xref: /linux/arch/x86/mm/init_64.c (revision 7fc2cd2e4b398c57c9cf961cfea05eadbf34c05c)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/arch/x86_64/mm/init.c
4  *
5  *  Copyright (C) 1995  Linus Torvalds
6  *  Copyright (C) 2000  Pavel Machek <pavel@ucw.cz>
7  *  Copyright (C) 2002,2003 Andi Kleen <ak@suse.de>
8  */
9 
10 #include <linux/signal.h>
11 #include <linux/sched.h>
12 #include <linux/kernel.h>
13 #include <linux/errno.h>
14 #include <linux/string.h>
15 #include <linux/types.h>
16 #include <linux/ptrace.h>
17 #include <linux/mman.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/smp.h>
21 #include <linux/init.h>
22 #include <linux/initrd.h>
23 #include <linux/pagemap.h>
24 #include <linux/memblock.h>
25 #include <linux/proc_fs.h>
26 #include <linux/pci.h>
27 #include <linux/pfn.h>
28 #include <linux/poison.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/memory.h>
31 #include <linux/memory_hotplug.h>
32 #include <linux/memremap.h>
33 #include <linux/nmi.h>
34 #include <linux/gfp.h>
35 #include <linux/kcore.h>
36 #include <linux/bootmem_info.h>
37 
38 #include <asm/processor.h>
39 #include <asm/bios_ebda.h>
40 #include <linux/uaccess.h>
41 #include <asm/pgalloc.h>
42 #include <asm/dma.h>
43 #include <asm/fixmap.h>
44 #include <asm/e820/api.h>
45 #include <asm/apic.h>
46 #include <asm/tlb.h>
47 #include <asm/mmu_context.h>
48 #include <asm/proto.h>
49 #include <asm/smp.h>
50 #include <asm/sections.h>
51 #include <asm/kdebug.h>
52 #include <asm/numa.h>
53 #include <asm/set_memory.h>
54 #include <asm/init.h>
55 #include <asm/uv/uv.h>
56 #include <asm/setup.h>
57 #include <asm/ftrace.h>
58 
59 #include "mm_internal.h"
60 
61 #include "ident_map.c"
62 
63 #define DEFINE_POPULATE(fname, type1, type2, init)		\
64 static inline void fname##_init(struct mm_struct *mm,		\
65 		type1##_t *arg1, type2##_t *arg2, bool init)	\
66 {								\
67 	if (init)						\
68 		fname##_safe(mm, arg1, arg2);			\
69 	else							\
70 		fname(mm, arg1, arg2);				\
71 }
72 
73 DEFINE_POPULATE(p4d_populate, p4d, pud, init)
74 DEFINE_POPULATE(pgd_populate, pgd, p4d, init)
75 DEFINE_POPULATE(pud_populate, pud, pmd, init)
76 DEFINE_POPULATE(pmd_populate_kernel, pmd, pte, init)
77 
78 #define DEFINE_ENTRY(type1, type2, init)			\
79 static inline void set_##type1##_init(type1##_t *arg1,		\
80 			type2##_t arg2, bool init)		\
81 {								\
82 	if (init)						\
83 		set_##type1##_safe(arg1, arg2);			\
84 	else							\
85 		set_##type1(arg1, arg2);			\
86 }
87 
88 DEFINE_ENTRY(p4d, p4d, init)
89 DEFINE_ENTRY(pud, pud, init)
90 DEFINE_ENTRY(pmd, pmd, init)
91 DEFINE_ENTRY(pte, pte, init)
92 
93 static inline pgprot_t prot_sethuge(pgprot_t prot)
94 {
95 	WARN_ON_ONCE(pgprot_val(prot) & _PAGE_PAT);
96 
97 	return __pgprot(pgprot_val(prot) | _PAGE_PSE);
98 }
99 
100 /*
101  * NOTE: pagetable_init alloc all the fixmap pagetables contiguous on the
102  * physical space so we can cache the place of the first one and move
103  * around without checking the pgd every time.
104  */
105 
106 /* Bits supported by the hardware: */
107 pteval_t __supported_pte_mask __read_mostly = ~0;
108 /* Bits allowed in normal kernel mappings: */
109 pteval_t __default_kernel_pte_mask __read_mostly = ~0;
110 EXPORT_SYMBOL_GPL(__supported_pte_mask);
111 /* Used in PAGE_KERNEL_* macros which are reasonably used out-of-tree: */
112 EXPORT_SYMBOL(__default_kernel_pte_mask);
113 
114 int force_personality32;
115 
116 /*
117  * noexec32=on|off
118  * Control non executable heap for 32bit processes.
119  *
120  * on	PROT_READ does not imply PROT_EXEC for 32-bit processes (default)
121  * off	PROT_READ implies PROT_EXEC
122  */
123 static int __init nonx32_setup(char *str)
124 {
125 	if (!strcmp(str, "on"))
126 		force_personality32 &= ~READ_IMPLIES_EXEC;
127 	else if (!strcmp(str, "off"))
128 		force_personality32 |= READ_IMPLIES_EXEC;
129 	return 1;
130 }
131 __setup("noexec32=", nonx32_setup);
132 
133 static void sync_global_pgds_l5(unsigned long start, unsigned long end)
134 {
135 	unsigned long addr;
136 
137 	for (addr = start; addr <= end; addr = ALIGN(addr + 1, PGDIR_SIZE)) {
138 		const pgd_t *pgd_ref = pgd_offset_k(addr);
139 		struct page *page;
140 
141 		/* Check for overflow */
142 		if (addr < start)
143 			break;
144 
145 		if (pgd_none(*pgd_ref))
146 			continue;
147 
148 		spin_lock(&pgd_lock);
149 		list_for_each_entry(page, &pgd_list, lru) {
150 			pgd_t *pgd;
151 			spinlock_t *pgt_lock;
152 
153 			pgd = (pgd_t *)page_address(page) + pgd_index(addr);
154 			/* the pgt_lock only for Xen */
155 			pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
156 			spin_lock(pgt_lock);
157 
158 			if (!pgd_none(*pgd_ref) && !pgd_none(*pgd))
159 				BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref));
160 
161 			if (pgd_none(*pgd))
162 				set_pgd(pgd, *pgd_ref);
163 
164 			spin_unlock(pgt_lock);
165 		}
166 		spin_unlock(&pgd_lock);
167 	}
168 }
169 
170 static void sync_global_pgds_l4(unsigned long start, unsigned long end)
171 {
172 	unsigned long addr;
173 
174 	for (addr = start; addr <= end; addr = ALIGN(addr + 1, PGDIR_SIZE)) {
175 		pgd_t *pgd_ref = pgd_offset_k(addr);
176 		const p4d_t *p4d_ref;
177 		struct page *page;
178 
179 		/*
180 		 * With folded p4d, pgd_none() is always false, we need to
181 		 * handle synchronization on p4d level.
182 		 */
183 		MAYBE_BUILD_BUG_ON(pgd_none(*pgd_ref));
184 		p4d_ref = p4d_offset(pgd_ref, addr);
185 
186 		if (p4d_none(*p4d_ref))
187 			continue;
188 
189 		spin_lock(&pgd_lock);
190 		list_for_each_entry(page, &pgd_list, lru) {
191 			pgd_t *pgd;
192 			p4d_t *p4d;
193 			spinlock_t *pgt_lock;
194 
195 			pgd = (pgd_t *)page_address(page) + pgd_index(addr);
196 			p4d = p4d_offset(pgd, addr);
197 			/* the pgt_lock only for Xen */
198 			pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
199 			spin_lock(pgt_lock);
200 
201 			if (!p4d_none(*p4d_ref) && !p4d_none(*p4d))
202 				BUG_ON(p4d_pgtable(*p4d)
203 				       != p4d_pgtable(*p4d_ref));
204 
205 			if (p4d_none(*p4d))
206 				set_p4d(p4d, *p4d_ref);
207 
208 			spin_unlock(pgt_lock);
209 		}
210 		spin_unlock(&pgd_lock);
211 	}
212 }
213 
214 /*
215  * When memory was added make sure all the processes MM have
216  * suitable PGD entries in the local PGD level page.
217  */
218 static void sync_global_pgds(unsigned long start, unsigned long end)
219 {
220 	if (pgtable_l5_enabled())
221 		sync_global_pgds_l5(start, end);
222 	else
223 		sync_global_pgds_l4(start, end);
224 }
225 
226 /*
227  * Make kernel mappings visible in all page tables in the system.
228  * This is necessary except when the init task populates kernel mappings
229  * during the boot process. In that case, all processes originating from
230  * the init task copies the kernel mappings, so there is no issue.
231  * Otherwise, missing synchronization could lead to kernel crashes due
232  * to missing page table entries for certain kernel mappings.
233  *
234  * Synchronization is performed at the top level, which is the PGD in
235  * 5-level paging systems. But in 4-level paging systems, however,
236  * pgd_populate() is a no-op, so synchronization is done at the P4D level.
237  * sync_global_pgds() handles this difference between paging levels.
238  */
239 void arch_sync_kernel_mappings(unsigned long start, unsigned long end)
240 {
241 	sync_global_pgds(start, end);
242 }
243 
244 /*
245  * NOTE: This function is marked __ref because it calls __init function
246  * (alloc_bootmem_pages). It's safe to do it ONLY when after_bootmem == 0.
247  */
248 static __ref void *spp_getpage(void)
249 {
250 	void *ptr;
251 
252 	if (after_bootmem)
253 		ptr = (void *) get_zeroed_page(GFP_ATOMIC);
254 	else
255 		ptr = memblock_alloc(PAGE_SIZE, PAGE_SIZE);
256 
257 	if (!ptr || ((unsigned long)ptr & ~PAGE_MASK)) {
258 		panic("set_pte_phys: cannot allocate page data %s\n",
259 			after_bootmem ? "after bootmem" : "");
260 	}
261 
262 	pr_debug("spp_getpage %p\n", ptr);
263 
264 	return ptr;
265 }
266 
267 static p4d_t *fill_p4d(pgd_t *pgd, unsigned long vaddr)
268 {
269 	if (pgd_none(*pgd)) {
270 		p4d_t *p4d = (p4d_t *)spp_getpage();
271 		pgd_populate(&init_mm, pgd, p4d);
272 		if (p4d != p4d_offset(pgd, 0))
273 			printk(KERN_ERR "PAGETABLE BUG #00! %p <-> %p\n",
274 			       p4d, p4d_offset(pgd, 0));
275 	}
276 	return p4d_offset(pgd, vaddr);
277 }
278 
279 static pud_t *fill_pud(p4d_t *p4d, unsigned long vaddr)
280 {
281 	if (p4d_none(*p4d)) {
282 		pud_t *pud = (pud_t *)spp_getpage();
283 		p4d_populate(&init_mm, p4d, pud);
284 		if (pud != pud_offset(p4d, 0))
285 			printk(KERN_ERR "PAGETABLE BUG #01! %p <-> %p\n",
286 			       pud, pud_offset(p4d, 0));
287 	}
288 	return pud_offset(p4d, vaddr);
289 }
290 
291 static pmd_t *fill_pmd(pud_t *pud, unsigned long vaddr)
292 {
293 	if (pud_none(*pud)) {
294 		pmd_t *pmd = (pmd_t *) spp_getpage();
295 		pud_populate(&init_mm, pud, pmd);
296 		if (pmd != pmd_offset(pud, 0))
297 			printk(KERN_ERR "PAGETABLE BUG #02! %p <-> %p\n",
298 			       pmd, pmd_offset(pud, 0));
299 	}
300 	return pmd_offset(pud, vaddr);
301 }
302 
303 static pte_t *fill_pte(pmd_t *pmd, unsigned long vaddr)
304 {
305 	if (pmd_none(*pmd)) {
306 		pte_t *pte = (pte_t *) spp_getpage();
307 		pmd_populate_kernel(&init_mm, pmd, pte);
308 		if (pte != pte_offset_kernel(pmd, 0))
309 			printk(KERN_ERR "PAGETABLE BUG #03!\n");
310 	}
311 	return pte_offset_kernel(pmd, vaddr);
312 }
313 
314 static void __set_pte_vaddr(pud_t *pud, unsigned long vaddr, pte_t new_pte)
315 {
316 	pmd_t *pmd = fill_pmd(pud, vaddr);
317 	pte_t *pte = fill_pte(pmd, vaddr);
318 
319 	set_pte(pte, new_pte);
320 
321 	/*
322 	 * It's enough to flush this one mapping.
323 	 * (PGE mappings get flushed as well)
324 	 */
325 	flush_tlb_one_kernel(vaddr);
326 }
327 
328 void set_pte_vaddr_p4d(p4d_t *p4d_page, unsigned long vaddr, pte_t new_pte)
329 {
330 	p4d_t *p4d = p4d_page + p4d_index(vaddr);
331 	pud_t *pud = fill_pud(p4d, vaddr);
332 
333 	__set_pte_vaddr(pud, vaddr, new_pte);
334 }
335 
336 void set_pte_vaddr_pud(pud_t *pud_page, unsigned long vaddr, pte_t new_pte)
337 {
338 	pud_t *pud = pud_page + pud_index(vaddr);
339 
340 	__set_pte_vaddr(pud, vaddr, new_pte);
341 }
342 
343 void set_pte_vaddr(unsigned long vaddr, pte_t pteval)
344 {
345 	pgd_t *pgd;
346 	p4d_t *p4d_page;
347 
348 	pr_debug("set_pte_vaddr %lx to %lx\n", vaddr, native_pte_val(pteval));
349 
350 	pgd = pgd_offset_k(vaddr);
351 	if (pgd_none(*pgd)) {
352 		printk(KERN_ERR
353 			"PGD FIXMAP MISSING, it should be setup in head.S!\n");
354 		return;
355 	}
356 
357 	p4d_page = p4d_offset(pgd, 0);
358 	set_pte_vaddr_p4d(p4d_page, vaddr, pteval);
359 }
360 
361 pmd_t * __init populate_extra_pmd(unsigned long vaddr)
362 {
363 	pgd_t *pgd;
364 	p4d_t *p4d;
365 	pud_t *pud;
366 
367 	pgd = pgd_offset_k(vaddr);
368 	p4d = fill_p4d(pgd, vaddr);
369 	pud = fill_pud(p4d, vaddr);
370 	return fill_pmd(pud, vaddr);
371 }
372 
373 pte_t * __init populate_extra_pte(unsigned long vaddr)
374 {
375 	pmd_t *pmd;
376 
377 	pmd = populate_extra_pmd(vaddr);
378 	return fill_pte(pmd, vaddr);
379 }
380 
381 /*
382  * Create large page table mappings for a range of physical addresses.
383  */
384 static void __init __init_extra_mapping(unsigned long phys, unsigned long size,
385 					enum page_cache_mode cache)
386 {
387 	pgd_t *pgd;
388 	p4d_t *p4d;
389 	pud_t *pud;
390 	pmd_t *pmd;
391 	pgprot_t prot;
392 
393 	pgprot_val(prot) = pgprot_val(PAGE_KERNEL_LARGE) |
394 		protval_4k_2_large(cachemode2protval(cache));
395 	BUG_ON((phys & ~PMD_MASK) || (size & ~PMD_MASK));
396 	for (; size; phys += PMD_SIZE, size -= PMD_SIZE) {
397 		pgd = pgd_offset_k((unsigned long)__va(phys));
398 		if (pgd_none(*pgd)) {
399 			p4d = (p4d_t *) spp_getpage();
400 			set_pgd(pgd, __pgd(__pa(p4d) | _KERNPG_TABLE |
401 						_PAGE_USER));
402 		}
403 		p4d = p4d_offset(pgd, (unsigned long)__va(phys));
404 		if (p4d_none(*p4d)) {
405 			pud = (pud_t *) spp_getpage();
406 			set_p4d(p4d, __p4d(__pa(pud) | _KERNPG_TABLE |
407 						_PAGE_USER));
408 		}
409 		pud = pud_offset(p4d, (unsigned long)__va(phys));
410 		if (pud_none(*pud)) {
411 			pmd = (pmd_t *) spp_getpage();
412 			set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE |
413 						_PAGE_USER));
414 		}
415 		pmd = pmd_offset(pud, phys);
416 		BUG_ON(!pmd_none(*pmd));
417 		set_pmd(pmd, __pmd(phys | pgprot_val(prot)));
418 	}
419 }
420 
421 void __init init_extra_mapping_wb(unsigned long phys, unsigned long size)
422 {
423 	__init_extra_mapping(phys, size, _PAGE_CACHE_MODE_WB);
424 }
425 
426 void __init init_extra_mapping_uc(unsigned long phys, unsigned long size)
427 {
428 	__init_extra_mapping(phys, size, _PAGE_CACHE_MODE_UC);
429 }
430 
431 /*
432  * The head.S code sets up the kernel high mapping:
433  *
434  *   from __START_KERNEL_map to __START_KERNEL_map + size (== _end-_text)
435  *
436  * phys_base holds the negative offset to the kernel, which is added
437  * to the compile time generated pmds. This results in invalid pmds up
438  * to the point where we hit the physaddr 0 mapping.
439  *
440  * We limit the mappings to the region from _text to _brk_end.  _brk_end
441  * is rounded up to the 2MB boundary. This catches the invalid pmds as
442  * well, as they are located before _text:
443  */
444 void __init cleanup_highmap(void)
445 {
446 	unsigned long vaddr = __START_KERNEL_map;
447 	unsigned long vaddr_end = __START_KERNEL_map + KERNEL_IMAGE_SIZE;
448 	unsigned long end = roundup((unsigned long)_brk_end, PMD_SIZE) - 1;
449 	pmd_t *pmd = level2_kernel_pgt;
450 
451 	/*
452 	 * Native path, max_pfn_mapped is not set yet.
453 	 * Xen has valid max_pfn_mapped set in
454 	 *	arch/x86/xen/mmu.c:xen_setup_kernel_pagetable().
455 	 */
456 	if (max_pfn_mapped)
457 		vaddr_end = __START_KERNEL_map + (max_pfn_mapped << PAGE_SHIFT);
458 
459 	for (; vaddr + PMD_SIZE - 1 < vaddr_end; pmd++, vaddr += PMD_SIZE) {
460 		if (pmd_none(*pmd))
461 			continue;
462 		if (vaddr < (unsigned long) _text || vaddr > end)
463 			set_pmd(pmd, __pmd(0));
464 	}
465 }
466 
467 /*
468  * Create PTE level page table mapping for physical addresses.
469  * It returns the last physical address mapped.
470  */
471 static unsigned long __meminit
472 phys_pte_init(pte_t *pte_page, unsigned long paddr, unsigned long paddr_end,
473 	      pgprot_t prot, bool init)
474 {
475 	unsigned long pages = 0, paddr_next;
476 	unsigned long paddr_last = paddr_end;
477 	pte_t *pte;
478 	int i;
479 
480 	pte = pte_page + pte_index(paddr);
481 	i = pte_index(paddr);
482 
483 	for (; i < PTRS_PER_PTE; i++, paddr = paddr_next, pte++) {
484 		paddr_next = (paddr & PAGE_MASK) + PAGE_SIZE;
485 		if (paddr >= paddr_end) {
486 			if (!after_bootmem &&
487 			    !e820__mapped_any(paddr & PAGE_MASK, paddr_next,
488 					     E820_TYPE_RAM) &&
489 			    !e820__mapped_any(paddr & PAGE_MASK, paddr_next,
490 					     E820_TYPE_ACPI))
491 				set_pte_init(pte, __pte(0), init);
492 			continue;
493 		}
494 
495 		/*
496 		 * We will re-use the existing mapping.
497 		 * Xen for example has some special requirements, like mapping
498 		 * pagetable pages as RO. So assume someone who pre-setup
499 		 * these mappings are more intelligent.
500 		 */
501 		if (!pte_none(*pte)) {
502 			if (!after_bootmem)
503 				pages++;
504 			continue;
505 		}
506 
507 		pages++;
508 		set_pte_init(pte, pfn_pte(paddr >> PAGE_SHIFT, prot), init);
509 		paddr_last = (paddr & PAGE_MASK) + PAGE_SIZE;
510 	}
511 
512 	update_page_count(PG_LEVEL_4K, pages);
513 
514 	return paddr_last;
515 }
516 
517 /*
518  * Create PMD level page table mapping for physical addresses. The virtual
519  * and physical address have to be aligned at this level.
520  * It returns the last physical address mapped.
521  */
522 static unsigned long __meminit
523 phys_pmd_init(pmd_t *pmd_page, unsigned long paddr, unsigned long paddr_end,
524 	      unsigned long page_size_mask, pgprot_t prot, bool init)
525 {
526 	unsigned long pages = 0, paddr_next;
527 	unsigned long paddr_last = paddr_end;
528 
529 	int i = pmd_index(paddr);
530 
531 	for (; i < PTRS_PER_PMD; i++, paddr = paddr_next) {
532 		pmd_t *pmd = pmd_page + pmd_index(paddr);
533 		pte_t *pte;
534 		pgprot_t new_prot = prot;
535 
536 		paddr_next = (paddr & PMD_MASK) + PMD_SIZE;
537 		if (paddr >= paddr_end) {
538 			if (!after_bootmem &&
539 			    !e820__mapped_any(paddr & PMD_MASK, paddr_next,
540 					     E820_TYPE_RAM) &&
541 			    !e820__mapped_any(paddr & PMD_MASK, paddr_next,
542 					     E820_TYPE_ACPI))
543 				set_pmd_init(pmd, __pmd(0), init);
544 			continue;
545 		}
546 
547 		if (!pmd_none(*pmd)) {
548 			if (!pmd_leaf(*pmd)) {
549 				spin_lock(&init_mm.page_table_lock);
550 				pte = (pte_t *)pmd_page_vaddr(*pmd);
551 				paddr_last = phys_pte_init(pte, paddr,
552 							   paddr_end, prot,
553 							   init);
554 				spin_unlock(&init_mm.page_table_lock);
555 				continue;
556 			}
557 			/*
558 			 * If we are ok with PG_LEVEL_2M mapping, then we will
559 			 * use the existing mapping,
560 			 *
561 			 * Otherwise, we will split the large page mapping but
562 			 * use the same existing protection bits except for
563 			 * large page, so that we don't violate Intel's TLB
564 			 * Application note (317080) which says, while changing
565 			 * the page sizes, new and old translations should
566 			 * not differ with respect to page frame and
567 			 * attributes.
568 			 */
569 			if (page_size_mask & (1 << PG_LEVEL_2M)) {
570 				if (!after_bootmem)
571 					pages++;
572 				paddr_last = paddr_next;
573 				continue;
574 			}
575 			new_prot = pte_pgprot(pte_clrhuge(*(pte_t *)pmd));
576 		}
577 
578 		if (page_size_mask & (1<<PG_LEVEL_2M)) {
579 			pages++;
580 			spin_lock(&init_mm.page_table_lock);
581 			set_pmd_init(pmd,
582 				     pfn_pmd(paddr >> PAGE_SHIFT, prot_sethuge(prot)),
583 				     init);
584 			spin_unlock(&init_mm.page_table_lock);
585 			paddr_last = paddr_next;
586 			continue;
587 		}
588 
589 		pte = alloc_low_page();
590 		paddr_last = phys_pte_init(pte, paddr, paddr_end, new_prot, init);
591 
592 		spin_lock(&init_mm.page_table_lock);
593 		pmd_populate_kernel_init(&init_mm, pmd, pte, init);
594 		spin_unlock(&init_mm.page_table_lock);
595 	}
596 	update_page_count(PG_LEVEL_2M, pages);
597 	return paddr_last;
598 }
599 
600 /*
601  * Create PUD level page table mapping for physical addresses. The virtual
602  * and physical address do not have to be aligned at this level. KASLR can
603  * randomize virtual addresses up to this level.
604  * It returns the last physical address mapped.
605  */
606 static unsigned long __meminit
607 phys_pud_init(pud_t *pud_page, unsigned long paddr, unsigned long paddr_end,
608 	      unsigned long page_size_mask, pgprot_t _prot, bool init)
609 {
610 	unsigned long pages = 0, paddr_next;
611 	unsigned long paddr_last = paddr_end;
612 	unsigned long vaddr = (unsigned long)__va(paddr);
613 	int i = pud_index(vaddr);
614 
615 	for (; i < PTRS_PER_PUD; i++, paddr = paddr_next) {
616 		pud_t *pud;
617 		pmd_t *pmd;
618 		pgprot_t prot = _prot;
619 
620 		vaddr = (unsigned long)__va(paddr);
621 		pud = pud_page + pud_index(vaddr);
622 		paddr_next = (paddr & PUD_MASK) + PUD_SIZE;
623 
624 		if (paddr >= paddr_end) {
625 			if (!after_bootmem &&
626 			    !e820__mapped_any(paddr & PUD_MASK, paddr_next,
627 					     E820_TYPE_RAM) &&
628 			    !e820__mapped_any(paddr & PUD_MASK, paddr_next,
629 					     E820_TYPE_ACPI))
630 				set_pud_init(pud, __pud(0), init);
631 			continue;
632 		}
633 
634 		if (!pud_none(*pud)) {
635 			if (!pud_leaf(*pud)) {
636 				pmd = pmd_offset(pud, 0);
637 				paddr_last = phys_pmd_init(pmd, paddr,
638 							   paddr_end,
639 							   page_size_mask,
640 							   prot, init);
641 				continue;
642 			}
643 			/*
644 			 * If we are ok with PG_LEVEL_1G mapping, then we will
645 			 * use the existing mapping.
646 			 *
647 			 * Otherwise, we will split the gbpage mapping but use
648 			 * the same existing protection  bits except for large
649 			 * page, so that we don't violate Intel's TLB
650 			 * Application note (317080) which says, while changing
651 			 * the page sizes, new and old translations should
652 			 * not differ with respect to page frame and
653 			 * attributes.
654 			 */
655 			if (page_size_mask & (1 << PG_LEVEL_1G)) {
656 				if (!after_bootmem)
657 					pages++;
658 				paddr_last = paddr_next;
659 				continue;
660 			}
661 			prot = pte_pgprot(pte_clrhuge(*(pte_t *)pud));
662 		}
663 
664 		if (page_size_mask & (1<<PG_LEVEL_1G)) {
665 			pages++;
666 			spin_lock(&init_mm.page_table_lock);
667 			set_pud_init(pud,
668 				     pfn_pud(paddr >> PAGE_SHIFT, prot_sethuge(prot)),
669 				     init);
670 			spin_unlock(&init_mm.page_table_lock);
671 			paddr_last = paddr_next;
672 			continue;
673 		}
674 
675 		pmd = alloc_low_page();
676 		paddr_last = phys_pmd_init(pmd, paddr, paddr_end,
677 					   page_size_mask, prot, init);
678 
679 		spin_lock(&init_mm.page_table_lock);
680 		pud_populate_init(&init_mm, pud, pmd, init);
681 		spin_unlock(&init_mm.page_table_lock);
682 	}
683 
684 	update_page_count(PG_LEVEL_1G, pages);
685 
686 	return paddr_last;
687 }
688 
689 static unsigned long __meminit
690 phys_p4d_init(p4d_t *p4d_page, unsigned long paddr, unsigned long paddr_end,
691 	      unsigned long page_size_mask, pgprot_t prot, bool init)
692 {
693 	unsigned long vaddr, vaddr_end, vaddr_next, paddr_next, paddr_last;
694 
695 	paddr_last = paddr_end;
696 	vaddr = (unsigned long)__va(paddr);
697 	vaddr_end = (unsigned long)__va(paddr_end);
698 
699 	if (!pgtable_l5_enabled())
700 		return phys_pud_init((pud_t *) p4d_page, paddr, paddr_end,
701 				     page_size_mask, prot, init);
702 
703 	for (; vaddr < vaddr_end; vaddr = vaddr_next) {
704 		p4d_t *p4d = p4d_page + p4d_index(vaddr);
705 		pud_t *pud;
706 
707 		vaddr_next = (vaddr & P4D_MASK) + P4D_SIZE;
708 		paddr = __pa(vaddr);
709 
710 		if (paddr >= paddr_end) {
711 			paddr_next = __pa(vaddr_next);
712 			if (!after_bootmem &&
713 			    !e820__mapped_any(paddr & P4D_MASK, paddr_next,
714 					     E820_TYPE_RAM) &&
715 			    !e820__mapped_any(paddr & P4D_MASK, paddr_next,
716 					     E820_TYPE_ACPI))
717 				set_p4d_init(p4d, __p4d(0), init);
718 			continue;
719 		}
720 
721 		if (!p4d_none(*p4d)) {
722 			pud = pud_offset(p4d, 0);
723 			paddr_last = phys_pud_init(pud, paddr, __pa(vaddr_end),
724 					page_size_mask, prot, init);
725 			continue;
726 		}
727 
728 		pud = alloc_low_page();
729 		paddr_last = phys_pud_init(pud, paddr, __pa(vaddr_end),
730 					   page_size_mask, prot, init);
731 
732 		spin_lock(&init_mm.page_table_lock);
733 		p4d_populate_init(&init_mm, p4d, pud, init);
734 		spin_unlock(&init_mm.page_table_lock);
735 	}
736 
737 	return paddr_last;
738 }
739 
740 static unsigned long __meminit
741 __kernel_physical_mapping_init(unsigned long paddr_start,
742 			       unsigned long paddr_end,
743 			       unsigned long page_size_mask,
744 			       pgprot_t prot, bool init)
745 {
746 	bool pgd_changed = false;
747 	unsigned long vaddr, vaddr_start, vaddr_end, vaddr_next, paddr_last;
748 
749 	paddr_last = paddr_end;
750 	vaddr = (unsigned long)__va(paddr_start);
751 	vaddr_end = (unsigned long)__va(paddr_end);
752 	vaddr_start = vaddr;
753 
754 	for (; vaddr < vaddr_end; vaddr = vaddr_next) {
755 		pgd_t *pgd = pgd_offset_k(vaddr);
756 		p4d_t *p4d;
757 
758 		vaddr_next = (vaddr & PGDIR_MASK) + PGDIR_SIZE;
759 
760 		if (pgd_val(*pgd)) {
761 			p4d = (p4d_t *)pgd_page_vaddr(*pgd);
762 			paddr_last = phys_p4d_init(p4d, __pa(vaddr),
763 						   __pa(vaddr_end),
764 						   page_size_mask,
765 						   prot, init);
766 			continue;
767 		}
768 
769 		p4d = alloc_low_page();
770 		paddr_last = phys_p4d_init(p4d, __pa(vaddr), __pa(vaddr_end),
771 					   page_size_mask, prot, init);
772 
773 		spin_lock(&init_mm.page_table_lock);
774 		if (pgtable_l5_enabled())
775 			pgd_populate_init(&init_mm, pgd, p4d, init);
776 		else
777 			p4d_populate_init(&init_mm, p4d_offset(pgd, vaddr),
778 					  (pud_t *) p4d, init);
779 
780 		spin_unlock(&init_mm.page_table_lock);
781 		pgd_changed = true;
782 	}
783 
784 	if (pgd_changed)
785 		sync_global_pgds(vaddr_start, vaddr_end - 1);
786 
787 	return paddr_last;
788 }
789 
790 
791 /*
792  * Create page table mapping for the physical memory for specific physical
793  * addresses. Note that it can only be used to populate non-present entries.
794  * The virtual and physical addresses have to be aligned on PMD level
795  * down. It returns the last physical address mapped.
796  */
797 unsigned long __meminit
798 kernel_physical_mapping_init(unsigned long paddr_start,
799 			     unsigned long paddr_end,
800 			     unsigned long page_size_mask, pgprot_t prot)
801 {
802 	return __kernel_physical_mapping_init(paddr_start, paddr_end,
803 					      page_size_mask, prot, true);
804 }
805 
806 /*
807  * This function is similar to kernel_physical_mapping_init() above with the
808  * exception that it uses set_{pud,pmd}() instead of the set_{pud,pte}_safe()
809  * when updating the mapping. The caller is responsible to flush the TLBs after
810  * the function returns.
811  */
812 unsigned long __meminit
813 kernel_physical_mapping_change(unsigned long paddr_start,
814 			       unsigned long paddr_end,
815 			       unsigned long page_size_mask)
816 {
817 	return __kernel_physical_mapping_init(paddr_start, paddr_end,
818 					      page_size_mask, PAGE_KERNEL,
819 					      false);
820 }
821 
822 #ifndef CONFIG_NUMA
823 static __always_inline void x86_numa_init(void)
824 {
825 	memblock_set_node(0, PHYS_ADDR_MAX, &memblock.memory, 0);
826 }
827 #endif
828 
829 void __init initmem_init(void)
830 {
831 	x86_numa_init();
832 }
833 
834 void __init paging_init(void)
835 {
836 	sparse_init();
837 
838 	/*
839 	 * clear the default setting with node 0
840 	 * note: don't use nodes_clear here, that is really clearing when
841 	 *	 numa support is not compiled in, and later node_set_state
842 	 *	 will not set it back.
843 	 */
844 	node_clear_state(0, N_MEMORY);
845 	node_clear_state(0, N_NORMAL_MEMORY);
846 
847 	zone_sizes_init();
848 }
849 
850 #define PAGE_UNUSED 0xFD
851 
852 /*
853  * The unused vmemmap range, which was not yet memset(PAGE_UNUSED), ranges
854  * from unused_pmd_start to next PMD_SIZE boundary.
855  */
856 static unsigned long unused_pmd_start __meminitdata;
857 
858 static void __meminit vmemmap_flush_unused_pmd(void)
859 {
860 	if (!unused_pmd_start)
861 		return;
862 	/*
863 	 * Clears (unused_pmd_start, PMD_END]
864 	 */
865 	memset((void *)unused_pmd_start, PAGE_UNUSED,
866 	       ALIGN(unused_pmd_start, PMD_SIZE) - unused_pmd_start);
867 	unused_pmd_start = 0;
868 }
869 
870 #ifdef CONFIG_MEMORY_HOTPLUG
871 /* Returns true if the PMD is completely unused and thus it can be freed */
872 static bool __meminit vmemmap_pmd_is_unused(unsigned long addr, unsigned long end)
873 {
874 	unsigned long start = ALIGN_DOWN(addr, PMD_SIZE);
875 
876 	/*
877 	 * Flush the unused range cache to ensure that memchr_inv() will work
878 	 * for the whole range.
879 	 */
880 	vmemmap_flush_unused_pmd();
881 	memset((void *)addr, PAGE_UNUSED, end - addr);
882 
883 	return !memchr_inv((void *)start, PAGE_UNUSED, PMD_SIZE);
884 }
885 #endif
886 
887 static void __meminit __vmemmap_use_sub_pmd(unsigned long start)
888 {
889 	/*
890 	 * As we expect to add in the same granularity as we remove, it's
891 	 * sufficient to mark only some piece used to block the memmap page from
892 	 * getting removed when removing some other adjacent memmap (just in
893 	 * case the first memmap never gets initialized e.g., because the memory
894 	 * block never gets onlined).
895 	 */
896 	memset((void *)start, 0, sizeof(struct page));
897 }
898 
899 static void __meminit vmemmap_use_sub_pmd(unsigned long start, unsigned long end)
900 {
901 	/*
902 	 * We only optimize if the new used range directly follows the
903 	 * previously unused range (esp., when populating consecutive sections).
904 	 */
905 	if (unused_pmd_start == start) {
906 		if (likely(IS_ALIGNED(end, PMD_SIZE)))
907 			unused_pmd_start = 0;
908 		else
909 			unused_pmd_start = end;
910 		return;
911 	}
912 
913 	/*
914 	 * If the range does not contiguously follows previous one, make sure
915 	 * to mark the unused range of the previous one so it can be removed.
916 	 */
917 	vmemmap_flush_unused_pmd();
918 	__vmemmap_use_sub_pmd(start);
919 }
920 
921 
922 static void __meminit vmemmap_use_new_sub_pmd(unsigned long start, unsigned long end)
923 {
924 	const unsigned long page = ALIGN_DOWN(start, PMD_SIZE);
925 
926 	vmemmap_flush_unused_pmd();
927 
928 	/*
929 	 * Could be our memmap page is filled with PAGE_UNUSED already from a
930 	 * previous remove. Make sure to reset it.
931 	 */
932 	__vmemmap_use_sub_pmd(start);
933 
934 	/*
935 	 * Mark with PAGE_UNUSED the unused parts of the new memmap range
936 	 */
937 	if (!IS_ALIGNED(start, PMD_SIZE))
938 		memset((void *)page, PAGE_UNUSED, start - page);
939 
940 	/*
941 	 * We want to avoid memset(PAGE_UNUSED) when populating the vmemmap of
942 	 * consecutive sections. Remember for the last added PMD where the
943 	 * unused range begins.
944 	 */
945 	if (!IS_ALIGNED(end, PMD_SIZE))
946 		unused_pmd_start = end;
947 }
948 
949 /*
950  * Memory hotplug specific functions
951  */
952 #ifdef CONFIG_MEMORY_HOTPLUG
953 /*
954  * After memory hotplug the variables max_pfn, max_low_pfn and high_memory need
955  * updating.
956  */
957 static void update_end_of_memory_vars(u64 start, u64 size)
958 {
959 	unsigned long end_pfn = PFN_UP(start + size);
960 
961 	if (end_pfn > max_pfn) {
962 		max_pfn = end_pfn;
963 		max_low_pfn = end_pfn;
964 		high_memory = (void *)__va(max_pfn * PAGE_SIZE - 1) + 1;
965 	}
966 }
967 
968 int add_pages(int nid, unsigned long start_pfn, unsigned long nr_pages,
969 	      struct mhp_params *params)
970 {
971 	unsigned long end = ((start_pfn + nr_pages) << PAGE_SHIFT) - 1;
972 	int ret;
973 
974 	if (WARN_ON_ONCE(end > DIRECT_MAP_PHYSMEM_END))
975 		return -ERANGE;
976 
977 	ret = __add_pages(nid, start_pfn, nr_pages, params);
978 	WARN_ON_ONCE(ret);
979 
980 	/*
981 	 * Special case: add_pages() is called by memremap_pages() for adding device
982 	 * private pages. Do not bump up max_pfn in the device private path,
983 	 * because max_pfn changes affect dma_addressing_limited().
984 	 *
985 	 * dma_addressing_limited() returning true when max_pfn is the device's
986 	 * addressable memory can force device drivers to use bounce buffers
987 	 * and impact their performance negatively:
988 	 */
989 	if (!params->pgmap)
990 		/* update max_pfn, max_low_pfn and high_memory */
991 		update_end_of_memory_vars(start_pfn << PAGE_SHIFT, nr_pages << PAGE_SHIFT);
992 
993 	return ret;
994 }
995 
996 int arch_add_memory(int nid, u64 start, u64 size,
997 		    struct mhp_params *params)
998 {
999 	unsigned long start_pfn = start >> PAGE_SHIFT;
1000 	unsigned long nr_pages = size >> PAGE_SHIFT;
1001 
1002 	init_memory_mapping(start, start + size, params->pgprot);
1003 
1004 	return add_pages(nid, start_pfn, nr_pages, params);
1005 }
1006 
1007 static void free_reserved_pages(struct page *page, unsigned long nr_pages)
1008 {
1009 	while (nr_pages--)
1010 		free_reserved_page(page++);
1011 }
1012 
1013 static void __meminit free_pagetable(struct page *page, int order)
1014 {
1015 	/* bootmem page has reserved flag */
1016 	if (PageReserved(page)) {
1017 		unsigned long nr_pages = 1 << order;
1018 #ifdef CONFIG_HAVE_BOOTMEM_INFO_NODE
1019 		enum bootmem_type type = bootmem_type(page);
1020 
1021 		if (type == SECTION_INFO || type == MIX_SECTION_INFO) {
1022 			while (nr_pages--)
1023 				put_page_bootmem(page++);
1024 		} else {
1025 			free_reserved_pages(page, nr_pages);
1026 		}
1027 #else
1028 		free_reserved_pages(page, nr_pages);
1029 #endif
1030 	} else {
1031 		__free_pages(page, order);
1032 	}
1033 }
1034 
1035 static void __meminit free_hugepage_table(struct page *page,
1036 		struct vmem_altmap *altmap)
1037 {
1038 	if (altmap)
1039 		vmem_altmap_free(altmap, PMD_SIZE / PAGE_SIZE);
1040 	else
1041 		free_pagetable(page, get_order(PMD_SIZE));
1042 }
1043 
1044 static void __meminit free_pte_table(pte_t *pte_start, pmd_t *pmd)
1045 {
1046 	pte_t *pte;
1047 	int i;
1048 
1049 	for (i = 0; i < PTRS_PER_PTE; i++) {
1050 		pte = pte_start + i;
1051 		if (!pte_none(*pte))
1052 			return;
1053 	}
1054 
1055 	/* free a pte table */
1056 	free_pagetable(pmd_page(*pmd), 0);
1057 	spin_lock(&init_mm.page_table_lock);
1058 	pmd_clear(pmd);
1059 	spin_unlock(&init_mm.page_table_lock);
1060 }
1061 
1062 static void __meminit free_pmd_table(pmd_t *pmd_start, pud_t *pud)
1063 {
1064 	pmd_t *pmd;
1065 	int i;
1066 
1067 	for (i = 0; i < PTRS_PER_PMD; i++) {
1068 		pmd = pmd_start + i;
1069 		if (!pmd_none(*pmd))
1070 			return;
1071 	}
1072 
1073 	/* free a pmd table */
1074 	free_pagetable(pud_page(*pud), 0);
1075 	spin_lock(&init_mm.page_table_lock);
1076 	pud_clear(pud);
1077 	spin_unlock(&init_mm.page_table_lock);
1078 }
1079 
1080 static void __meminit free_pud_table(pud_t *pud_start, p4d_t *p4d)
1081 {
1082 	pud_t *pud;
1083 	int i;
1084 
1085 	for (i = 0; i < PTRS_PER_PUD; i++) {
1086 		pud = pud_start + i;
1087 		if (!pud_none(*pud))
1088 			return;
1089 	}
1090 
1091 	/* free a pud table */
1092 	free_pagetable(p4d_page(*p4d), 0);
1093 	spin_lock(&init_mm.page_table_lock);
1094 	p4d_clear(p4d);
1095 	spin_unlock(&init_mm.page_table_lock);
1096 }
1097 
1098 static void __meminit
1099 remove_pte_table(pte_t *pte_start, unsigned long addr, unsigned long end,
1100 		 bool direct)
1101 {
1102 	unsigned long next, pages = 0;
1103 	pte_t *pte;
1104 	phys_addr_t phys_addr;
1105 
1106 	pte = pte_start + pte_index(addr);
1107 	for (; addr < end; addr = next, pte++) {
1108 		next = (addr + PAGE_SIZE) & PAGE_MASK;
1109 		if (next > end)
1110 			next = end;
1111 
1112 		if (!pte_present(*pte))
1113 			continue;
1114 
1115 		/*
1116 		 * We mapped [0,1G) memory as identity mapping when
1117 		 * initializing, in arch/x86/kernel/head_64.S. These
1118 		 * pagetables cannot be removed.
1119 		 */
1120 		phys_addr = pte_val(*pte) + (addr & PAGE_MASK);
1121 		if (phys_addr < (phys_addr_t)0x40000000)
1122 			return;
1123 
1124 		if (!direct)
1125 			free_pagetable(pte_page(*pte), 0);
1126 
1127 		spin_lock(&init_mm.page_table_lock);
1128 		pte_clear(&init_mm, addr, pte);
1129 		spin_unlock(&init_mm.page_table_lock);
1130 
1131 		/* For non-direct mapping, pages means nothing. */
1132 		pages++;
1133 	}
1134 
1135 	/* Call free_pte_table() in remove_pmd_table(). */
1136 	flush_tlb_all();
1137 	if (direct)
1138 		update_page_count(PG_LEVEL_4K, -pages);
1139 }
1140 
1141 static void __meminit
1142 remove_pmd_table(pmd_t *pmd_start, unsigned long addr, unsigned long end,
1143 		 bool direct, struct vmem_altmap *altmap)
1144 {
1145 	unsigned long next, pages = 0;
1146 	pte_t *pte_base;
1147 	pmd_t *pmd;
1148 
1149 	pmd = pmd_start + pmd_index(addr);
1150 	for (; addr < end; addr = next, pmd++) {
1151 		next = pmd_addr_end(addr, end);
1152 
1153 		if (!pmd_present(*pmd))
1154 			continue;
1155 
1156 		if (pmd_leaf(*pmd)) {
1157 			if (IS_ALIGNED(addr, PMD_SIZE) &&
1158 			    IS_ALIGNED(next, PMD_SIZE)) {
1159 				if (!direct)
1160 					free_hugepage_table(pmd_page(*pmd),
1161 							    altmap);
1162 
1163 				spin_lock(&init_mm.page_table_lock);
1164 				pmd_clear(pmd);
1165 				spin_unlock(&init_mm.page_table_lock);
1166 				pages++;
1167 			} else if (vmemmap_pmd_is_unused(addr, next)) {
1168 					free_hugepage_table(pmd_page(*pmd),
1169 							    altmap);
1170 					spin_lock(&init_mm.page_table_lock);
1171 					pmd_clear(pmd);
1172 					spin_unlock(&init_mm.page_table_lock);
1173 			}
1174 			continue;
1175 		}
1176 
1177 		pte_base = (pte_t *)pmd_page_vaddr(*pmd);
1178 		remove_pte_table(pte_base, addr, next, direct);
1179 		free_pte_table(pte_base, pmd);
1180 	}
1181 
1182 	/* Call free_pmd_table() in remove_pud_table(). */
1183 	if (direct)
1184 		update_page_count(PG_LEVEL_2M, -pages);
1185 }
1186 
1187 static void __meminit
1188 remove_pud_table(pud_t *pud_start, unsigned long addr, unsigned long end,
1189 		 struct vmem_altmap *altmap, bool direct)
1190 {
1191 	unsigned long next, pages = 0;
1192 	pmd_t *pmd_base;
1193 	pud_t *pud;
1194 
1195 	pud = pud_start + pud_index(addr);
1196 	for (; addr < end; addr = next, pud++) {
1197 		next = pud_addr_end(addr, end);
1198 
1199 		if (!pud_present(*pud))
1200 			continue;
1201 
1202 		if (pud_leaf(*pud) &&
1203 		    IS_ALIGNED(addr, PUD_SIZE) &&
1204 		    IS_ALIGNED(next, PUD_SIZE)) {
1205 			spin_lock(&init_mm.page_table_lock);
1206 			pud_clear(pud);
1207 			spin_unlock(&init_mm.page_table_lock);
1208 			pages++;
1209 			continue;
1210 		}
1211 
1212 		pmd_base = pmd_offset(pud, 0);
1213 		remove_pmd_table(pmd_base, addr, next, direct, altmap);
1214 		free_pmd_table(pmd_base, pud);
1215 	}
1216 
1217 	if (direct)
1218 		update_page_count(PG_LEVEL_1G, -pages);
1219 }
1220 
1221 static void __meminit
1222 remove_p4d_table(p4d_t *p4d_start, unsigned long addr, unsigned long end,
1223 		 struct vmem_altmap *altmap, bool direct)
1224 {
1225 	unsigned long next, pages = 0;
1226 	pud_t *pud_base;
1227 	p4d_t *p4d;
1228 
1229 	p4d = p4d_start + p4d_index(addr);
1230 	for (; addr < end; addr = next, p4d++) {
1231 		next = p4d_addr_end(addr, end);
1232 
1233 		if (!p4d_present(*p4d))
1234 			continue;
1235 
1236 		BUILD_BUG_ON(p4d_leaf(*p4d));
1237 
1238 		pud_base = pud_offset(p4d, 0);
1239 		remove_pud_table(pud_base, addr, next, altmap, direct);
1240 		/*
1241 		 * For 4-level page tables we do not want to free PUDs, but in the
1242 		 * 5-level case we should free them. This code will have to change
1243 		 * to adapt for boot-time switching between 4 and 5 level page tables.
1244 		 */
1245 		if (pgtable_l5_enabled())
1246 			free_pud_table(pud_base, p4d);
1247 	}
1248 
1249 	if (direct)
1250 		update_page_count(PG_LEVEL_512G, -pages);
1251 }
1252 
1253 /* start and end are both virtual address. */
1254 static void __meminit
1255 remove_pagetable(unsigned long start, unsigned long end, bool direct,
1256 		struct vmem_altmap *altmap)
1257 {
1258 	unsigned long next;
1259 	unsigned long addr;
1260 	pgd_t *pgd;
1261 	p4d_t *p4d;
1262 
1263 	for (addr = start; addr < end; addr = next) {
1264 		next = pgd_addr_end(addr, end);
1265 
1266 		pgd = pgd_offset_k(addr);
1267 		if (!pgd_present(*pgd))
1268 			continue;
1269 
1270 		p4d = p4d_offset(pgd, 0);
1271 		remove_p4d_table(p4d, addr, next, altmap, direct);
1272 	}
1273 
1274 	flush_tlb_all();
1275 }
1276 
1277 void __ref vmemmap_free(unsigned long start, unsigned long end,
1278 		struct vmem_altmap *altmap)
1279 {
1280 	VM_BUG_ON(!PAGE_ALIGNED(start));
1281 	VM_BUG_ON(!PAGE_ALIGNED(end));
1282 
1283 	remove_pagetable(start, end, false, altmap);
1284 }
1285 
1286 static void __meminit
1287 kernel_physical_mapping_remove(unsigned long start, unsigned long end)
1288 {
1289 	start = (unsigned long)__va(start);
1290 	end = (unsigned long)__va(end);
1291 
1292 	remove_pagetable(start, end, true, NULL);
1293 }
1294 
1295 void __ref arch_remove_memory(u64 start, u64 size, struct vmem_altmap *altmap)
1296 {
1297 	unsigned long start_pfn = start >> PAGE_SHIFT;
1298 	unsigned long nr_pages = size >> PAGE_SHIFT;
1299 
1300 	__remove_pages(start_pfn, nr_pages, altmap);
1301 	kernel_physical_mapping_remove(start, start + size);
1302 }
1303 #endif /* CONFIG_MEMORY_HOTPLUG */
1304 
1305 static struct kcore_list kcore_vsyscall;
1306 
1307 static void __init register_page_bootmem_info(void)
1308 {
1309 #if defined(CONFIG_NUMA) || defined(CONFIG_HUGETLB_PAGE_OPTIMIZE_VMEMMAP)
1310 	int i;
1311 
1312 	for_each_online_node(i)
1313 		register_page_bootmem_info_node(NODE_DATA(i));
1314 #endif
1315 }
1316 
1317 /*
1318  * Pre-allocates page-table pages for the vmalloc area in the kernel page-table.
1319  * Only the level which needs to be synchronized between all page-tables is
1320  * allocated because the synchronization can be expensive.
1321  */
1322 static void __init preallocate_vmalloc_pages(void)
1323 {
1324 	unsigned long addr;
1325 	const char *lvl;
1326 
1327 	for (addr = VMALLOC_START; addr <= VMEMORY_END; addr = ALIGN(addr + 1, PGDIR_SIZE)) {
1328 		pgd_t *pgd = pgd_offset_k(addr);
1329 		p4d_t *p4d;
1330 		pud_t *pud;
1331 
1332 		lvl = "p4d";
1333 		p4d = p4d_alloc(&init_mm, pgd, addr);
1334 		if (!p4d)
1335 			goto failed;
1336 
1337 		if (pgtable_l5_enabled())
1338 			continue;
1339 
1340 		/*
1341 		 * The goal here is to allocate all possibly required
1342 		 * hardware page tables pointed to by the top hardware
1343 		 * level.
1344 		 *
1345 		 * On 4-level systems, the P4D layer is folded away and
1346 		 * the above code does no preallocation.  Below, go down
1347 		 * to the pud _software_ level to ensure the second
1348 		 * hardware level is allocated on 4-level systems too.
1349 		 */
1350 		lvl = "pud";
1351 		pud = pud_alloc(&init_mm, p4d, addr);
1352 		if (!pud)
1353 			goto failed;
1354 	}
1355 
1356 	return;
1357 
1358 failed:
1359 
1360 	/*
1361 	 * The pages have to be there now or they will be missing in
1362 	 * process page-tables later.
1363 	 */
1364 	panic("Failed to pre-allocate %s pages for vmalloc area\n", lvl);
1365 }
1366 
1367 void __init arch_mm_preinit(void)
1368 {
1369 	pci_iommu_alloc();
1370 }
1371 
1372 void __init mem_init(void)
1373 {
1374 	/* clear_bss() already clear the empty_zero_page */
1375 
1376 	after_bootmem = 1;
1377 	x86_init.hyper.init_after_bootmem();
1378 
1379 	/*
1380 	 * Must be done after boot memory is put on freelist, because here we
1381 	 * might set fields in deferred struct pages that have not yet been
1382 	 * initialized, and memblock_free_all() initializes all the reserved
1383 	 * deferred pages for us.
1384 	 */
1385 	register_page_bootmem_info();
1386 
1387 	/* Register memory areas for /proc/kcore */
1388 	if (get_gate_vma(&init_mm))
1389 		kclist_add(&kcore_vsyscall, (void *)VSYSCALL_ADDR, PAGE_SIZE, KCORE_USER);
1390 
1391 	preallocate_vmalloc_pages();
1392 }
1393 
1394 int kernel_set_to_readonly;
1395 
1396 void mark_rodata_ro(void)
1397 {
1398 	unsigned long start = PFN_ALIGN(_text);
1399 	unsigned long rodata_start = PFN_ALIGN(__start_rodata);
1400 	unsigned long end = (unsigned long)__end_rodata_hpage_align;
1401 	unsigned long text_end = PFN_ALIGN(_etext);
1402 	unsigned long rodata_end = PFN_ALIGN(__end_rodata);
1403 	unsigned long all_end;
1404 
1405 	printk(KERN_INFO "Write protecting the kernel read-only data: %luk\n",
1406 	       (end - start) >> 10);
1407 	set_memory_ro(start, (end - start) >> PAGE_SHIFT);
1408 
1409 	kernel_set_to_readonly = 1;
1410 
1411 	/*
1412 	 * The rodata/data/bss/brk section (but not the kernel text!)
1413 	 * should also be not-executable.
1414 	 *
1415 	 * We align all_end to PMD_SIZE because the existing mapping
1416 	 * is a full PMD. If we would align _brk_end to PAGE_SIZE we
1417 	 * split the PMD and the reminder between _brk_end and the end
1418 	 * of the PMD will remain mapped executable.
1419 	 *
1420 	 * Any PMD which was setup after the one which covers _brk_end
1421 	 * has been zapped already via cleanup_highmem().
1422 	 */
1423 	all_end = roundup((unsigned long)_brk_end, PMD_SIZE);
1424 	set_memory_nx(text_end, (all_end - text_end) >> PAGE_SHIFT);
1425 
1426 	set_ftrace_ops_ro();
1427 
1428 #ifdef CONFIG_CPA_DEBUG
1429 	printk(KERN_INFO "Testing CPA: undo %lx-%lx\n", start, end);
1430 	set_memory_rw(start, (end-start) >> PAGE_SHIFT);
1431 
1432 	printk(KERN_INFO "Testing CPA: again\n");
1433 	set_memory_ro(start, (end-start) >> PAGE_SHIFT);
1434 #endif
1435 
1436 	free_kernel_image_pages("unused kernel image (text/rodata gap)",
1437 				(void *)text_end, (void *)rodata_start);
1438 	free_kernel_image_pages("unused kernel image (rodata/data gap)",
1439 				(void *)rodata_end, (void *)_sdata);
1440 }
1441 
1442 /*
1443  * Block size is the minimum amount of memory which can be hotplugged or
1444  * hotremoved. It must be power of two and must be equal or larger than
1445  * MIN_MEMORY_BLOCK_SIZE.
1446  */
1447 #define MAX_BLOCK_SIZE (2UL << 30)
1448 
1449 /* Amount of ram needed to start using large blocks */
1450 #define MEM_SIZE_FOR_LARGE_BLOCK (64UL << 30)
1451 
1452 /* Adjustable memory block size */
1453 static unsigned long set_memory_block_size;
1454 int __init set_memory_block_size_order(unsigned int order)
1455 {
1456 	unsigned long size = 1UL << order;
1457 
1458 	if (size > MEM_SIZE_FOR_LARGE_BLOCK || size < MIN_MEMORY_BLOCK_SIZE)
1459 		return -EINVAL;
1460 
1461 	set_memory_block_size = size;
1462 	return 0;
1463 }
1464 
1465 static unsigned long probe_memory_block_size(void)
1466 {
1467 	unsigned long boot_mem_end = max_pfn << PAGE_SHIFT;
1468 	unsigned long bz;
1469 
1470 	/* If memory block size has been set, then use it */
1471 	bz = set_memory_block_size;
1472 	if (bz)
1473 		goto done;
1474 
1475 	/* Use regular block if RAM is smaller than MEM_SIZE_FOR_LARGE_BLOCK */
1476 	if (boot_mem_end < MEM_SIZE_FOR_LARGE_BLOCK) {
1477 		bz = MIN_MEMORY_BLOCK_SIZE;
1478 		goto done;
1479 	}
1480 
1481 	/*
1482 	 * When hotplug alignment is not a concern, maximize blocksize
1483 	 * to minimize overhead. Otherwise, align to the lesser of advice
1484 	 * alignment and end of memory alignment.
1485 	 */
1486 	bz = memory_block_advised_max_size();
1487 	if (!bz) {
1488 		bz = MAX_BLOCK_SIZE;
1489 		if (!cpu_feature_enabled(X86_FEATURE_HYPERVISOR))
1490 			goto done;
1491 	} else {
1492 		bz = max(min(bz, MAX_BLOCK_SIZE), MIN_MEMORY_BLOCK_SIZE);
1493 	}
1494 
1495 	/* Find the largest allowed block size that aligns to memory end */
1496 	for (; bz > MIN_MEMORY_BLOCK_SIZE; bz >>= 1) {
1497 		if (IS_ALIGNED(boot_mem_end, bz))
1498 			break;
1499 	}
1500 done:
1501 	pr_info("x86/mm: Memory block size: %ldMB\n", bz >> 20);
1502 
1503 	return bz;
1504 }
1505 
1506 static unsigned long memory_block_size_probed;
1507 unsigned long memory_block_size_bytes(void)
1508 {
1509 	if (!memory_block_size_probed)
1510 		memory_block_size_probed = probe_memory_block_size();
1511 
1512 	return memory_block_size_probed;
1513 }
1514 
1515 /*
1516  * Initialise the sparsemem vmemmap using huge-pages at the PMD level.
1517  */
1518 static long __meminitdata addr_start, addr_end;
1519 static void __meminitdata *p_start, *p_end;
1520 static int __meminitdata node_start;
1521 
1522 void __meminit vmemmap_set_pmd(pmd_t *pmd, void *p, int node,
1523 			       unsigned long addr, unsigned long next)
1524 {
1525 	pte_t entry;
1526 
1527 	entry = pfn_pte(__pa(p) >> PAGE_SHIFT,
1528 			PAGE_KERNEL_LARGE);
1529 	set_pmd(pmd, __pmd(pte_val(entry)));
1530 
1531 	/* check to see if we have contiguous blocks */
1532 	if (p_end != p || node_start != node) {
1533 		if (p_start)
1534 			pr_debug(" [%lx-%lx] PMD -> [%p-%p] on node %d\n",
1535 				addr_start, addr_end-1, p_start, p_end-1, node_start);
1536 		addr_start = addr;
1537 		node_start = node;
1538 		p_start = p;
1539 	}
1540 
1541 	addr_end = addr + PMD_SIZE;
1542 	p_end = p + PMD_SIZE;
1543 
1544 	if (!IS_ALIGNED(addr, PMD_SIZE) ||
1545 		!IS_ALIGNED(next, PMD_SIZE))
1546 		vmemmap_use_new_sub_pmd(addr, next);
1547 }
1548 
1549 int __meminit vmemmap_check_pmd(pmd_t *pmd, int node,
1550 				unsigned long addr, unsigned long next)
1551 {
1552 	int large = pmd_leaf(*pmd);
1553 
1554 	if (pmd_leaf(*pmd)) {
1555 		vmemmap_verify((pte_t *)pmd, node, addr, next);
1556 		vmemmap_use_sub_pmd(addr, next);
1557 	}
1558 
1559 	return large;
1560 }
1561 
1562 int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node,
1563 		struct vmem_altmap *altmap)
1564 {
1565 	int err;
1566 
1567 	VM_BUG_ON(!PAGE_ALIGNED(start));
1568 	VM_BUG_ON(!PAGE_ALIGNED(end));
1569 
1570 	if (end - start < PAGES_PER_SECTION * sizeof(struct page))
1571 		err = vmemmap_populate_basepages(start, end, node, NULL);
1572 	else if (boot_cpu_has(X86_FEATURE_PSE))
1573 		err = vmemmap_populate_hugepages(start, end, node, altmap);
1574 	else if (altmap) {
1575 		pr_err_once("%s: no cpu support for altmap allocations\n",
1576 				__func__);
1577 		err = -ENOMEM;
1578 	} else
1579 		err = vmemmap_populate_basepages(start, end, node, NULL);
1580 	if (!err)
1581 		sync_global_pgds(start, end - 1);
1582 	return err;
1583 }
1584 
1585 #ifdef CONFIG_HAVE_BOOTMEM_INFO_NODE
1586 void register_page_bootmem_memmap(unsigned long section_nr,
1587 				  struct page *start_page, unsigned long nr_pages)
1588 {
1589 	unsigned long addr = (unsigned long)start_page;
1590 	unsigned long end = (unsigned long)(start_page + nr_pages);
1591 	unsigned long next;
1592 	pgd_t *pgd;
1593 	p4d_t *p4d;
1594 	pud_t *pud;
1595 	pmd_t *pmd;
1596 	unsigned int nr_pmd_pages;
1597 	struct page *page;
1598 
1599 	for (; addr < end; addr = next) {
1600 		pte_t *pte = NULL;
1601 
1602 		pgd = pgd_offset_k(addr);
1603 		if (pgd_none(*pgd)) {
1604 			next = (addr + PAGE_SIZE) & PAGE_MASK;
1605 			continue;
1606 		}
1607 		get_page_bootmem(section_nr, pgd_page(*pgd), MIX_SECTION_INFO);
1608 
1609 		p4d = p4d_offset(pgd, addr);
1610 		if (p4d_none(*p4d)) {
1611 			next = (addr + PAGE_SIZE) & PAGE_MASK;
1612 			continue;
1613 		}
1614 		get_page_bootmem(section_nr, p4d_page(*p4d), MIX_SECTION_INFO);
1615 
1616 		pud = pud_offset(p4d, addr);
1617 		if (pud_none(*pud)) {
1618 			next = (addr + PAGE_SIZE) & PAGE_MASK;
1619 			continue;
1620 		}
1621 		get_page_bootmem(section_nr, pud_page(*pud), MIX_SECTION_INFO);
1622 
1623 		pmd = pmd_offset(pud, addr);
1624 		if (pmd_none(*pmd)) {
1625 			next = (addr + PAGE_SIZE) & PAGE_MASK;
1626 			continue;
1627 		}
1628 
1629 		if (!boot_cpu_has(X86_FEATURE_PSE) || !pmd_leaf(*pmd)) {
1630 			next = (addr + PAGE_SIZE) & PAGE_MASK;
1631 			get_page_bootmem(section_nr, pmd_page(*pmd),
1632 					 MIX_SECTION_INFO);
1633 
1634 			pte = pte_offset_kernel(pmd, addr);
1635 			if (pte_none(*pte))
1636 				continue;
1637 			get_page_bootmem(section_nr, pte_page(*pte),
1638 					 SECTION_INFO);
1639 		} else {
1640 			next = pmd_addr_end(addr, end);
1641 			nr_pmd_pages = (next - addr) >> PAGE_SHIFT;
1642 			page = pmd_page(*pmd);
1643 			while (nr_pmd_pages--)
1644 				get_page_bootmem(section_nr, page++,
1645 						 SECTION_INFO);
1646 		}
1647 	}
1648 }
1649 #endif
1650 
1651 void __meminit vmemmap_populate_print_last(void)
1652 {
1653 	if (p_start) {
1654 		pr_debug(" [%lx-%lx] PMD -> [%p-%p] on node %d\n",
1655 			addr_start, addr_end-1, p_start, p_end-1, node_start);
1656 		p_start = NULL;
1657 		p_end = NULL;
1658 		node_start = 0;
1659 	}
1660 }
1661