;
366 	unsigned long last_map_addr = end;
367 
368 	int i = pmd_index(address);
369 
370 	for (; i < PTRS_PER_PMD; i++, address += PMD_SIZE) {
371 		unsigned long pte_phys;
372 		pmd_t *pmd = pmd_page + pmd_index(address);
373 		pte_t *pte;
374 		pgprot_t new_prot = prot;
375 
376 		if (address >= end) {
377 			if (!after_bootmem) {
378 				for (; i < PTRS_PER_PMD; i++, pmd++)
379 					set_pmd(pmd, __pmd(0));
380 			}
381 			break;
382 		}
383 
384 		if (pmd_val(*pmd)) {
385 			if (!pmd_large(*pmd)) {
386 				spin_lock(&init_mm.page_table_lock);
387 				last_map_addr = phys_pte_update(pmd, address,
388 								end, prot);
389 				spin_unlock(&init_mm.page_table_lock);
390 				continue;
391 			}
392 			/*
393 			 * If we are ok with PG_LEVEL_2M mapping, then we will
394 			 * use the existing mapping,
395 			 *
396 			 * Otherwise, we will split the large page mapping but
397 			 * use the same existing protection bits except for
398 			 * large page, so that we don't violate Intel's TLB
399 			 * Application note (317080) which says, while changing
400 			 * the page sizes, new and old translations should
401 			 * not differ with respect to page frame and
402 			 * attributes.
403 			 */
404 			if (page_size_mask & (1 << PG_LEVEL_2M)) {
405 				pages++;
406 				continue;
407 			}
408 			new_prot = pte_pgprot(pte_clrhuge(*(pte_t *)pmd));
409 		}
410 
411 		if (page_size_mask & (1<<PG_LEVEL_2M)) {
412 			pages++;
413 			spin_lock(&init_mm.page_table_lock);
414 			set_pte((pte_t *)pmd,
415 				pfn_pte(address >> PAGE_SHIFT,
416 					__pgprot(pgprot_val(prot) | _PAGE_PSE)));
417 			spin_unlock(&init_mm.page_table_lock);
418 			last_map_addr = (address & PMD_MASK) + PMD_SIZE;
419 			continue;
420 		}
421 
422 		pte = alloc_low_page(&pte_phys);
423 		last_map_addr = phys_pte_init(pte, address, end, new_prot);
424 		unmap_low_page(pte);
425 
426 		spin_lock(&init_mm.page_table_lock);
427 		pmd_populate_kernel(&init_mm, pmd, __va(pte_phys));
428 		spin_unlock(&init_mm.page_table_lock);
429 	}
430 	update_page_count(PG_LEVEL_2M, pages);
431 	return last_map_addr;
432 }
433 
434 static unsigned long __meminit
435 phys_pmd_update(pud_t *pud, unsigned long address, unsigned long end,
436 		unsigned long page_size_mask, pgprot_t prot)
437 {
438 	pmd_t *pmd = pmd_offset(pud, 0);
439 	unsigned long last_map_addr;
440 
441 	last_map_addr = phys_pmd_init(pmd, address, end, page_size_mask, prot);
442 	__flush_tlb_all();
443 	return last_map_addr;
444 }
445 
446 static unsigned long __meminit
447 phys_pud_init(pud_t *pud_page, unsigned long addr, unsigned long end,
448 			 unsigned long page_size_mask)
449 {
450 	unsigned long pages = 0;
451 	unsigned long last_map_addr = end;
452 	int i = pud_index(addr);
453 
454 	for (; i < PTRS_PER_PUD; i++, addr = (addr & PUD_MASK) + PUD_SIZE) {
455 		unsigned long pmd_phys;
456 		pud_t *pud = pud_page + pud_index(addr);
457 		pmd_t *pmd;
458 		pgprot_t prot = PAGE_KERNEL;
459 
460 		if (addr >= end)
461 			break;
462 
463 		if (!after_bootmem &&
464 				!e820_any_mapped(addr, addr+PUD_SIZE, 0)) {
465 			set_pud(pud, __pud(0));
466 			continue;
467 		}
468 
469 		if (pud_val(*pud)) {
470 			if (!pud_large(*pud)) {
471 				last_map_addr = phys_pmd_update(pud, addr, end,
472 							 page_size_mask, prot);
473 				continue;
474 			}
475 			/*
476 			 * If we are ok with PG_LEVEL_1G mapping, then we will
477 			 * use the existing mapping.
478 			 *
479 			 * Otherwise, we will split the gbpage mapping but use
480 			 * the same existing protection  bits except for large
481 			 * page, so that we don't violate Intel's TLB
482 			 * Application note (317080) which says, while changing
483 			 * the page sizes, new and old translations should
484 			 * not differ with respect to page frame and
485 			 * attributes.
486 			 */
487 			if (page_size_mask & (1 << PG_LEVEL_1G)) {
488 				pages++;
489 				continue;
490 			}
491 			prot = pte_pgprot(pte_clrhuge(*(pte_t *)pud));
492 		}
493 
494 		if (page_size_mask & (1<<PG_LEVEL_1G)) {
495 			pages++;
496 			spin_lock(&init_mm.page_table_lock);
497 			set_pte((pte_t *)pud,
498 				pfn_pte(addr >> PAGE_SHIFT, PAGE_KERNEL_LARGE));
499 			spin_unlock(&init_mm.page_table_lock);
500 			last_map_addr = (addr & PUD_MASK) + PUD_SIZE;
501 			continue;
502 		}
503 
504 		pmd = alloc_low_page(&pmd_phys);
505 		last_map_addr = phys_pmd_init(pmd, addr, end, page_size_mask,
506 					      prot);
507 		unmap_low_page(pmd);
508 
509 		spin_lock(&init_mm.page_table_lock);
510 		pud_populate(&init_mm, pud, __va(pmd_phys));
511 		spin_unlock(&init_mm.page_table_lock);
512 	}
513 	__flush_tlb_all();
514 
515 	update_page_count(PG_LEVEL_1G, pages);
516 
517 	return last_map_addr;
518 }
519 
520 static unsigned long __meminit
521 phys_pud_update(pgd_t *pgd, unsigned long addr, unsigned long end,
522 		 unsigned long page_size_mask)
523 {
524 	pud_t *pud;
525 
526 	pud = (pud_t *)pgd_page_vaddr(*pgd);
527 
528 	return phys_pud_init(pud, addr, end, page_size_mask);
529 }
530 
531 unsigned long __meminit
532 kernel_physical_mapping_init(unsigned long start,
533 			     unsigned long end,
534 			     unsigned long page_size_mask)
535 {
536 
537 	unsigned long next, last_map_addr = end;
538 
539 	start = (unsigned long)__va(start);
540 	end = (unsigned long)__va(end);
541 
542 	for (; start < end; start = next) {
543 		pgd_t *pgd = pgd_offset_k(start);
544 		unsigned long pud_phys;
545 		pud_t *pud;
546 
547 		next = (start + PGDIR_SIZE) & PGDIR_MASK;
548 		if (next > end)
549 			next = end;
550 
551 		if (pgd_val(*pgd)) {
552 			last_map_addr = phys_pud_update(pgd, __pa(start),
553 						 __pa(end), page_size_mask);
554 			continue;
555 		}
556 
557 		pud = alloc_low_page(&pud_phys);
558 		last_map_addr = phys_pud_init(pud, __pa(start), __pa(next),
559 						 page_size_mask);
560 		unmap_low_page(pud);
561 
562 		spin_lock(&init_mm.page_table_lock);
563 		pgd_populate(&init_mm, pgd, __va(pud_phys));
564 		spin_unlock(&init_mm.page_table_lock);
565 	}
566 	__flush_tlb_all();
567 
568 	return last_map_addr;
569 }
570 
571 #ifndef CONFIG_NUMA
572 void __init initmem_init(unsigned long start_pfn, unsigned long end_pfn,
573 				int acpi, int k8)
574 {
575 	unsigned long bootmap_size, bootmap;
576 
577 	bootmap_size = bootmem_bootmap_pages(end_pfn)<<PAGE_SHIFT;
578 	bootmap = find_e820_area(0, end_pfn<<PAGE_SHIFT, bootmap_size,
579 				 PAGE_SIZE);
580 	if (bootmap == -1L)
581 		panic("Cannot find bootmem map of size %ld\n", bootmap_size);
582 	/* don't touch min_low_pfn */
583 	bootmap_size = init_bootmem_node(NODE_DATA(0), bootmap >> PAGE_SHIFT,
584 					 0, end_pfn);
585 	e820_register_active_regions(0, start_pfn, end_pfn);
586 	free_bootmem_with_active_regions(0, end_pfn);
587 	early_res_to_bootmem(0, end_pfn<<PAGE_SHIFT);
588 	reserve_bootmem(bootmap, bootmap_size, BOOTMEM_DEFAULT);
589 }
590 #endif
591 
592 void __init paging_init(void)
593 {
594 	unsigned long max_zone_pfns[MAX_NR_ZONES];
595 
596 	memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
597 	max_zone_pfns[ZONE_DMA] = MAX_DMA_PFN;
598 	max_zone_pfns[ZONE_DMA32] = MAX_DMA32_PFN;
599 	max_zone_pfns[ZONE_NORMAL] = max_pfn;
600 
601 	sparse_memory_present_with_active_regions(MAX_NUMNODES);
602 	sparse_init();
603 
604 	/*
605 	 * clear the default setting with node 0
606 	 * note: don't use nodes_clear here, that is really clearing when
607 	 *	 numa support is not compiled in, and later node_set_state
608 	 *	 will not set it back.
609 	 */
610 	node_clear_state(0, N_NORMAL_MEMORY);
611 
612 	free_area_init_nodes(max_zone_pfns);
613 }
614 
615 /*
616  * Memory hotplug specific functions
617  */
618 #ifdef CONFIG_MEMORY_HOTPLUG
619 /*
620  * After memory hotplug the variables max_pfn, max_low_pfn and high_memory need
621  * updating.
622  */
623 static void  update_end_of_memory_vars(u64 start, u64 size)
624 {
625 	unsigned long end_pfn = PFN_UP(start + size);
626 
627 	if (end_pfn > max_pfn) {
628 		max_pfn = end_pfn;
629 		max_low_pfn = end_pfn;
630 		high_memory = (void *)__va(max_pfn * PAGE_SIZE - 1) + 1;
631 	}
632 }
633 
634 /*
635  * Memory is added always to NORMAL zone. This means you will never get
636  * additional DMA/DMA32 memory.
637  */
638 int arch_add_memory(int nid, u64 start, u64 size)
639 {
640 	struct pglist_data *pgdat = NODE_DATA(nid);
641 	struct zone *zone = pgdat->node_zones + ZONE_NORMAL;
642 	unsigned long last_mapped_pfn, start_pfn = start >> PAGE_SHIFT;
643 	unsigned long nr_pages = size >> PAGE_SHIFT;
644 	int ret;
645 
646 	last_mapped_pfn = init_memory_mapping(start, start + size);
647 	if (last_mapped_pfn > max_pfn_mapped)
648 		max_pfn_mapped = last_mapped_pfn;
649 
650 	ret = __add_pages(nid, zone, start_pfn, nr_pages);
651 	WARN_ON_ONCE(ret);
652 
653 	/* update max_pfn, max_low_pfn and high_memory */
654 	update_end_of_memory_vars(start, size);
655 
656 	return ret;
657 }
658 EXPORT_SYMBOL_GPL(arch_add_memory);
659 
660 #if !defined(CONFIG_ACPI_NUMA) && defined(CONFIG_NUMA)
661 int memory_add_physaddr_to_nid(u64 start)
662 {
663 	return 0;
664 }
665 EXPORT_SYMBOL_GPL(memory_add_physaddr_to_nid);
666 #endif
667 
668 #endif /* CONFIG_MEMORY_HOTPLUG */
669 
670 static struct kcore_list kcore_vsyscall;
671 
672 void __init mem_init(void)
673 {
674 	long codesize, reservedpages, datasize, initsize;
675 	unsigned long absent_pages;
676 
677 	pci_iommu_alloc();
678 
679 	/* clear_bss() already clear the empty_zero_page */
680 
681 	reservedpages = 0;
682 
683 	/* this will put all low memory onto the freelists */
684 #ifdef CONFIG_NUMA
685 	totalram_pages = numa_free_all_bootmem();
686 #else
687 	totalram_pages = free_all_bootmem();
688 #endif
689 
690 	absent_pages = absent_pages_in_range(0, max_pfn);
691 	reservedpages = max_pfn - totalram_pages - absent_pages;
692 	after_bootmem = 1;
693 
694 	codesize =  (unsigned long) &_etext - (unsigned long) &_text;
695 	datasize =  (unsigned long) &_edata - (unsigned long) &_etext;
696 	initsize =  (unsigned long) &__init_end - (unsigned long) &__init_begin;
697 
698 	/* Register memory areas for /proc/kcore */
699 	kclist_add(&kcore_vsyscall, (void *)VSYSCALL_START,
700 			 VSYSCALL_END - VSYSCALL_START, KCORE_OTHER);
701 
702 	printk(KERN_INFO "Memory: %luk/%luk available (%ldk kernel code, "
703 			 "%ldk absent, %ldk reserved, %ldk data, %ldk init)\n",
704 		nr_free_pages() << (PAGE_SHIFT-10),
705 		max_pfn << (PAGE_SHIFT-10),
706 		codesize >> 10,
707 		absent_pages << (PAGE_SHIFT-10),
708 		reservedpages << (PAGE_SHIFT-10),
709 		datasize >> 10,
710 		initsize >> 10);
711 }
712 
713 #ifdef CONFIG_DEBUG_RODATA
714 const int rodata_test_data = 0xC3;
715 EXPORT_SYMBOL_GPL(rodata_test_data);
716 
717 int kernel_set_to_readonly;
718 
719 void set_kernel_text_rw(void)
720 {
721 	unsigned long start = PFN_ALIGN(_text);
722 	unsigned long end = PFN_ALIGN(__stop___ex_table);
723 
724 	if (!kernel_set_to_readonly)
725 		return;
726 
727 	pr_debug("Set kernel text: %lx - %lx for read write\n",
728 		 start, end);
729 
730 	/*
731 	 * Make the kernel identity mapping for text RW. Kernel text
732 	 * mapping will always be RO. Refer to the comment in
733 	 * static_protections() in pageattr.c
734 	 */
735 	set_memory_rw(start, (end - start) >> PAGE_SHIFT);
736 }
737 
738 void set_kernel_text_ro(void)
739 {
740 	unsigned long start = PFN_ALIGN(_text);
741 	unsigned long end = PFN_ALIGN(__stop___ex_table);
742 
743 	if (!kernel_set_to_readonly)
744 		return;
745 
746 	pr_debug("Set kernel text: %lx - %lx for read only\n",
747 		 start, end);
748 
749 	/*
750 	 * Set the kernel identity mapping for text RO.
751 	 */
752 	set_memory_ro(start, (end - start) >> PAGE_SHIFT);
753 }
754 
755 void mark_rodata_ro(void)
756 {
757 	unsigned long start = PFN_ALIGN(_text);
758 	unsigned long rodata_start =
759 		((unsigned long)__start_rodata + PAGE_SIZE - 1) & PAGE_MASK;
760 	unsigned long end = (unsigned long) &__end_rodata_hpage_align;
761 	unsigned long text_end = PAGE_ALIGN((unsigned long) &__stop___ex_table);
762 	unsigned long rodata_end = PAGE_ALIGN((unsigned long) &__end_rodata);
763 	unsigned long data_start = (unsigned long) &_sdata;
764 
765 	printk(KERN_INFO "Write protecting the kernel read-only data: %luk\n",
766 	       (end - start) >> 10);
767 	set_memory_ro(start, (end - start) >> PAGE_SHIFT);
768 
769 	kernel_set_to_readonly = 1;
770 
771 	/*
772 	 * The rodata section (but not the kernel text!) should also be
773 	 * not-executable.
774 	 */
775 	set_memory_nx(rodata_start, (end - rodata_start) >> PAGE_SHIFT);
776 
777 	rodata_test();
778 
779 #ifdef CONFIG_CPA_DEBUG
780 	printk(KERN_INFO "Testing CPA: undo %lx-%lx\n", start, end);
781 	set_memory_rw(start, (end-start) >> PAGE_SHIFT);
782 
783 	printk(KERN_INFO "Testing CPA: again\n");
784 	set_memory_ro(start, (end-start) >> PAGE_SHIFT);
785 #endif
786 
787 	free_init_pages("unused kernel memory",
788 			(unsigned long) page_address(virt_to_page(text_end)),
789 			(unsigned long)
790 				 page_address(virt_to_page(rodata_start)));
791 	free_init_pages("unused kernel memory",
792 			(unsigned long) page_address(virt_to_page(rodata_end)),
793 			(unsigned long) page_address(virt_to_page(data_start)));
794 }
795 
796 #endif
797 
798 int __init reserve_bootmem_generic(unsigned long phys, unsigned long len,
799 				   int flags)
800 {
801 #ifdef CONFIG_NUMA
802 	int nid, next_nid;
803 	int ret;
804 #endif
805 	unsigned long pfn = phys >> PAGE_SHIFT;
806 
807 	if (pfn >= max_pfn) {
808 		/*
809 		 * This can happen with kdump kernels when accessing
810 		 * firmware tables:
811 		 */
812 		if (pfn < max_pfn_mapped)
813 			return -EFAULT;
814 
815 		printk(KERN_ERR "reserve_bootmem: illegal reserve %lx %lu\n",
816 				phys, len);
817 		return -EFAULT;
818 	}
819 
820 	/* Should check here against the e820 map to avoid double free */
821 #ifdef CONFIG_NUMA
822 	nid = phys_to_nid(phys);
823 	next_nid = phys_to_nid(phys + len - 1);
824 	if (nid == next_nid)
825 		ret = reserve_bootmem_node(NODE_DATA(nid), phys, len, flags);
826 	else
827 		ret = reserve_bootmem(phys, len, flags);
828 
829 	if (ret != 0)
830 		return ret;
831 
832 #else
833 	reserve_bootmem(phys, len, flags);
834 #endif
835 
836 	if (phys+len <= MAX_DMA_PFN*PAGE_SIZE) {
837 		dma_reserve += len / PAGE_SIZE;
838 		set_dma_reserve(dma_reserve);
839 	}
840 
841 	return 0;
842 }
843 
844 int kern_addr_valid(unsigned long addr)
845 {
846 	unsigned long above = ((long)addr) >> __VIRTUAL_MASK_SHIFT;
847 	pgd_t *pgd;
848 	pud_t *pud;
849 	pmd_t *pmd;
850 	pte_t *pte;
851 
852 	if (above != 0 && above != -1UL)
853 		return 0;
854 
855 	pgd = pgd_offset_k(addr);
856 	if (pgd_none(*pgd))
857 		return 0;
858 
859 	pud = pud_offset(pgd, addr);
860 	if (pud_none(*pud))
861 		return 0;
862 
863 	pmd = pmd_offset(pud, addr);
864 	if (pmd_none(*pmd))
865 		return 0;
866 
867 	if (pmd_large(*pmd))
868 		return pfn_valid(pmd_pfn(*pmd));
869 
870 	pte = pte_offset_kernel(pmd, addr);
871 	if (pte_none(*pte))
872 		return 0;
873 
874 	return pfn_valid(pte_pfn(*pte));
875 }
876 
877 /*
878  * A pseudo VMA to allow ptrace access for the vsyscall page.  This only
879  * covers the 64bit vsyscall page now. 32bit has a real VMA now and does
880  * not need special handling anymore:
881  */
882 static struct vm_area_struct gate_vma = {
883 	.vm_start	= VSYSCALL_START,
884 	.vm_end		= VSYSCALL_START + (VSYSCALL_MAPPED_PAGES * PAGE_SIZE),
885 	.vm_page_prot	= PAGE_READONLY_EXEC,
886 	.vm_flags	= VM_READ | VM_EXEC
887 };
888 
889 struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
890 {
891 #ifdef CONFIG_IA32_EMULATION
892 	if (test_tsk_thread_flag(tsk, TIF_IA32))
893 		return NULL;
894 #endif
895 	return &gate_vma;
896 }
897 
898 int in_gate_area(struct task_struct *task, unsigned long addr)
899 {
900 	struct vm_area_struct *vma = get_gate_vma(task);
901 
902 	if (!vma)
903 		return 0;
904 
905 	return (addr >= vma->vm_start) && (addr < vma->vm_end);
906 }
907 
908 /*
909  * Use this when you have no reliable task/vma, typically from interrupt
910  * context. It is less reliable than using the task's vma and may give
911  * false positives:
912  */
913 int in_gate_area_no_task(unsigned long addr)
914 {
915 	return (addr >= VSYSCALL_START) && (addr < VSYSCALL_END);
916 }
917 
918 const char *arch_vma_name(struct vm_area_struct *vma)
919 {
920 	if (vma->vm_mm && vma->vm_start == (long)vma->vm_mm->context.vdso)
921 		return "[vdso]";
922 	if (vma == &gate_vma)
923 		return "[vsyscall]";
924 	return NULL;
925 }
926 
927 #ifdef CONFIG_SPARSEMEM_VMEMMAP
928 /*
929  * Initialise the sparsemem vmemmap using huge-pages at the PMD level.
930  */
931 static long __meminitdata addr_start, addr_end;
932 static void __meminitdata *p_start, *p_end;
933 static int __meminitdata node_start;
934 
935 int __meminit
936 vmemmap_populate(struct page *start_page, unsigned long size, int node)
937 {
938 	unsigned long addr = (unsigned long)start_page;
939 	unsigned long end = (unsigned long)(start_page + size);
940 	unsigned long next;
941 	pgd_t *pgd;
942 	pud_t *pud;
943 	pmd_t *pmd;
944 
945 	for (; addr < end; addr = next) {
946 		void *p = NULL;
947 
948 		pgd = vmemmap_pgd_populate(addr, node);
949 		if (!pgd)
950 			return -ENOMEM;
951 
952 		pud = vmemmap_pud_populate(pgd, addr, node);
953 		if (!pud)
954 			return -ENOMEM;
955 
956 		if (!cpu_has_pse) {
957 			next = (addr + PAGE_SIZE) & PAGE_MASK;
958 			pmd = vmemmap_pmd_populate(pud, addr, node);
959 
960 			if (!pmd)
961 				return -ENOMEM;
962 
963 			p = vmemmap_pte_populate(pmd, addr, node);
964 
965 			if (!p)
966 				return -ENOMEM;
967 
968 			addr_end = addr + PAGE_SIZE;
969 			p_end = p + PAGE_SIZE;
970 		} else {
971 			next = pmd_addr_end(addr, end);
972 
973 			pmd = pmd_offset(pud, addr);
974 			if (pmd_none(*pmd)) {
975 				pte_t entry;
976 
977 				p = vmemmap_alloc_block(PMD_SIZE, node);
978 				if (!p)
979 					return -ENOMEM;
980 
981 				entry = pfn_pte(__pa(p) >> PAGE_SHIFT,
982 						PAGE_KERNEL_LARGE);
983 				set_pmd(pmd, __pmd(pte_val(entry)));
984 
985 				/* check to see if we have contiguous blocks */
986 				if (p_end != p || node_start != node) {
987 					if (p_start)
988 						printk(KERN_DEBUG " [%lx-%lx] PMD -> [%p-%p] on node %d\n",
989 						       addr_start, addr_end-1, p_start, p_end-1, node_start);
990 					addr_start = addr;
991 					node_start = node;
992 					p_start = p;
993 				}
994 
995 				addr_end = addr + PMD_SIZE;
996 				p_end = p + PMD_SIZE;
997 			} else
998 				vmemmap_verify((pte_t *)pmd, node, addr, next);
999 		}
1000 
1001 	}
1002 	return 0;
1003 }
1004 
1005 void __meminit vmemmap_populate_print_last(void)
1006 {
1007 	if (p_start) {
1008 		printk(KERN_DEBUG " [%lx-%lx] PMD -> [%p-%p] on node %d\n",
1009 			addr_start, addr_end-1, p_start, p_end-1, node_start);
1010 		p_start = NULL;
1011 		p_end = NULL;
1012 		node_start = 0;
1013 	}
1014 }
1015 #endif
1016