1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/arch/x86_64/mm/init.c 4 * 5 * Copyright (C) 1995 Linus Torvalds 6 * Copyright (C) 2000 Pavel Machek <pavel@ucw.cz> 7 * Copyright (C) 2002,2003 Andi Kleen <ak@suse.de> 8 */ 9 10 #include <linux/signal.h> 11 #include <linux/sched.h> 12 #include <linux/kernel.h> 13 #include <linux/errno.h> 14 #include <linux/string.h> 15 #include <linux/types.h> 16 #include <linux/ptrace.h> 17 #include <linux/mman.h> 18 #include <linux/mm.h> 19 #include <linux/swap.h> 20 #include <linux/smp.h> 21 #include <linux/init.h> 22 #include <linux/initrd.h> 23 #include <linux/pagemap.h> 24 #include <linux/memblock.h> 25 #include <linux/proc_fs.h> 26 #include <linux/pci.h> 27 #include <linux/pfn.h> 28 #include <linux/poison.h> 29 #include <linux/dma-mapping.h> 30 #include <linux/memory.h> 31 #include <linux/memory_hotplug.h> 32 #include <linux/memremap.h> 33 #include <linux/nmi.h> 34 #include <linux/gfp.h> 35 #include <linux/kcore.h> 36 #include <linux/bootmem_info.h> 37 38 #include <asm/processor.h> 39 #include <asm/bios_ebda.h> 40 #include <linux/uaccess.h> 41 #include <asm/pgalloc.h> 42 #include <asm/dma.h> 43 #include <asm/fixmap.h> 44 #include <asm/e820/api.h> 45 #include <asm/apic.h> 46 #include <asm/tlb.h> 47 #include <asm/mmu_context.h> 48 #include <asm/proto.h> 49 #include <asm/smp.h> 50 #include <asm/sections.h> 51 #include <asm/kdebug.h> 52 #include <asm/numa.h> 53 #include <asm/set_memory.h> 54 #include <asm/init.h> 55 #include <asm/uv/uv.h> 56 #include <asm/setup.h> 57 #include <asm/ftrace.h> 58 59 #include "mm_internal.h" 60 61 #include "ident_map.c" 62 63 #define DEFINE_POPULATE(fname, type1, type2, init) \ 64 static inline void fname##_init(struct mm_struct *mm, \ 65 type1##_t *arg1, type2##_t *arg2, bool init) \ 66 { \ 67 if (init) \ 68 fname##_safe(mm, arg1, arg2); \ 69 else \ 70 fname(mm, arg1, arg2); \ 71 } 72 73 DEFINE_POPULATE(p4d_populate, p4d, pud, init) 74 DEFINE_POPULATE(pgd_populate, pgd, p4d, init) 75 DEFINE_POPULATE(pud_populate, pud, pmd, init) 76 DEFINE_POPULATE(pmd_populate_kernel, pmd, pte, init) 77 78 #define DEFINE_ENTRY(type1, type2, init) \ 79 static inline void set_##type1##_init(type1##_t *arg1, \ 80 type2##_t arg2, bool init) \ 81 { \ 82 if (init) \ 83 set_##type1##_safe(arg1, arg2); \ 84 else \ 85 set_##type1(arg1, arg2); \ 86 } 87 88 DEFINE_ENTRY(p4d, p4d, init) 89 DEFINE_ENTRY(pud, pud, init) 90 DEFINE_ENTRY(pmd, pmd, init) 91 DEFINE_ENTRY(pte, pte, init) 92 93 static inline pgprot_t prot_sethuge(pgprot_t prot) 94 { 95 WARN_ON_ONCE(pgprot_val(prot) & _PAGE_PAT); 96 97 return __pgprot(pgprot_val(prot) | _PAGE_PSE); 98 } 99 100 /* 101 * NOTE: pagetable_init alloc all the fixmap pagetables contiguous on the 102 * physical space so we can cache the place of the first one and move 103 * around without checking the pgd every time. 104 */ 105 106 /* Bits supported by the hardware: */ 107 pteval_t __supported_pte_mask __read_mostly = ~0; 108 /* Bits allowed in normal kernel mappings: */ 109 pteval_t __default_kernel_pte_mask __read_mostly = ~0; 110 EXPORT_SYMBOL_GPL(__supported_pte_mask); 111 /* Used in PAGE_KERNEL_* macros which are reasonably used out-of-tree: */ 112 EXPORT_SYMBOL(__default_kernel_pte_mask); 113 114 int force_personality32; 115 116 /* 117 * noexec32=on|off 118 * Control non executable heap for 32bit processes. 119 * 120 * on PROT_READ does not imply PROT_EXEC for 32-bit processes (default) 121 * off PROT_READ implies PROT_EXEC 122 */ 123 static int __init nonx32_setup(char *str) 124 { 125 if (!strcmp(str, "on")) 126 force_personality32 &= ~READ_IMPLIES_EXEC; 127 else if (!strcmp(str, "off")) 128 force_personality32 |= READ_IMPLIES_EXEC; 129 return 1; 130 } 131 __setup("noexec32=", nonx32_setup); 132 133 static void sync_global_pgds_l5(unsigned long start, unsigned long end) 134 { 135 unsigned long addr; 136 137 for (addr = start; addr <= end; addr = ALIGN(addr + 1, PGDIR_SIZE)) { 138 const pgd_t *pgd_ref = pgd_offset_k(addr); 139 struct page *page; 140 141 /* Check for overflow */ 142 if (addr < start) 143 break; 144 145 if (pgd_none(*pgd_ref)) 146 continue; 147 148 spin_lock(&pgd_lock); 149 list_for_each_entry(page, &pgd_list, lru) { 150 pgd_t *pgd; 151 spinlock_t *pgt_lock; 152 153 pgd = (pgd_t *)page_address(page) + pgd_index(addr); 154 /* the pgt_lock only for Xen */ 155 pgt_lock = &pgd_page_get_mm(page)->page_table_lock; 156 spin_lock(pgt_lock); 157 158 if (!pgd_none(*pgd_ref) && !pgd_none(*pgd)) 159 BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref)); 160 161 if (pgd_none(*pgd)) 162 set_pgd(pgd, *pgd_ref); 163 164 spin_unlock(pgt_lock); 165 } 166 spin_unlock(&pgd_lock); 167 } 168 } 169 170 static void sync_global_pgds_l4(unsigned long start, unsigned long end) 171 { 172 unsigned long addr; 173 174 for (addr = start; addr <= end; addr = ALIGN(addr + 1, PGDIR_SIZE)) { 175 pgd_t *pgd_ref = pgd_offset_k(addr); 176 const p4d_t *p4d_ref; 177 struct page *page; 178 179 /* 180 * With folded p4d, pgd_none() is always false, we need to 181 * handle synchronization on p4d level. 182 */ 183 MAYBE_BUILD_BUG_ON(pgd_none(*pgd_ref)); 184 p4d_ref = p4d_offset(pgd_ref, addr); 185 186 if (p4d_none(*p4d_ref)) 187 continue; 188 189 spin_lock(&pgd_lock); 190 list_for_each_entry(page, &pgd_list, lru) { 191 pgd_t *pgd; 192 p4d_t *p4d; 193 spinlock_t *pgt_lock; 194 195 pgd = (pgd_t *)page_address(page) + pgd_index(addr); 196 p4d = p4d_offset(pgd, addr); 197 /* the pgt_lock only for Xen */ 198 pgt_lock = &pgd_page_get_mm(page)->page_table_lock; 199 spin_lock(pgt_lock); 200 201 if (!p4d_none(*p4d_ref) && !p4d_none(*p4d)) 202 BUG_ON(p4d_pgtable(*p4d) 203 != p4d_pgtable(*p4d_ref)); 204 205 if (p4d_none(*p4d)) 206 set_p4d(p4d, *p4d_ref); 207 208 spin_unlock(pgt_lock); 209 } 210 spin_unlock(&pgd_lock); 211 } 212 } 213 214 /* 215 * When memory was added make sure all the processes MM have 216 * suitable PGD entries in the local PGD level page. 217 */ 218 static void sync_global_pgds(unsigned long start, unsigned long end) 219 { 220 if (pgtable_l5_enabled()) 221 sync_global_pgds_l5(start, end); 222 else 223 sync_global_pgds_l4(start, end); 224 } 225 226 /* 227 * Make kernel mappings visible in all page tables in the system. 228 * This is necessary except when the init task populates kernel mappings 229 * during the boot process. In that case, all processes originating from 230 * the init task copies the kernel mappings, so there is no issue. 231 * Otherwise, missing synchronization could lead to kernel crashes due 232 * to missing page table entries for certain kernel mappings. 233 * 234 * Synchronization is performed at the top level, which is the PGD in 235 * 5-level paging systems. But in 4-level paging systems, however, 236 * pgd_populate() is a no-op, so synchronization is done at the P4D level. 237 * sync_global_pgds() handles this difference between paging levels. 238 */ 239 void arch_sync_kernel_mappings(unsigned long start, unsigned long end) 240 { 241 sync_global_pgds(start, end); 242 } 243 244 /* 245 * NOTE: This function is marked __ref because it calls __init function 246 * (alloc_bootmem_pages). It's safe to do it ONLY when after_bootmem == 0. 247 */ 248 static __ref void *spp_getpage(void) 249 { 250 void *ptr; 251 252 if (after_bootmem) 253 ptr = (void *) get_zeroed_page(GFP_ATOMIC); 254 else 255 ptr = memblock_alloc(PAGE_SIZE, PAGE_SIZE); 256 257 if (!ptr || ((unsigned long)ptr & ~PAGE_MASK)) { 258 panic("set_pte_phys: cannot allocate page data %s\n", 259 after_bootmem ? "after bootmem" : ""); 260 } 261 262 pr_debug("spp_getpage %p\n", ptr); 263 264 return ptr; 265 } 266 267 static p4d_t *fill_p4d(pgd_t *pgd, unsigned long vaddr) 268 { 269 if (pgd_none(*pgd)) { 270 p4d_t *p4d = (p4d_t *)spp_getpage(); 271 pgd_populate(&init_mm, pgd, p4d); 272 if (p4d != p4d_offset(pgd, 0)) 273 printk(KERN_ERR "PAGETABLE BUG #00! %p <-> %p\n", 274 p4d, p4d_offset(pgd, 0)); 275 } 276 return p4d_offset(pgd, vaddr); 277 } 278 279 static pud_t *fill_pud(p4d_t *p4d, unsigned long vaddr) 280 { 281 if (p4d_none(*p4d)) { 282 pud_t *pud = (pud_t *)spp_getpage(); 283 p4d_populate(&init_mm, p4d, pud); 284 if (pud != pud_offset(p4d, 0)) 285 printk(KERN_ERR "PAGETABLE BUG #01! %p <-> %p\n", 286 pud, pud_offset(p4d, 0)); 287 } 288 return pud_offset(p4d, vaddr); 289 } 290 291 static pmd_t *fill_pmd(pud_t *pud, unsigned long vaddr) 292 { 293 if (pud_none(*pud)) { 294 pmd_t *pmd = (pmd_t *) spp_getpage(); 295 pud_populate(&init_mm, pud, pmd); 296 if (pmd != pmd_offset(pud, 0)) 297 printk(KERN_ERR "PAGETABLE BUG #02! %p <-> %p\n", 298 pmd, pmd_offset(pud, 0)); 299 } 300 return pmd_offset(pud, vaddr); 301 } 302 303 static pte_t *fill_pte(pmd_t *pmd, unsigned long vaddr) 304 { 305 if (pmd_none(*pmd)) { 306 pte_t *pte = (pte_t *) spp_getpage(); 307 pmd_populate_kernel(&init_mm, pmd, pte); 308 if (pte != pte_offset_kernel(pmd, 0)) 309 printk(KERN_ERR "PAGETABLE BUG #03!\n"); 310 } 311 return pte_offset_kernel(pmd, vaddr); 312 } 313 314 static void __set_pte_vaddr(pud_t *pud, unsigned long vaddr, pte_t new_pte) 315 { 316 pmd_t *pmd = fill_pmd(pud, vaddr); 317 pte_t *pte = fill_pte(pmd, vaddr); 318 319 set_pte(pte, new_pte); 320 321 /* 322 * It's enough to flush this one mapping. 323 * (PGE mappings get flushed as well) 324 */ 325 flush_tlb_one_kernel(vaddr); 326 } 327 328 void set_pte_vaddr_p4d(p4d_t *p4d_page, unsigned long vaddr, pte_t new_pte) 329 { 330 p4d_t *p4d = p4d_page + p4d_index(vaddr); 331 pud_t *pud = fill_pud(p4d, vaddr); 332 333 __set_pte_vaddr(pud, vaddr, new_pte); 334 } 335 336 void set_pte_vaddr_pud(pud_t *pud_page, unsigned long vaddr, pte_t new_pte) 337 { 338 pud_t *pud = pud_page + pud_index(vaddr); 339 340 __set_pte_vaddr(pud, vaddr, new_pte); 341 } 342 343 void set_pte_vaddr(unsigned long vaddr, pte_t pteval) 344 { 345 pgd_t *pgd; 346 p4d_t *p4d_page; 347 348 pr_debug("set_pte_vaddr %lx to %lx\n", vaddr, native_pte_val(pteval)); 349 350 pgd = pgd_offset_k(vaddr); 351 if (pgd_none(*pgd)) { 352 printk(KERN_ERR 353 "PGD FIXMAP MISSING, it should be setup in head.S!\n"); 354 return; 355 } 356 357 p4d_page = p4d_offset(pgd, 0); 358 set_pte_vaddr_p4d(p4d_page, vaddr, pteval); 359 } 360 361 pmd_t * __init populate_extra_pmd(unsigned long vaddr) 362 { 363 pgd_t *pgd; 364 p4d_t *p4d; 365 pud_t *pud; 366 367 pgd = pgd_offset_k(vaddr); 368 p4d = fill_p4d(pgd, vaddr); 369 pud = fill_pud(p4d, vaddr); 370 return fill_pmd(pud, vaddr); 371 } 372 373 pte_t * __init populate_extra_pte(unsigned long vaddr) 374 { 375 pmd_t *pmd; 376 377 pmd = populate_extra_pmd(vaddr); 378 return fill_pte(pmd, vaddr); 379 } 380 381 /* 382 * Create large page table mappings for a range of physical addresses. 383 */ 384 static void __init __init_extra_mapping(unsigned long phys, unsigned long size, 385 enum page_cache_mode cache) 386 { 387 pgd_t *pgd; 388 p4d_t *p4d; 389 pud_t *pud; 390 pmd_t *pmd; 391 pgprot_t prot; 392 393 pgprot_val(prot) = pgprot_val(PAGE_KERNEL_LARGE) | 394 protval_4k_2_large(cachemode2protval(cache)); 395 BUG_ON((phys & ~PMD_MASK) || (size & ~PMD_MASK)); 396 for (; size; phys += PMD_SIZE, size -= PMD_SIZE) { 397 pgd = pgd_offset_k((unsigned long)__va(phys)); 398 if (pgd_none(*pgd)) { 399 p4d = (p4d_t *) spp_getpage(); 400 set_pgd(pgd, __pgd(__pa(p4d) | _KERNPG_TABLE | 401 _PAGE_USER)); 402 } 403 p4d = p4d_offset(pgd, (unsigned long)__va(phys)); 404 if (p4d_none(*p4d)) { 405 pud = (pud_t *) spp_getpage(); 406 set_p4d(p4d, __p4d(__pa(pud) | _KERNPG_TABLE | 407 _PAGE_USER)); 408 } 409 pud = pud_offset(p4d, (unsigned long)__va(phys)); 410 if (pud_none(*pud)) { 411 pmd = (pmd_t *) spp_getpage(); 412 set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE | 413 _PAGE_USER)); 414 } 415 pmd = pmd_offset(pud, phys); 416 BUG_ON(!pmd_none(*pmd)); 417 set_pmd(pmd, __pmd(phys | pgprot_val(prot))); 418 } 419 } 420 421 void __init init_extra_mapping_wb(unsigned long phys, unsigned long size) 422 { 423 __init_extra_mapping(phys, size, _PAGE_CACHE_MODE_WB); 424 } 425 426 void __init init_extra_mapping_uc(unsigned long phys, unsigned long size) 427 { 428 __init_extra_mapping(phys, size, _PAGE_CACHE_MODE_UC); 429 } 430 431 /* 432 * The head.S code sets up the kernel high mapping: 433 * 434 * from __START_KERNEL_map to __START_KERNEL_map + size (== _end-_text) 435 * 436 * phys_base holds the negative offset to the kernel, which is added 437 * to the compile time generated pmds. This results in invalid pmds up 438 * to the point where we hit the physaddr 0 mapping. 439 * 440 * We limit the mappings to the region from _text to _brk_end. _brk_end 441 * is rounded up to the 2MB boundary. This catches the invalid pmds as 442 * well, as they are located before _text: 443 */ 444 void __init cleanup_highmap(void) 445 { 446 unsigned long vaddr = __START_KERNEL_map; 447 unsigned long vaddr_end = __START_KERNEL_map + KERNEL_IMAGE_SIZE; 448 unsigned long end = roundup((unsigned long)_brk_end, PMD_SIZE) - 1; 449 pmd_t *pmd = level2_kernel_pgt; 450 451 /* 452 * Native path, max_pfn_mapped is not set yet. 453 * Xen has valid max_pfn_mapped set in 454 * arch/x86/xen/mmu.c:xen_setup_kernel_pagetable(). 455 */ 456 if (max_pfn_mapped) 457 vaddr_end = __START_KERNEL_map + (max_pfn_mapped << PAGE_SHIFT); 458 459 for (; vaddr + PMD_SIZE - 1 < vaddr_end; pmd++, vaddr += PMD_SIZE) { 460 if (pmd_none(*pmd)) 461 continue; 462 if (vaddr < (unsigned long) _text || vaddr > end) 463 set_pmd(pmd, __pmd(0)); 464 } 465 } 466 467 /* 468 * Create PTE level page table mapping for physical addresses. 469 * It returns the last physical address mapped. 470 */ 471 static unsigned long __meminit 472 phys_pte_init(pte_t *pte_page, unsigned long paddr, unsigned long paddr_end, 473 pgprot_t prot, bool init) 474 { 475 unsigned long pages = 0, paddr_next; 476 unsigned long paddr_last = paddr_end; 477 pte_t *pte; 478 int i; 479 480 pte = pte_page + pte_index(paddr); 481 i = pte_index(paddr); 482 483 for (; i < PTRS_PER_PTE; i++, paddr = paddr_next, pte++) { 484 paddr_next = (paddr & PAGE_MASK) + PAGE_SIZE; 485 if (paddr >= paddr_end) { 486 if (!after_bootmem && 487 !e820__mapped_any(paddr & PAGE_MASK, paddr_next, 488 E820_TYPE_RAM) && 489 !e820__mapped_any(paddr & PAGE_MASK, paddr_next, 490 E820_TYPE_ACPI)) 491 set_pte_init(pte, __pte(0), init); 492 continue; 493 } 494 495 /* 496 * We will re-use the existing mapping. 497 * Xen for example has some special requirements, like mapping 498 * pagetable pages as RO. So assume someone who pre-setup 499 * these mappings are more intelligent. 500 */ 501 if (!pte_none(*pte)) { 502 if (!after_bootmem) 503 pages++; 504 continue; 505 } 506 507 pages++; 508 set_pte_init(pte, pfn_pte(paddr >> PAGE_SHIFT, prot), init); 509 paddr_last = (paddr & PAGE_MASK) + PAGE_SIZE; 510 } 511 512 update_page_count(PG_LEVEL_4K, pages); 513 514 return paddr_last; 515 } 516 517 /* 518 * Create PMD level page table mapping for physical addresses. The virtual 519 * and physical address have to be aligned at this level. 520 * It returns the last physical address mapped. 521 */ 522 static unsigned long __meminit 523 phys_pmd_init(pmd_t *pmd_page, unsigned long paddr, unsigned long paddr_end, 524 unsigned long page_size_mask, pgprot_t prot, bool init) 525 { 526 unsigned long pages = 0, paddr_next; 527 unsigned long paddr_last = paddr_end; 528 529 int i = pmd_index(paddr); 530 531 for (; i < PTRS_PER_PMD; i++, paddr = paddr_next) { 532 pmd_t *pmd = pmd_page + pmd_index(paddr); 533 pte_t *pte; 534 pgprot_t new_prot = prot; 535 536 paddr_next = (paddr & PMD_MASK) + PMD_SIZE; 537 if (paddr >= paddr_end) { 538 if (!after_bootmem && 539 !e820__mapped_any(paddr & PMD_MASK, paddr_next, 540 E820_TYPE_RAM) && 541 !e820__mapped_any(paddr & PMD_MASK, paddr_next, 542 E820_TYPE_ACPI)) 543 set_pmd_init(pmd, __pmd(0), init); 544 continue; 545 } 546 547 if (!pmd_none(*pmd)) { 548 if (!pmd_leaf(*pmd)) { 549 spin_lock(&init_mm.page_table_lock); 550 pte = (pte_t *)pmd_page_vaddr(*pmd); 551 paddr_last = phys_pte_init(pte, paddr, 552 paddr_end, prot, 553 init); 554 spin_unlock(&init_mm.page_table_lock); 555 continue; 556 } 557 /* 558 * If we are ok with PG_LEVEL_2M mapping, then we will 559 * use the existing mapping, 560 * 561 * Otherwise, we will split the large page mapping but 562 * use the same existing protection bits except for 563 * large page, so that we don't violate Intel's TLB 564 * Application note (317080) which says, while changing 565 * the page sizes, new and old translations should 566 * not differ with respect to page frame and 567 * attributes. 568 */ 569 if (page_size_mask & (1 << PG_LEVEL_2M)) { 570 if (!after_bootmem) 571 pages++; 572 paddr_last = paddr_next; 573 continue; 574 } 575 new_prot = pte_pgprot(pte_clrhuge(*(pte_t *)pmd)); 576 } 577 578 if (page_size_mask & (1<<PG_LEVEL_2M)) { 579 pages++; 580 spin_lock(&init_mm.page_table_lock); 581 set_pmd_init(pmd, 582 pfn_pmd(paddr >> PAGE_SHIFT, prot_sethuge(prot)), 583 init); 584 spin_unlock(&init_mm.page_table_lock); 585 paddr_last = paddr_next; 586 continue; 587 } 588 589 pte = alloc_low_page(); 590 paddr_last = phys_pte_init(pte, paddr, paddr_end, new_prot, init); 591 592 spin_lock(&init_mm.page_table_lock); 593 pmd_populate_kernel_init(&init_mm, pmd, pte, init); 594 spin_unlock(&init_mm.page_table_lock); 595 } 596 update_page_count(PG_LEVEL_2M, pages); 597 return paddr_last; 598 } 599 600 /* 601 * Create PUD level page table mapping for physical addresses. The virtual 602 * and physical address do not have to be aligned at this level. KASLR can 603 * randomize virtual addresses up to this level. 604 * It returns the last physical address mapped. 605 */ 606 static unsigned long __meminit 607 phys_pud_init(pud_t *pud_page, unsigned long paddr, unsigned long paddr_end, 608 unsigned long page_size_mask, pgprot_t _prot, bool init) 609 { 610 unsigned long pages = 0, paddr_next; 611 unsigned long paddr_last = paddr_end; 612 unsigned long vaddr = (unsigned long)__va(paddr); 613 int i = pud_index(vaddr); 614 615 for (; i < PTRS_PER_PUD; i++, paddr = paddr_next) { 616 pud_t *pud; 617 pmd_t *pmd; 618 pgprot_t prot = _prot; 619 620 vaddr = (unsigned long)__va(paddr); 621 pud = pud_page + pud_index(vaddr); 622 paddr_next = (paddr & PUD_MASK) + PUD_SIZE; 623 624 if (paddr >= paddr_end) { 625 if (!after_bootmem && 626 !e820__mapped_any(paddr & PUD_MASK, paddr_next, 627 E820_TYPE_RAM) && 628 !e820__mapped_any(paddr & PUD_MASK, paddr_next, 629 E820_TYPE_ACPI)) 630 set_pud_init(pud, __pud(0), init); 631 continue; 632 } 633 634 if (!pud_none(*pud)) { 635 if (!pud_leaf(*pud)) { 636 pmd = pmd_offset(pud, 0); 637 paddr_last = phys_pmd_init(pmd, paddr, 638 paddr_end, 639 page_size_mask, 640 prot, init); 641 continue; 642 } 643 /* 644 * If we are ok with PG_LEVEL_1G mapping, then we will 645 * use the existing mapping. 646 * 647 * Otherwise, we will split the gbpage mapping but use 648 * the same existing protection bits except for large 649 * page, so that we don't violate Intel's TLB 650 * Application note (317080) which says, while changing 651 * the page sizes, new and old translations should 652 * not differ with respect to page frame and 653 * attributes. 654 */ 655 if (page_size_mask & (1 << PG_LEVEL_1G)) { 656 if (!after_bootmem) 657 pages++; 658 paddr_last = paddr_next; 659 continue; 660 } 661 prot = pte_pgprot(pte_clrhuge(*(pte_t *)pud)); 662 } 663 664 if (page_size_mask & (1<<PG_LEVEL_1G)) { 665 pages++; 666 spin_lock(&init_mm.page_table_lock); 667 set_pud_init(pud, 668 pfn_pud(paddr >> PAGE_SHIFT, prot_sethuge(prot)), 669 init); 670 spin_unlock(&init_mm.page_table_lock); 671 paddr_last = paddr_next; 672 continue; 673 } 674 675 pmd = alloc_low_page(); 676 paddr_last = phys_pmd_init(pmd, paddr, paddr_end, 677 page_size_mask, prot, init); 678 679 spin_lock(&init_mm.page_table_lock); 680 pud_populate_init(&init_mm, pud, pmd, init); 681 spin_unlock(&init_mm.page_table_lock); 682 } 683 684 update_page_count(PG_LEVEL_1G, pages); 685 686 return paddr_last; 687 } 688 689 static unsigned long __meminit 690 phys_p4d_init(p4d_t *p4d_page, unsigned long paddr, unsigned long paddr_end, 691 unsigned long page_size_mask, pgprot_t prot, bool init) 692 { 693 unsigned long vaddr, vaddr_end, vaddr_next, paddr_next, paddr_last; 694 695 paddr_last = paddr_end; 696 vaddr = (unsigned long)__va(paddr); 697 vaddr_end = (unsigned long)__va(paddr_end); 698 699 if (!pgtable_l5_enabled()) 700 return phys_pud_init((pud_t *) p4d_page, paddr, paddr_end, 701 page_size_mask, prot, init); 702 703 for (; vaddr < vaddr_end; vaddr = vaddr_next) { 704 p4d_t *p4d = p4d_page + p4d_index(vaddr); 705 pud_t *pud; 706 707 vaddr_next = (vaddr & P4D_MASK) + P4D_SIZE; 708 paddr = __pa(vaddr); 709 710 if (paddr >= paddr_end) { 711 paddr_next = __pa(vaddr_next); 712 if (!after_bootmem && 713 !e820__mapped_any(paddr & P4D_MASK, paddr_next, 714 E820_TYPE_RAM) && 715 !e820__mapped_any(paddr & P4D_MASK, paddr_next, 716 E820_TYPE_ACPI)) 717 set_p4d_init(p4d, __p4d(0), init); 718 continue; 719 } 720 721 if (!p4d_none(*p4d)) { 722 pud = pud_offset(p4d, 0); 723 paddr_last = phys_pud_init(pud, paddr, __pa(vaddr_end), 724 page_size_mask, prot, init); 725 continue; 726 } 727 728 pud = alloc_low_page(); 729 paddr_last = phys_pud_init(pud, paddr, __pa(vaddr_end), 730 page_size_mask, prot, init); 731 732 spin_lock(&init_mm.page_table_lock); 733 p4d_populate_init(&init_mm, p4d, pud, init); 734 spin_unlock(&init_mm.page_table_lock); 735 } 736 737 return paddr_last; 738 } 739 740 static unsigned long __meminit 741 __kernel_physical_mapping_init(unsigned long paddr_start, 742 unsigned long paddr_end, 743 unsigned long page_size_mask, 744 pgprot_t prot, bool init) 745 { 746 bool pgd_changed = false; 747 unsigned long vaddr, vaddr_start, vaddr_end, vaddr_next, paddr_last; 748 749 paddr_last = paddr_end; 750 vaddr = (unsigned long)__va(paddr_start); 751 vaddr_end = (unsigned long)__va(paddr_end); 752 vaddr_start = vaddr; 753 754 for (; vaddr < vaddr_end; vaddr = vaddr_next) { 755 pgd_t *pgd = pgd_offset_k(vaddr); 756 p4d_t *p4d; 757 758 vaddr_next = (vaddr & PGDIR_MASK) + PGDIR_SIZE; 759 760 if (pgd_val(*pgd)) { 761 p4d = (p4d_t *)pgd_page_vaddr(*pgd); 762 paddr_last = phys_p4d_init(p4d, __pa(vaddr), 763 __pa(vaddr_end), 764 page_size_mask, 765 prot, init); 766 continue; 767 } 768 769 p4d = alloc_low_page(); 770 paddr_last = phys_p4d_init(p4d, __pa(vaddr), __pa(vaddr_end), 771 page_size_mask, prot, init); 772 773 spin_lock(&init_mm.page_table_lock); 774 if (pgtable_l5_enabled()) 775 pgd_populate_init(&init_mm, pgd, p4d, init); 776 else 777 p4d_populate_init(&init_mm, p4d_offset(pgd, vaddr), 778 (pud_t *) p4d, init); 779 780 spin_unlock(&init_mm.page_table_lock); 781 pgd_changed = true; 782 } 783 784 if (pgd_changed) 785 sync_global_pgds(vaddr_start, vaddr_end - 1); 786 787 return paddr_last; 788 } 789 790 791 /* 792 * Create page table mapping for the physical memory for specific physical 793 * addresses. Note that it can only be used to populate non-present entries. 794 * The virtual and physical addresses have to be aligned on PMD level 795 * down. It returns the last physical address mapped. 796 */ 797 unsigned long __meminit 798 kernel_physical_mapping_init(unsigned long paddr_start, 799 unsigned long paddr_end, 800 unsigned long page_size_mask, pgprot_t prot) 801 { 802 return __kernel_physical_mapping_init(paddr_start, paddr_end, 803 page_size_mask, prot, true); 804 } 805 806 /* 807 * This function is similar to kernel_physical_mapping_init() above with the 808 * exception that it uses set_{pud,pmd}() instead of the set_{pud,pte}_safe() 809 * when updating the mapping. The caller is responsible to flush the TLBs after 810 * the function returns. 811 */ 812 unsigned long __meminit 813 kernel_physical_mapping_change(unsigned long paddr_start, 814 unsigned long paddr_end, 815 unsigned long page_size_mask) 816 { 817 return __kernel_physical_mapping_init(paddr_start, paddr_end, 818 page_size_mask, PAGE_KERNEL, 819 false); 820 } 821 822 #ifndef CONFIG_NUMA 823 static __always_inline void x86_numa_init(void) 824 { 825 memblock_set_node(0, PHYS_ADDR_MAX, &memblock.memory, 0); 826 } 827 #endif 828 829 void __init initmem_init(void) 830 { 831 x86_numa_init(); 832 } 833 834 void __init paging_init(void) 835 { 836 sparse_init(); 837 838 /* 839 * clear the default setting with node 0 840 * note: don't use nodes_clear here, that is really clearing when 841 * numa support is not compiled in, and later node_set_state 842 * will not set it back. 843 */ 844 node_clear_state(0, N_MEMORY); 845 node_clear_state(0, N_NORMAL_MEMORY); 846 847 zone_sizes_init(); 848 } 849 850 #define PAGE_UNUSED 0xFD 851 852 /* 853 * The unused vmemmap range, which was not yet memset(PAGE_UNUSED), ranges 854 * from unused_pmd_start to next PMD_SIZE boundary. 855 */ 856 static unsigned long unused_pmd_start __meminitdata; 857 858 static void __meminit vmemmap_flush_unused_pmd(void) 859 { 860 if (!unused_pmd_start) 861 return; 862 /* 863 * Clears (unused_pmd_start, PMD_END] 864 */ 865 memset((void *)unused_pmd_start, PAGE_UNUSED, 866 ALIGN(unused_pmd_start, PMD_SIZE) - unused_pmd_start); 867 unused_pmd_start = 0; 868 } 869 870 #ifdef CONFIG_MEMORY_HOTPLUG 871 /* Returns true if the PMD is completely unused and thus it can be freed */ 872 static bool __meminit vmemmap_pmd_is_unused(unsigned long addr, unsigned long end) 873 { 874 unsigned long start = ALIGN_DOWN(addr, PMD_SIZE); 875 876 /* 877 * Flush the unused range cache to ensure that memchr_inv() will work 878 * for the whole range. 879 */ 880 vmemmap_flush_unused_pmd(); 881 memset((void *)addr, PAGE_UNUSED, end - addr); 882 883 return !memchr_inv((void *)start, PAGE_UNUSED, PMD_SIZE); 884 } 885 #endif 886 887 static void __meminit __vmemmap_use_sub_pmd(unsigned long start) 888 { 889 /* 890 * As we expect to add in the same granularity as we remove, it's 891 * sufficient to mark only some piece used to block the memmap page from 892 * getting removed when removing some other adjacent memmap (just in 893 * case the first memmap never gets initialized e.g., because the memory 894 * block never gets onlined). 895 */ 896 memset((void *)start, 0, sizeof(struct page)); 897 } 898 899 static void __meminit vmemmap_use_sub_pmd(unsigned long start, unsigned long end) 900 { 901 /* 902 * We only optimize if the new used range directly follows the 903 * previously unused range (esp., when populating consecutive sections). 904 */ 905 if (unused_pmd_start == start) { 906 if (likely(IS_ALIGNED(end, PMD_SIZE))) 907 unused_pmd_start = 0; 908 else 909 unused_pmd_start = end; 910 return; 911 } 912 913 /* 914 * If the range does not contiguously follows previous one, make sure 915 * to mark the unused range of the previous one so it can be removed. 916 */ 917 vmemmap_flush_unused_pmd(); 918 __vmemmap_use_sub_pmd(start); 919 } 920 921 922 static void __meminit vmemmap_use_new_sub_pmd(unsigned long start, unsigned long end) 923 { 924 const unsigned long page = ALIGN_DOWN(start, PMD_SIZE); 925 926 vmemmap_flush_unused_pmd(); 927 928 /* 929 * Could be our memmap page is filled with PAGE_UNUSED already from a 930 * previous remove. Make sure to reset it. 931 */ 932 __vmemmap_use_sub_pmd(start); 933 934 /* 935 * Mark with PAGE_UNUSED the unused parts of the new memmap range 936 */ 937 if (!IS_ALIGNED(start, PMD_SIZE)) 938 memset((void *)page, PAGE_UNUSED, start - page); 939 940 /* 941 * We want to avoid memset(PAGE_UNUSED) when populating the vmemmap of 942 * consecutive sections. Remember for the last added PMD where the 943 * unused range begins. 944 */ 945 if (!IS_ALIGNED(end, PMD_SIZE)) 946 unused_pmd_start = end; 947 } 948 949 /* 950 * Memory hotplug specific functions 951 */ 952 #ifdef CONFIG_MEMORY_HOTPLUG 953 /* 954 * After memory hotplug the variables max_pfn, max_low_pfn and high_memory need 955 * updating. 956 */ 957 static void update_end_of_memory_vars(u64 start, u64 size) 958 { 959 unsigned long end_pfn = PFN_UP(start + size); 960 961 if (end_pfn > max_pfn) { 962 max_pfn = end_pfn; 963 max_low_pfn = end_pfn; 964 high_memory = (void *)__va(max_pfn * PAGE_SIZE - 1) + 1; 965 } 966 } 967 968 int add_pages(int nid, unsigned long start_pfn, unsigned long nr_pages, 969 struct mhp_params *params) 970 { 971 unsigned long end = ((start_pfn + nr_pages) << PAGE_SHIFT) - 1; 972 int ret; 973 974 if (WARN_ON_ONCE(end > DIRECT_MAP_PHYSMEM_END)) 975 return -ERANGE; 976 977 ret = __add_pages(nid, start_pfn, nr_pages, params); 978 WARN_ON_ONCE(ret); 979 980 /* 981 * Special case: add_pages() is called by memremap_pages() for adding device 982 * private pages. Do not bump up max_pfn in the device private path, 983 * because max_pfn changes affect dma_addressing_limited(). 984 * 985 * dma_addressing_limited() returning true when max_pfn is the device's 986 * addressable memory can force device drivers to use bounce buffers 987 * and impact their performance negatively: 988 */ 989 if (!params->pgmap) 990 /* update max_pfn, max_low_pfn and high_memory */ 991 update_end_of_memory_vars(start_pfn << PAGE_SHIFT, nr_pages << PAGE_SHIFT); 992 993 return ret; 994 } 995 996 int arch_add_memory(int nid, u64 start, u64 size, 997 struct mhp_params *params) 998 { 999 unsigned long start_pfn = start >> PAGE_SHIFT; 1000 unsigned long nr_pages = size >> PAGE_SHIFT; 1001 1002 init_memory_mapping(start, start + size, params->pgprot); 1003 1004 return add_pages(nid, start_pfn, nr_pages, params); 1005 } 1006 1007 static void free_reserved_pages(struct page *page, unsigned long nr_pages) 1008 { 1009 while (nr_pages--) 1010 free_reserved_page(page++); 1011 } 1012 1013 static void __meminit free_pagetable(struct page *page, int order) 1014 { 1015 /* bootmem page has reserved flag */ 1016 if (PageReserved(page)) { 1017 unsigned long nr_pages = 1 << order; 1018 #ifdef CONFIG_HAVE_BOOTMEM_INFO_NODE 1019 enum bootmem_type type = bootmem_type(page); 1020 1021 if (type == SECTION_INFO || type == MIX_SECTION_INFO) { 1022 while (nr_pages--) 1023 put_page_bootmem(page++); 1024 } else { 1025 free_reserved_pages(page, nr_pages); 1026 } 1027 #else 1028 free_reserved_pages(page, nr_pages); 1029 #endif 1030 } else { 1031 __free_pages(page, order); 1032 } 1033 } 1034 1035 static void __meminit free_hugepage_table(struct page *page, 1036 struct vmem_altmap *altmap) 1037 { 1038 if (altmap) 1039 vmem_altmap_free(altmap, PMD_SIZE / PAGE_SIZE); 1040 else 1041 free_pagetable(page, get_order(PMD_SIZE)); 1042 } 1043 1044 static void __meminit free_pte_table(pte_t *pte_start, pmd_t *pmd) 1045 { 1046 pte_t *pte; 1047 int i; 1048 1049 for (i = 0; i < PTRS_PER_PTE; i++) { 1050 pte = pte_start + i; 1051 if (!pte_none(*pte)) 1052 return; 1053 } 1054 1055 /* free a pte table */ 1056 free_pagetable(pmd_page(*pmd), 0); 1057 spin_lock(&init_mm.page_table_lock); 1058 pmd_clear(pmd); 1059 spin_unlock(&init_mm.page_table_lock); 1060 } 1061 1062 static void __meminit free_pmd_table(pmd_t *pmd_start, pud_t *pud) 1063 { 1064 pmd_t *pmd; 1065 int i; 1066 1067 for (i = 0; i < PTRS_PER_PMD; i++) { 1068 pmd = pmd_start + i; 1069 if (!pmd_none(*pmd)) 1070 return; 1071 } 1072 1073 /* free a pmd table */ 1074 free_pagetable(pud_page(*pud), 0); 1075 spin_lock(&init_mm.page_table_lock); 1076 pud_clear(pud); 1077 spin_unlock(&init_mm.page_table_lock); 1078 } 1079 1080 static void __meminit free_pud_table(pud_t *pud_start, p4d_t *p4d) 1081 { 1082 pud_t *pud; 1083 int i; 1084 1085 for (i = 0; i < PTRS_PER_PUD; i++) { 1086 pud = pud_start + i; 1087 if (!pud_none(*pud)) 1088 return; 1089 } 1090 1091 /* free a pud table */ 1092 free_pagetable(p4d_page(*p4d), 0); 1093 spin_lock(&init_mm.page_table_lock); 1094 p4d_clear(p4d); 1095 spin_unlock(&init_mm.page_table_lock); 1096 } 1097 1098 static void __meminit 1099 remove_pte_table(pte_t *pte_start, unsigned long addr, unsigned long end, 1100 bool direct) 1101 { 1102 unsigned long next, pages = 0; 1103 pte_t *pte; 1104 phys_addr_t phys_addr; 1105 1106 pte = pte_start + pte_index(addr); 1107 for (; addr < end; addr = next, pte++) { 1108 next = (addr + PAGE_SIZE) & PAGE_MASK; 1109 if (next > end) 1110 next = end; 1111 1112 if (!pte_present(*pte)) 1113 continue; 1114 1115 /* 1116 * We mapped [0,1G) memory as identity mapping when 1117 * initializing, in arch/x86/kernel/head_64.S. These 1118 * pagetables cannot be removed. 1119 */ 1120 phys_addr = pte_val(*pte) + (addr & PAGE_MASK); 1121 if (phys_addr < (phys_addr_t)0x40000000) 1122 return; 1123 1124 if (!direct) 1125 free_pagetable(pte_page(*pte), 0); 1126 1127 spin_lock(&init_mm.page_table_lock); 1128 pte_clear(&init_mm, addr, pte); 1129 spin_unlock(&init_mm.page_table_lock); 1130 1131 /* For non-direct mapping, pages means nothing. */ 1132 pages++; 1133 } 1134 1135 /* Call free_pte_table() in remove_pmd_table(). */ 1136 flush_tlb_all(); 1137 if (direct) 1138 update_page_count(PG_LEVEL_4K, -pages); 1139 } 1140 1141 static void __meminit 1142 remove_pmd_table(pmd_t *pmd_start, unsigned long addr, unsigned long end, 1143 bool direct, struct vmem_altmap *altmap) 1144 { 1145 unsigned long next, pages = 0; 1146 pte_t *pte_base; 1147 pmd_t *pmd; 1148 1149 pmd = pmd_start + pmd_index(addr); 1150 for (; addr < end; addr = next, pmd++) { 1151 next = pmd_addr_end(addr, end); 1152 1153 if (!pmd_present(*pmd)) 1154 continue; 1155 1156 if (pmd_leaf(*pmd)) { 1157 if (IS_ALIGNED(addr, PMD_SIZE) && 1158 IS_ALIGNED(next, PMD_SIZE)) { 1159 if (!direct) 1160 free_hugepage_table(pmd_page(*pmd), 1161 altmap); 1162 1163 spin_lock(&init_mm.page_table_lock); 1164 pmd_clear(pmd); 1165 spin_unlock(&init_mm.page_table_lock); 1166 pages++; 1167 } else if (vmemmap_pmd_is_unused(addr, next)) { 1168 free_hugepage_table(pmd_page(*pmd), 1169 altmap); 1170 spin_lock(&init_mm.page_table_lock); 1171 pmd_clear(pmd); 1172 spin_unlock(&init_mm.page_table_lock); 1173 } 1174 continue; 1175 } 1176 1177 pte_base = (pte_t *)pmd_page_vaddr(*pmd); 1178 remove_pte_table(pte_base, addr, next, direct); 1179 free_pte_table(pte_base, pmd); 1180 } 1181 1182 /* Call free_pmd_table() in remove_pud_table(). */ 1183 if (direct) 1184 update_page_count(PG_LEVEL_2M, -pages); 1185 } 1186 1187 static void __meminit 1188 remove_pud_table(pud_t *pud_start, unsigned long addr, unsigned long end, 1189 struct vmem_altmap *altmap, bool direct) 1190 { 1191 unsigned long next, pages = 0; 1192 pmd_t *pmd_base; 1193 pud_t *pud; 1194 1195 pud = pud_start + pud_index(addr); 1196 for (; addr < end; addr = next, pud++) { 1197 next = pud_addr_end(addr, end); 1198 1199 if (!pud_present(*pud)) 1200 continue; 1201 1202 if (pud_leaf(*pud) && 1203 IS_ALIGNED(addr, PUD_SIZE) && 1204 IS_ALIGNED(next, PUD_SIZE)) { 1205 spin_lock(&init_mm.page_table_lock); 1206 pud_clear(pud); 1207 spin_unlock(&init_mm.page_table_lock); 1208 pages++; 1209 continue; 1210 } 1211 1212 pmd_base = pmd_offset(pud, 0); 1213 remove_pmd_table(pmd_base, addr, next, direct, altmap); 1214 free_pmd_table(pmd_base, pud); 1215 } 1216 1217 if (direct) 1218 update_page_count(PG_LEVEL_1G, -pages); 1219 } 1220 1221 static void __meminit 1222 remove_p4d_table(p4d_t *p4d_start, unsigned long addr, unsigned long end, 1223 struct vmem_altmap *altmap, bool direct) 1224 { 1225 unsigned long next, pages = 0; 1226 pud_t *pud_base; 1227 p4d_t *p4d; 1228 1229 p4d = p4d_start + p4d_index(addr); 1230 for (; addr < end; addr = next, p4d++) { 1231 next = p4d_addr_end(addr, end); 1232 1233 if (!p4d_present(*p4d)) 1234 continue; 1235 1236 BUILD_BUG_ON(p4d_leaf(*p4d)); 1237 1238 pud_base = pud_offset(p4d, 0); 1239 remove_pud_table(pud_base, addr, next, altmap, direct); 1240 /* 1241 * For 4-level page tables we do not want to free PUDs, but in the 1242 * 5-level case we should free them. This code will have to change 1243 * to adapt for boot-time switching between 4 and 5 level page tables. 1244 */ 1245 if (pgtable_l5_enabled()) 1246 free_pud_table(pud_base, p4d); 1247 } 1248 1249 if (direct) 1250 update_page_count(PG_LEVEL_512G, -pages); 1251 } 1252 1253 /* start and end are both virtual address. */ 1254 static void __meminit 1255 remove_pagetable(unsigned long start, unsigned long end, bool direct, 1256 struct vmem_altmap *altmap) 1257 { 1258 unsigned long next; 1259 unsigned long addr; 1260 pgd_t *pgd; 1261 p4d_t *p4d; 1262 1263 for (addr = start; addr < end; addr = next) { 1264 next = pgd_addr_end(addr, end); 1265 1266 pgd = pgd_offset_k(addr); 1267 if (!pgd_present(*pgd)) 1268 continue; 1269 1270 p4d = p4d_offset(pgd, 0); 1271 remove_p4d_table(p4d, addr, next, altmap, direct); 1272 } 1273 1274 flush_tlb_all(); 1275 } 1276 1277 void __ref vmemmap_free(unsigned long start, unsigned long end, 1278 struct vmem_altmap *altmap) 1279 { 1280 VM_BUG_ON(!PAGE_ALIGNED(start)); 1281 VM_BUG_ON(!PAGE_ALIGNED(end)); 1282 1283 remove_pagetable(start, end, false, altmap); 1284 } 1285 1286 static void __meminit 1287 kernel_physical_mapping_remove(unsigned long start, unsigned long end) 1288 { 1289 start = (unsigned long)__va(start); 1290 end = (unsigned long)__va(end); 1291 1292 remove_pagetable(start, end, true, NULL); 1293 } 1294 1295 void __ref arch_remove_memory(u64 start, u64 size, struct vmem_altmap *altmap) 1296 { 1297 unsigned long start_pfn = start >> PAGE_SHIFT; 1298 unsigned long nr_pages = size >> PAGE_SHIFT; 1299 1300 __remove_pages(start_pfn, nr_pages, altmap); 1301 kernel_physical_mapping_remove(start, start + size); 1302 } 1303 #endif /* CONFIG_MEMORY_HOTPLUG */ 1304 1305 static struct kcore_list kcore_vsyscall; 1306 1307 static void __init register_page_bootmem_info(void) 1308 { 1309 #if defined(CONFIG_NUMA) || defined(CONFIG_HUGETLB_PAGE_OPTIMIZE_VMEMMAP) 1310 int i; 1311 1312 for_each_online_node(i) 1313 register_page_bootmem_info_node(NODE_DATA(i)); 1314 #endif 1315 } 1316 1317 /* 1318 * Pre-allocates page-table pages for the vmalloc area in the kernel page-table. 1319 * Only the level which needs to be synchronized between all page-tables is 1320 * allocated because the synchronization can be expensive. 1321 */ 1322 static void __init preallocate_vmalloc_pages(void) 1323 { 1324 unsigned long addr; 1325 const char *lvl; 1326 1327 for (addr = VMALLOC_START; addr <= VMEMORY_END; addr = ALIGN(addr + 1, PGDIR_SIZE)) { 1328 pgd_t *pgd = pgd_offset_k(addr); 1329 p4d_t *p4d; 1330 pud_t *pud; 1331 1332 lvl = "p4d"; 1333 p4d = p4d_alloc(&init_mm, pgd, addr); 1334 if (!p4d) 1335 goto failed; 1336 1337 if (pgtable_l5_enabled()) 1338 continue; 1339 1340 /* 1341 * The goal here is to allocate all possibly required 1342 * hardware page tables pointed to by the top hardware 1343 * level. 1344 * 1345 * On 4-level systems, the P4D layer is folded away and 1346 * the above code does no preallocation. Below, go down 1347 * to the pud _software_ level to ensure the second 1348 * hardware level is allocated on 4-level systems too. 1349 */ 1350 lvl = "pud"; 1351 pud = pud_alloc(&init_mm, p4d, addr); 1352 if (!pud) 1353 goto failed; 1354 } 1355 1356 return; 1357 1358 failed: 1359 1360 /* 1361 * The pages have to be there now or they will be missing in 1362 * process page-tables later. 1363 */ 1364 panic("Failed to pre-allocate %s pages for vmalloc area\n", lvl); 1365 } 1366 1367 void __init arch_mm_preinit(void) 1368 { 1369 pci_iommu_alloc(); 1370 } 1371 1372 void __init mem_init(void) 1373 { 1374 /* clear_bss() already clear the empty_zero_page */ 1375 1376 after_bootmem = 1; 1377 x86_init.hyper.init_after_bootmem(); 1378 1379 /* 1380 * Must be done after boot memory is put on freelist, because here we 1381 * might set fields in deferred struct pages that have not yet been 1382 * initialized, and memblock_free_all() initializes all the reserved 1383 * deferred pages for us. 1384 */ 1385 register_page_bootmem_info(); 1386 1387 /* Register memory areas for /proc/kcore */ 1388 if (get_gate_vma(&init_mm)) 1389 kclist_add(&kcore_vsyscall, (void *)VSYSCALL_ADDR, PAGE_SIZE, KCORE_USER); 1390 1391 preallocate_vmalloc_pages(); 1392 } 1393 1394 int kernel_set_to_readonly; 1395 1396 void mark_rodata_ro(void) 1397 { 1398 unsigned long start = PFN_ALIGN(_text); 1399 unsigned long rodata_start = PFN_ALIGN(__start_rodata); 1400 unsigned long end = (unsigned long)__end_rodata_hpage_align; 1401 unsigned long text_end = PFN_ALIGN(_etext); 1402 unsigned long rodata_end = PFN_ALIGN(__end_rodata); 1403 unsigned long all_end; 1404 1405 printk(KERN_INFO "Write protecting the kernel read-only data: %luk\n", 1406 (end - start) >> 10); 1407 set_memory_ro(start, (end - start) >> PAGE_SHIFT); 1408 1409 kernel_set_to_readonly = 1; 1410 1411 /* 1412 * The rodata/data/bss/brk section (but not the kernel text!) 1413 * should also be not-executable. 1414 * 1415 * We align all_end to PMD_SIZE because the existing mapping 1416 * is a full PMD. If we would align _brk_end to PAGE_SIZE we 1417 * split the PMD and the reminder between _brk_end and the end 1418 * of the PMD will remain mapped executable. 1419 * 1420 * Any PMD which was setup after the one which covers _brk_end 1421 * has been zapped already via cleanup_highmem(). 1422 */ 1423 all_end = roundup((unsigned long)_brk_end, PMD_SIZE); 1424 set_memory_nx(text_end, (all_end - text_end) >> PAGE_SHIFT); 1425 1426 set_ftrace_ops_ro(); 1427 1428 #ifdef CONFIG_CPA_DEBUG 1429 printk(KERN_INFO "Testing CPA: undo %lx-%lx\n", start, end); 1430 set_memory_rw(start, (end-start) >> PAGE_SHIFT); 1431 1432 printk(KERN_INFO "Testing CPA: again\n"); 1433 set_memory_ro(start, (end-start) >> PAGE_SHIFT); 1434 #endif 1435 1436 free_kernel_image_pages("unused kernel image (text/rodata gap)", 1437 (void *)text_end, (void *)rodata_start); 1438 free_kernel_image_pages("unused kernel image (rodata/data gap)", 1439 (void *)rodata_end, (void *)_sdata); 1440 } 1441 1442 /* 1443 * Block size is the minimum amount of memory which can be hotplugged or 1444 * hotremoved. It must be power of two and must be equal or larger than 1445 * MIN_MEMORY_BLOCK_SIZE. 1446 */ 1447 #define MAX_BLOCK_SIZE (2UL << 30) 1448 1449 /* Amount of ram needed to start using large blocks */ 1450 #define MEM_SIZE_FOR_LARGE_BLOCK (64UL << 30) 1451 1452 /* Adjustable memory block size */ 1453 static unsigned long set_memory_block_size; 1454 int __init set_memory_block_size_order(unsigned int order) 1455 { 1456 unsigned long size = 1UL << order; 1457 1458 if (size > MEM_SIZE_FOR_LARGE_BLOCK || size < MIN_MEMORY_BLOCK_SIZE) 1459 return -EINVAL; 1460 1461 set_memory_block_size = size; 1462 return 0; 1463 } 1464 1465 static unsigned long probe_memory_block_size(void) 1466 { 1467 unsigned long boot_mem_end = max_pfn << PAGE_SHIFT; 1468 unsigned long bz; 1469 1470 /* If memory block size has been set, then use it */ 1471 bz = set_memory_block_size; 1472 if (bz) 1473 goto done; 1474 1475 /* Use regular block if RAM is smaller than MEM_SIZE_FOR_LARGE_BLOCK */ 1476 if (boot_mem_end < MEM_SIZE_FOR_LARGE_BLOCK) { 1477 bz = MIN_MEMORY_BLOCK_SIZE; 1478 goto done; 1479 } 1480 1481 /* 1482 * When hotplug alignment is not a concern, maximize blocksize 1483 * to minimize overhead. Otherwise, align to the lesser of advice 1484 * alignment and end of memory alignment. 1485 */ 1486 bz = memory_block_advised_max_size(); 1487 if (!bz) { 1488 bz = MAX_BLOCK_SIZE; 1489 if (!cpu_feature_enabled(X86_FEATURE_HYPERVISOR)) 1490 goto done; 1491 } else { 1492 bz = max(min(bz, MAX_BLOCK_SIZE), MIN_MEMORY_BLOCK_SIZE); 1493 } 1494 1495 /* Find the largest allowed block size that aligns to memory end */ 1496 for (; bz > MIN_MEMORY_BLOCK_SIZE; bz >>= 1) { 1497 if (IS_ALIGNED(boot_mem_end, bz)) 1498 break; 1499 } 1500 done: 1501 pr_info("x86/mm: Memory block size: %ldMB\n", bz >> 20); 1502 1503 return bz; 1504 } 1505 1506 static unsigned long memory_block_size_probed; 1507 unsigned long memory_block_size_bytes(void) 1508 { 1509 if (!memory_block_size_probed) 1510 memory_block_size_probed = probe_memory_block_size(); 1511 1512 return memory_block_size_probed; 1513 } 1514 1515 /* 1516 * Initialise the sparsemem vmemmap using huge-pages at the PMD level. 1517 */ 1518 static long __meminitdata addr_start, addr_end; 1519 static void __meminitdata *p_start, *p_end; 1520 static int __meminitdata node_start; 1521 1522 void __meminit vmemmap_set_pmd(pmd_t *pmd, void *p, int node, 1523 unsigned long addr, unsigned long next) 1524 { 1525 pte_t entry; 1526 1527 entry = pfn_pte(__pa(p) >> PAGE_SHIFT, 1528 PAGE_KERNEL_LARGE); 1529 set_pmd(pmd, __pmd(pte_val(entry))); 1530 1531 /* check to see if we have contiguous blocks */ 1532 if (p_end != p || node_start != node) { 1533 if (p_start) 1534 pr_debug(" [%lx-%lx] PMD -> [%p-%p] on node %d\n", 1535 addr_start, addr_end-1, p_start, p_end-1, node_start); 1536 addr_start = addr; 1537 node_start = node; 1538 p_start = p; 1539 } 1540 1541 addr_end = addr + PMD_SIZE; 1542 p_end = p + PMD_SIZE; 1543 1544 if (!IS_ALIGNED(addr, PMD_SIZE) || 1545 !IS_ALIGNED(next, PMD_SIZE)) 1546 vmemmap_use_new_sub_pmd(addr, next); 1547 } 1548 1549 int __meminit vmemmap_check_pmd(pmd_t *pmd, int node, 1550 unsigned long addr, unsigned long next) 1551 { 1552 int large = pmd_leaf(*pmd); 1553 1554 if (pmd_leaf(*pmd)) { 1555 vmemmap_verify((pte_t *)pmd, node, addr, next); 1556 vmemmap_use_sub_pmd(addr, next); 1557 } 1558 1559 return large; 1560 } 1561 1562 int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node, 1563 struct vmem_altmap *altmap) 1564 { 1565 int err; 1566 1567 VM_BUG_ON(!PAGE_ALIGNED(start)); 1568 VM_BUG_ON(!PAGE_ALIGNED(end)); 1569 1570 if (end - start < PAGES_PER_SECTION * sizeof(struct page)) 1571 err = vmemmap_populate_basepages(start, end, node, NULL); 1572 else if (boot_cpu_has(X86_FEATURE_PSE)) 1573 err = vmemmap_populate_hugepages(start, end, node, altmap); 1574 else if (altmap) { 1575 pr_err_once("%s: no cpu support for altmap allocations\n", 1576 __func__); 1577 err = -ENOMEM; 1578 } else 1579 err = vmemmap_populate_basepages(start, end, node, NULL); 1580 if (!err) 1581 sync_global_pgds(start, end - 1); 1582 return err; 1583 } 1584 1585 #ifdef CONFIG_HAVE_BOOTMEM_INFO_NODE 1586 void register_page_bootmem_memmap(unsigned long section_nr, 1587 struct page *start_page, unsigned long nr_pages) 1588 { 1589 unsigned long addr = (unsigned long)start_page; 1590 unsigned long end = (unsigned long)(start_page + nr_pages); 1591 unsigned long next; 1592 pgd_t *pgd; 1593 p4d_t *p4d; 1594 pud_t *pud; 1595 pmd_t *pmd; 1596 unsigned int nr_pmd_pages; 1597 struct page *page; 1598 1599 for (; addr < end; addr = next) { 1600 pte_t *pte = NULL; 1601 1602 pgd = pgd_offset_k(addr); 1603 if (pgd_none(*pgd)) { 1604 next = (addr + PAGE_SIZE) & PAGE_MASK; 1605 continue; 1606 } 1607 get_page_bootmem(section_nr, pgd_page(*pgd), MIX_SECTION_INFO); 1608 1609 p4d = p4d_offset(pgd, addr); 1610 if (p4d_none(*p4d)) { 1611 next = (addr + PAGE_SIZE) & PAGE_MASK; 1612 continue; 1613 } 1614 get_page_bootmem(section_nr, p4d_page(*p4d), MIX_SECTION_INFO); 1615 1616 pud = pud_offset(p4d, addr); 1617 if (pud_none(*pud)) { 1618 next = (addr + PAGE_SIZE) & PAGE_MASK; 1619 continue; 1620 } 1621 get_page_bootmem(section_nr, pud_page(*pud), MIX_SECTION_INFO); 1622 1623 pmd = pmd_offset(pud, addr); 1624 if (pmd_none(*pmd)) { 1625 next = (addr + PAGE_SIZE) & PAGE_MASK; 1626 continue; 1627 } 1628 1629 if (!boot_cpu_has(X86_FEATURE_PSE) || !pmd_leaf(*pmd)) { 1630 next = (addr + PAGE_SIZE) & PAGE_MASK; 1631 get_page_bootmem(section_nr, pmd_page(*pmd), 1632 MIX_SECTION_INFO); 1633 1634 pte = pte_offset_kernel(pmd, addr); 1635 if (pte_none(*pte)) 1636 continue; 1637 get_page_bootmem(section_nr, pte_page(*pte), 1638 SECTION_INFO); 1639 } else { 1640 next = pmd_addr_end(addr, end); 1641 nr_pmd_pages = (next - addr) >> PAGE_SHIFT; 1642 page = pmd_page(*pmd); 1643 while (nr_pmd_pages--) 1644 get_page_bootmem(section_nr, page++, 1645 SECTION_INFO); 1646 } 1647 } 1648 } 1649 #endif 1650 1651 void __meminit vmemmap_populate_print_last(void) 1652 { 1653 if (p_start) { 1654 pr_debug(" [%lx-%lx] PMD -> [%p-%p] on node %d\n", 1655 addr_start, addr_end-1, p_start, p_end-1, node_start); 1656 p_start = NULL; 1657 p_end = NULL; 1658 node_start = 0; 1659 } 1660 } 1661