xref: /linux/arch/x86/mm/init_64.c (revision 5f4123be3cdb1dbd77fa9d6d2bb96bb9689a0a19)
1 /*
2  *  linux/arch/x86_64/mm/init.c
3  *
4  *  Copyright (C) 1995  Linus Torvalds
5  *  Copyright (C) 2000  Pavel Machek <pavel@suse.cz>
6  *  Copyright (C) 2002,2003 Andi Kleen <ak@suse.de>
7  */
8 
9 #include <linux/signal.h>
10 #include <linux/sched.h>
11 #include <linux/kernel.h>
12 #include <linux/errno.h>
13 #include <linux/string.h>
14 #include <linux/types.h>
15 #include <linux/ptrace.h>
16 #include <linux/mman.h>
17 #include <linux/mm.h>
18 #include <linux/swap.h>
19 #include <linux/smp.h>
20 #include <linux/init.h>
21 #include <linux/initrd.h>
22 #include <linux/pagemap.h>
23 #include <linux/bootmem.h>
24 #include <linux/proc_fs.h>
25 #include <linux/pci.h>
26 #include <linux/pfn.h>
27 #include <linux/poison.h>
28 #include <linux/dma-mapping.h>
29 #include <linux/module.h>
30 #include <linux/memory_hotplug.h>
31 #include <linux/nmi.h>
32 
33 #include <asm/processor.h>
34 #include <asm/bios_ebda.h>
35 #include <asm/system.h>
36 #include <asm/uaccess.h>
37 #include <asm/pgtable.h>
38 #include <asm/pgalloc.h>
39 #include <asm/dma.h>
40 #include <asm/fixmap.h>
41 #include <asm/e820.h>
42 #include <asm/apic.h>
43 #include <asm/tlb.h>
44 #include <asm/mmu_context.h>
45 #include <asm/proto.h>
46 #include <asm/smp.h>
47 #include <asm/sections.h>
48 #include <asm/kdebug.h>
49 #include <asm/numa.h>
50 #include <asm/cacheflush.h>
51 
52 /*
53  * end_pfn only includes RAM, while max_pfn_mapped includes all e820 entries.
54  * The direct mapping extends to max_pfn_mapped, so that we can directly access
55  * apertures, ACPI and other tables without having to play with fixmaps.
56  */
57 unsigned long max_low_pfn_mapped;
58 unsigned long max_pfn_mapped;
59 
60 static unsigned long dma_reserve __initdata;
61 
62 DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
63 
64 int direct_gbpages
65 #ifdef CONFIG_DIRECT_GBPAGES
66 				= 1
67 #endif
68 ;
69 
70 static int __init parse_direct_gbpages_off(char *arg)
71 {
72 	direct_gbpages = 0;
73 	return 0;
74 }
75 early_param("nogbpages", parse_direct_gbpages_off);
76 
77 static int __init parse_direct_gbpages_on(char *arg)
78 {
79 	direct_gbpages = 1;
80 	return 0;
81 }
82 early_param("gbpages", parse_direct_gbpages_on);
83 
84 /*
85  * NOTE: pagetable_init alloc all the fixmap pagetables contiguous on the
86  * physical space so we can cache the place of the first one and move
87  * around without checking the pgd every time.
88  */
89 
90 int after_bootmem;
91 
92 pteval_t __supported_pte_mask __read_mostly = ~_PAGE_IOMAP;
93 EXPORT_SYMBOL_GPL(__supported_pte_mask);
94 
95 static int do_not_nx __cpuinitdata;
96 
97 /*
98  * noexec=on|off
99  * Control non-executable mappings for 64-bit processes.
100  *
101  * on	Enable (default)
102  * off	Disable
103  */
104 static int __init nonx_setup(char *str)
105 {
106 	if (!str)
107 		return -EINVAL;
108 	if (!strncmp(str, "on", 2)) {
109 		__supported_pte_mask |= _PAGE_NX;
110 		do_not_nx = 0;
111 	} else if (!strncmp(str, "off", 3)) {
112 		do_not_nx = 1;
113 		__supported_pte_mask &= ~_PAGE_NX;
114 	}
115 	return 0;
116 }
117 early_param("noexec", nonx_setup);
118 
119 void __cpuinit check_efer(void)
120 {
121 	unsigned long efer;
122 
123 	rdmsrl(MSR_EFER, efer);
124 	if (!(efer & EFER_NX) || do_not_nx)
125 		__supported_pte_mask &= ~_PAGE_NX;
126 }
127 
128 int force_personality32;
129 
130 /*
131  * noexec32=on|off
132  * Control non executable heap for 32bit processes.
133  * To control the stack too use noexec=off
134  *
135  * on	PROT_READ does not imply PROT_EXEC for 32-bit processes (default)
136  * off	PROT_READ implies PROT_EXEC
137  */
138 static int __init nonx32_setup(char *str)
139 {
140 	if (!strcmp(str, "on"))
141 		force_personality32 &= ~READ_IMPLIES_EXEC;
142 	else if (!strcmp(str, "off"))
143 		force_personality32 |= READ_IMPLIES_EXEC;
144 	return 1;
145 }
146 __setup("noexec32=", nonx32_setup);
147 
148 /*
149  * NOTE: This function is marked __ref because it calls __init function
150  * (alloc_bootmem_pages). It's safe to do it ONLY when after_bootmem == 0.
151  */
152 static __ref void *spp_getpage(void)
153 {
154 	void *ptr;
155 
156 	if (after_bootmem)
157 		ptr = (void *) get_zeroed_page(GFP_ATOMIC);
158 	else
159 		ptr = alloc_bootmem_pages(PAGE_SIZE);
160 
161 	if (!ptr || ((unsigned long)ptr & ~PAGE_MASK)) {
162 		panic("set_pte_phys: cannot allocate page data %s\n",
163 			after_bootmem ? "after bootmem" : "");
164 	}
165 
166 	pr_debug("spp_getpage %p\n", ptr);
167 
168 	return ptr;
169 }
170 
171 void
172 set_pte_vaddr_pud(pud_t *pud_page, unsigned long vaddr, pte_t new_pte)
173 {
174 	pud_t *pud;
175 	pmd_t *pmd;
176 	pte_t *pte;
177 
178 	pud = pud_page + pud_index(vaddr);
179 	if (pud_none(*pud)) {
180 		pmd = (pmd_t *) spp_getpage();
181 		pud_populate(&init_mm, pud, pmd);
182 		if (pmd != pmd_offset(pud, 0)) {
183 			printk(KERN_ERR "PAGETABLE BUG #01! %p <-> %p\n",
184 				pmd, pmd_offset(pud, 0));
185 			return;
186 		}
187 	}
188 	pmd = pmd_offset(pud, vaddr);
189 	if (pmd_none(*pmd)) {
190 		pte = (pte_t *) spp_getpage();
191 		pmd_populate_kernel(&init_mm, pmd, pte);
192 		if (pte != pte_offset_kernel(pmd, 0)) {
193 			printk(KERN_ERR "PAGETABLE BUG #02!\n");
194 			return;
195 		}
196 	}
197 
198 	pte = pte_offset_kernel(pmd, vaddr);
199 	set_pte(pte, new_pte);
200 
201 	/*
202 	 * It's enough to flush this one mapping.
203 	 * (PGE mappings get flushed as well)
204 	 */
205 	__flush_tlb_one(vaddr);
206 }
207 
208 void
209 set_pte_vaddr(unsigned long vaddr, pte_t pteval)
210 {
211 	pgd_t *pgd;
212 	pud_t *pud_page;
213 
214 	pr_debug("set_pte_vaddr %lx to %lx\n", vaddr, native_pte_val(pteval));
215 
216 	pgd = pgd_offset_k(vaddr);
217 	if (pgd_none(*pgd)) {
218 		printk(KERN_ERR
219 			"PGD FIXMAP MISSING, it should be setup in head.S!\n");
220 		return;
221 	}
222 	pud_page = (pud_t*)pgd_page_vaddr(*pgd);
223 	set_pte_vaddr_pud(pud_page, vaddr, pteval);
224 }
225 
226 /*
227  * Create large page table mappings for a range of physical addresses.
228  */
229 static void __init __init_extra_mapping(unsigned long phys, unsigned long size,
230 						pgprot_t prot)
231 {
232 	pgd_t *pgd;
233 	pud_t *pud;
234 	pmd_t *pmd;
235 
236 	BUG_ON((phys & ~PMD_MASK) || (size & ~PMD_MASK));
237 	for (; size; phys += PMD_SIZE, size -= PMD_SIZE) {
238 		pgd = pgd_offset_k((unsigned long)__va(phys));
239 		if (pgd_none(*pgd)) {
240 			pud = (pud_t *) spp_getpage();
241 			set_pgd(pgd, __pgd(__pa(pud) | _KERNPG_TABLE |
242 						_PAGE_USER));
243 		}
244 		pud = pud_offset(pgd, (unsigned long)__va(phys));
245 		if (pud_none(*pud)) {
246 			pmd = (pmd_t *) spp_getpage();
247 			set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE |
248 						_PAGE_USER));
249 		}
250 		pmd = pmd_offset(pud, phys);
251 		BUG_ON(!pmd_none(*pmd));
252 		set_pmd(pmd, __pmd(phys | pgprot_val(prot)));
253 	}
254 }
255 
256 void __init init_extra_mapping_wb(unsigned long phys, unsigned long size)
257 {
258 	__init_extra_mapping(phys, size, PAGE_KERNEL_LARGE);
259 }
260 
261 void __init init_extra_mapping_uc(unsigned long phys, unsigned long size)
262 {
263 	__init_extra_mapping(phys, size, PAGE_KERNEL_LARGE_NOCACHE);
264 }
265 
266 /*
267  * The head.S code sets up the kernel high mapping:
268  *
269  *   from __START_KERNEL_map to __START_KERNEL_map + size (== _end-_text)
270  *
271  * phys_addr holds the negative offset to the kernel, which is added
272  * to the compile time generated pmds. This results in invalid pmds up
273  * to the point where we hit the physaddr 0 mapping.
274  *
275  * We limit the mappings to the region from _text to _end.  _end is
276  * rounded up to the 2MB boundary. This catches the invalid pmds as
277  * well, as they are located before _text:
278  */
279 void __init cleanup_highmap(void)
280 {
281 	unsigned long vaddr = __START_KERNEL_map;
282 	unsigned long end = roundup((unsigned long)_end, PMD_SIZE) - 1;
283 	pmd_t *pmd = level2_kernel_pgt;
284 	pmd_t *last_pmd = pmd + PTRS_PER_PMD;
285 
286 	for (; pmd < last_pmd; pmd++, vaddr += PMD_SIZE) {
287 		if (pmd_none(*pmd))
288 			continue;
289 		if (vaddr < (unsigned long) _text || vaddr > end)
290 			set_pmd(pmd, __pmd(0));
291 	}
292 }
293 
294 static unsigned long __initdata table_start;
295 static unsigned long __meminitdata table_end;
296 static unsigned long __meminitdata table_top;
297 
298 static __ref void *alloc_low_page(unsigned long *phys)
299 {
300 	unsigned long pfn = table_end++;
301 	void *adr;
302 
303 	if (after_bootmem) {
304 		adr = (void *)get_zeroed_page(GFP_ATOMIC);
305 		*phys = __pa(adr);
306 
307 		return adr;
308 	}
309 
310 	if (pfn >= table_top)
311 		panic("alloc_low_page: ran out of memory");
312 
313 	adr = early_memremap(pfn * PAGE_SIZE, PAGE_SIZE);
314 	memset(adr, 0, PAGE_SIZE);
315 	*phys  = pfn * PAGE_SIZE;
316 	return adr;
317 }
318 
319 static __ref void unmap_low_page(void *adr)
320 {
321 	if (after_bootmem)
322 		return;
323 
324 	early_iounmap(adr, PAGE_SIZE);
325 }
326 
327 static unsigned long __meminit
328 phys_pte_init(pte_t *pte_page, unsigned long addr, unsigned long end,
329 	      pgprot_t prot)
330 {
331 	unsigned pages = 0;
332 	unsigned long last_map_addr = end;
333 	int i;
334 
335 	pte_t *pte = pte_page + pte_index(addr);
336 
337 	for(i = pte_index(addr); i < PTRS_PER_PTE; i++, addr += PAGE_SIZE, pte++) {
338 
339 		if (addr >= end) {
340 			if (!after_bootmem) {
341 				for(; i < PTRS_PER_PTE; i++, pte++)
342 					set_pte(pte, __pte(0));
343 			}
344 			break;
345 		}
346 
347 		/*
348 		 * We will re-use the existing mapping.
349 		 * Xen for example has some special requirements, like mapping
350 		 * pagetable pages as RO. So assume someone who pre-setup
351 		 * these mappings are more intelligent.
352 		 */
353 		if (pte_val(*pte))
354 			continue;
355 
356 		if (0)
357 			printk("   pte=%p addr=%lx pte=%016lx\n",
358 			       pte, addr, pfn_pte(addr >> PAGE_SHIFT, PAGE_KERNEL).pte);
359 		pages++;
360 		set_pte(pte, pfn_pte(addr >> PAGE_SHIFT, prot));
361 		last_map_addr = (addr & PAGE_MASK) + PAGE_SIZE;
362 	}
363 
364 	update_page_count(PG_LEVEL_4K, pages);
365 
366 	return last_map_addr;
367 }
368 
369 static unsigned long __meminit
370 phys_pte_update(pmd_t *pmd, unsigned long address, unsigned long end,
371 		pgprot_t prot)
372 {
373 	pte_t *pte = (pte_t *)pmd_page_vaddr(*pmd);
374 
375 	return phys_pte_init(pte, address, end, prot);
376 }
377 
378 static unsigned long __meminit
379 phys_pmd_init(pmd_t *pmd_page, unsigned long address, unsigned long end,
380 	      unsigned long page_size_mask, pgprot_t prot)
381 {
382 	unsigned long pages = 0;
383 	unsigned long last_map_addr = end;
384 
385 	int i = pmd_index(address);
386 
387 	for (; i < PTRS_PER_PMD; i++, address += PMD_SIZE) {
388 		unsigned long pte_phys;
389 		pmd_t *pmd = pmd_page + pmd_index(address);
390 		pte_t *pte;
391 		pgprot_t new_prot = prot;
392 
393 		if (address >= end) {
394 			if (!after_bootmem) {
395 				for (; i < PTRS_PER_PMD; i++, pmd++)
396 					set_pmd(pmd, __pmd(0));
397 			}
398 			break;
399 		}
400 
401 		if (pmd_val(*pmd)) {
402 			if (!pmd_large(*pmd)) {
403 				spin_lock(&init_mm.page_table_lock);
404 				last_map_addr = phys_pte_update(pmd, address,
405 								end, prot);
406 				spin_unlock(&init_mm.page_table_lock);
407 				continue;
408 			}
409 			/*
410 			 * If we are ok with PG_LEVEL_2M mapping, then we will
411 			 * use the existing mapping,
412 			 *
413 			 * Otherwise, we will split the large page mapping but
414 			 * use the same existing protection bits except for
415 			 * large page, so that we don't violate Intel's TLB
416 			 * Application note (317080) which says, while changing
417 			 * the page sizes, new and old translations should
418 			 * not differ with respect to page frame and
419 			 * attributes.
420 			 */
421 			if (page_size_mask & (1 << PG_LEVEL_2M))
422 				continue;
423 			new_prot = pte_pgprot(pte_clrhuge(*(pte_t *)pmd));
424 		}
425 
426 		if (page_size_mask & (1<<PG_LEVEL_2M)) {
427 			pages++;
428 			spin_lock(&init_mm.page_table_lock);
429 			set_pte((pte_t *)pmd,
430 				pfn_pte(address >> PAGE_SHIFT,
431 					__pgprot(pgprot_val(prot) | _PAGE_PSE)));
432 			spin_unlock(&init_mm.page_table_lock);
433 			last_map_addr = (address & PMD_MASK) + PMD_SIZE;
434 			continue;
435 		}
436 
437 		pte = alloc_low_page(&pte_phys);
438 		last_map_addr = phys_pte_init(pte, address, end, new_prot);
439 		unmap_low_page(pte);
440 
441 		spin_lock(&init_mm.page_table_lock);
442 		pmd_populate_kernel(&init_mm, pmd, __va(pte_phys));
443 		spin_unlock(&init_mm.page_table_lock);
444 	}
445 	update_page_count(PG_LEVEL_2M, pages);
446 	return last_map_addr;
447 }
448 
449 static unsigned long __meminit
450 phys_pmd_update(pud_t *pud, unsigned long address, unsigned long end,
451 		unsigned long page_size_mask, pgprot_t prot)
452 {
453 	pmd_t *pmd = pmd_offset(pud, 0);
454 	unsigned long last_map_addr;
455 
456 	last_map_addr = phys_pmd_init(pmd, address, end, page_size_mask, prot);
457 	__flush_tlb_all();
458 	return last_map_addr;
459 }
460 
461 static unsigned long __meminit
462 phys_pud_init(pud_t *pud_page, unsigned long addr, unsigned long end,
463 			 unsigned long page_size_mask)
464 {
465 	unsigned long pages = 0;
466 	unsigned long last_map_addr = end;
467 	int i = pud_index(addr);
468 
469 	for (; i < PTRS_PER_PUD; i++, addr = (addr & PUD_MASK) + PUD_SIZE) {
470 		unsigned long pmd_phys;
471 		pud_t *pud = pud_page + pud_index(addr);
472 		pmd_t *pmd;
473 		pgprot_t prot = PAGE_KERNEL;
474 
475 		if (addr >= end)
476 			break;
477 
478 		if (!after_bootmem &&
479 				!e820_any_mapped(addr, addr+PUD_SIZE, 0)) {
480 			set_pud(pud, __pud(0));
481 			continue;
482 		}
483 
484 		if (pud_val(*pud)) {
485 			if (!pud_large(*pud)) {
486 				last_map_addr = phys_pmd_update(pud, addr, end,
487 							 page_size_mask, prot);
488 				continue;
489 			}
490 			/*
491 			 * If we are ok with PG_LEVEL_1G mapping, then we will
492 			 * use the existing mapping.
493 			 *
494 			 * Otherwise, we will split the gbpage mapping but use
495 			 * the same existing protection  bits except for large
496 			 * page, so that we don't violate Intel's TLB
497 			 * Application note (317080) which says, while changing
498 			 * the page sizes, new and old translations should
499 			 * not differ with respect to page frame and
500 			 * attributes.
501 			 */
502 			if (page_size_mask & (1 << PG_LEVEL_1G))
503 				continue;
504 			prot = pte_pgprot(pte_clrhuge(*(pte_t *)pud));
505 		}
506 
507 		if (page_size_mask & (1<<PG_LEVEL_1G)) {
508 			pages++;
509 			spin_lock(&init_mm.page_table_lock);
510 			set_pte((pte_t *)pud,
511 				pfn_pte(addr >> PAGE_SHIFT, PAGE_KERNEL_LARGE));
512 			spin_unlock(&init_mm.page_table_lock);
513 			last_map_addr = (addr & PUD_MASK) + PUD_SIZE;
514 			continue;
515 		}
516 
517 		pmd = alloc_low_page(&pmd_phys);
518 		last_map_addr = phys_pmd_init(pmd, addr, end, page_size_mask,
519 					      prot);
520 		unmap_low_page(pmd);
521 
522 		spin_lock(&init_mm.page_table_lock);
523 		pud_populate(&init_mm, pud, __va(pmd_phys));
524 		spin_unlock(&init_mm.page_table_lock);
525 	}
526 	__flush_tlb_all();
527 
528 	update_page_count(PG_LEVEL_1G, pages);
529 
530 	return last_map_addr;
531 }
532 
533 static unsigned long __meminit
534 phys_pud_update(pgd_t *pgd, unsigned long addr, unsigned long end,
535 		 unsigned long page_size_mask)
536 {
537 	pud_t *pud;
538 
539 	pud = (pud_t *)pgd_page_vaddr(*pgd);
540 
541 	return phys_pud_init(pud, addr, end, page_size_mask);
542 }
543 
544 static void __init find_early_table_space(unsigned long end, int use_pse,
545 					  int use_gbpages)
546 {
547 	unsigned long puds, pmds, ptes, tables, start;
548 
549 	puds = (end + PUD_SIZE - 1) >> PUD_SHIFT;
550 	tables = roundup(puds * sizeof(pud_t), PAGE_SIZE);
551 	if (use_gbpages) {
552 		unsigned long extra;
553 		extra = end - ((end>>PUD_SHIFT) << PUD_SHIFT);
554 		pmds = (extra + PMD_SIZE - 1) >> PMD_SHIFT;
555 	} else
556 		pmds = (end + PMD_SIZE - 1) >> PMD_SHIFT;
557 	tables += roundup(pmds * sizeof(pmd_t), PAGE_SIZE);
558 
559 	if (use_pse) {
560 		unsigned long extra;
561 		extra = end - ((end>>PMD_SHIFT) << PMD_SHIFT);
562 		ptes = (extra + PAGE_SIZE - 1) >> PAGE_SHIFT;
563 	} else
564 		ptes = (end + PAGE_SIZE - 1) >> PAGE_SHIFT;
565 	tables += roundup(ptes * sizeof(pte_t), PAGE_SIZE);
566 
567 	/*
568 	 * RED-PEN putting page tables only on node 0 could
569 	 * cause a hotspot and fill up ZONE_DMA. The page tables
570 	 * need roughly 0.5KB per GB.
571 	 */
572 	start = 0x8000;
573 	table_start = find_e820_area(start, end, tables, PAGE_SIZE);
574 	if (table_start == -1UL)
575 		panic("Cannot find space for the kernel page tables");
576 
577 	table_start >>= PAGE_SHIFT;
578 	table_end = table_start;
579 	table_top = table_start + (tables >> PAGE_SHIFT);
580 
581 	printk(KERN_DEBUG "kernel direct mapping tables up to %lx @ %lx-%lx\n",
582 		end, table_start << PAGE_SHIFT, table_top << PAGE_SHIFT);
583 }
584 
585 static void __init init_gbpages(void)
586 {
587 	if (direct_gbpages && cpu_has_gbpages)
588 		printk(KERN_INFO "Using GB pages for direct mapping\n");
589 	else
590 		direct_gbpages = 0;
591 }
592 
593 static unsigned long __init kernel_physical_mapping_init(unsigned long start,
594 						unsigned long end,
595 						unsigned long page_size_mask)
596 {
597 
598 	unsigned long next, last_map_addr = end;
599 
600 	start = (unsigned long)__va(start);
601 	end = (unsigned long)__va(end);
602 
603 	for (; start < end; start = next) {
604 		pgd_t *pgd = pgd_offset_k(start);
605 		unsigned long pud_phys;
606 		pud_t *pud;
607 
608 		next = (start + PGDIR_SIZE) & PGDIR_MASK;
609 		if (next > end)
610 			next = end;
611 
612 		if (pgd_val(*pgd)) {
613 			last_map_addr = phys_pud_update(pgd, __pa(start),
614 						 __pa(end), page_size_mask);
615 			continue;
616 		}
617 
618 		pud = alloc_low_page(&pud_phys);
619 		last_map_addr = phys_pud_init(pud, __pa(start), __pa(next),
620 						 page_size_mask);
621 		unmap_low_page(pud);
622 
623 		spin_lock(&init_mm.page_table_lock);
624 		pgd_populate(&init_mm, pgd, __va(pud_phys));
625 		spin_unlock(&init_mm.page_table_lock);
626 	}
627 	__flush_tlb_all();
628 
629 	return last_map_addr;
630 }
631 
632 struct map_range {
633 	unsigned long start;
634 	unsigned long end;
635 	unsigned page_size_mask;
636 };
637 
638 #define NR_RANGE_MR 5
639 
640 static int save_mr(struct map_range *mr, int nr_range,
641 		   unsigned long start_pfn, unsigned long end_pfn,
642 		   unsigned long page_size_mask)
643 {
644 
645 	if (start_pfn < end_pfn) {
646 		if (nr_range >= NR_RANGE_MR)
647 			panic("run out of range for init_memory_mapping\n");
648 		mr[nr_range].start = start_pfn<<PAGE_SHIFT;
649 		mr[nr_range].end   = end_pfn<<PAGE_SHIFT;
650 		mr[nr_range].page_size_mask = page_size_mask;
651 		nr_range++;
652 	}
653 
654 	return nr_range;
655 }
656 
657 /*
658  * Setup the direct mapping of the physical memory at PAGE_OFFSET.
659  * This runs before bootmem is initialized and gets pages directly from
660  * the physical memory. To access them they are temporarily mapped.
661  */
662 unsigned long __init_refok init_memory_mapping(unsigned long start,
663 					       unsigned long end)
664 {
665 	unsigned long last_map_addr = 0;
666 	unsigned long page_size_mask = 0;
667 	unsigned long start_pfn, end_pfn;
668 
669 	struct map_range mr[NR_RANGE_MR];
670 	int nr_range, i;
671 	int use_pse, use_gbpages;
672 
673 	printk(KERN_INFO "init_memory_mapping\n");
674 
675 	/*
676 	 * Find space for the kernel direct mapping tables.
677 	 *
678 	 * Later we should allocate these tables in the local node of the
679 	 * memory mapped. Unfortunately this is done currently before the
680 	 * nodes are discovered.
681 	 */
682 	if (!after_bootmem)
683 		init_gbpages();
684 
685 #ifdef CONFIG_DEBUG_PAGEALLOC
686 	/*
687 	 * For CONFIG_DEBUG_PAGEALLOC, identity mapping will use small pages.
688 	 * This will simplify cpa(), which otherwise needs to support splitting
689 	 * large pages into small in interrupt context, etc.
690 	 */
691 	use_pse = use_gbpages = 0;
692 #else
693 	use_pse = cpu_has_pse;
694 	use_gbpages = direct_gbpages;
695 #endif
696 
697 	if (use_gbpages)
698 		page_size_mask |= 1 << PG_LEVEL_1G;
699 	if (use_pse)
700 		page_size_mask |= 1 << PG_LEVEL_2M;
701 
702 	memset(mr, 0, sizeof(mr));
703 	nr_range = 0;
704 
705 	/* head if not big page alignment ?*/
706 	start_pfn = start >> PAGE_SHIFT;
707 	end_pfn = ((start + (PMD_SIZE - 1)) >> PMD_SHIFT)
708 			<< (PMD_SHIFT - PAGE_SHIFT);
709 	nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
710 
711 	/* big page (2M) range*/
712 	start_pfn = ((start + (PMD_SIZE - 1))>>PMD_SHIFT)
713 			 << (PMD_SHIFT - PAGE_SHIFT);
714 	end_pfn = ((start + (PUD_SIZE - 1))>>PUD_SHIFT)
715 			 << (PUD_SHIFT - PAGE_SHIFT);
716 	if (end_pfn > ((end>>PUD_SHIFT)<<(PUD_SHIFT - PAGE_SHIFT)))
717 		end_pfn = ((end>>PUD_SHIFT)<<(PUD_SHIFT - PAGE_SHIFT));
718 	nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
719 			page_size_mask & (1<<PG_LEVEL_2M));
720 
721 	/* big page (1G) range */
722 	start_pfn = end_pfn;
723 	end_pfn = (end>>PUD_SHIFT) << (PUD_SHIFT - PAGE_SHIFT);
724 	nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
725 				page_size_mask &
726 				 ((1<<PG_LEVEL_2M)|(1<<PG_LEVEL_1G)));
727 
728 	/* tail is not big page (1G) alignment */
729 	start_pfn = end_pfn;
730 	end_pfn = (end>>PMD_SHIFT) << (PMD_SHIFT - PAGE_SHIFT);
731 	nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
732 			page_size_mask & (1<<PG_LEVEL_2M));
733 
734 	/* tail is not big page (2M) alignment */
735 	start_pfn = end_pfn;
736 	end_pfn = end>>PAGE_SHIFT;
737 	nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
738 
739 	/* try to merge same page size and continuous */
740 	for (i = 0; nr_range > 1 && i < nr_range - 1; i++) {
741 		unsigned long old_start;
742 		if (mr[i].end != mr[i+1].start ||
743 		    mr[i].page_size_mask != mr[i+1].page_size_mask)
744 			continue;
745 		/* move it */
746 		old_start = mr[i].start;
747 		memmove(&mr[i], &mr[i+1],
748 			 (nr_range - 1 - i) * sizeof (struct map_range));
749 		mr[i--].start = old_start;
750 		nr_range--;
751 	}
752 
753 	for (i = 0; i < nr_range; i++)
754 		printk(KERN_DEBUG " %010lx - %010lx page %s\n",
755 				mr[i].start, mr[i].end,
756 			(mr[i].page_size_mask & (1<<PG_LEVEL_1G))?"1G":(
757 			 (mr[i].page_size_mask & (1<<PG_LEVEL_2M))?"2M":"4k"));
758 
759 	if (!after_bootmem)
760 		find_early_table_space(end, use_pse, use_gbpages);
761 
762 	for (i = 0; i < nr_range; i++)
763 		last_map_addr = kernel_physical_mapping_init(
764 					mr[i].start, mr[i].end,
765 					mr[i].page_size_mask);
766 
767 	if (!after_bootmem)
768 		mmu_cr4_features = read_cr4();
769 	__flush_tlb_all();
770 
771 	if (!after_bootmem && table_end > table_start)
772 		reserve_early(table_start << PAGE_SHIFT,
773 				 table_end << PAGE_SHIFT, "PGTABLE");
774 
775 	printk(KERN_INFO "last_map_addr: %lx end: %lx\n",
776 			 last_map_addr, end);
777 
778 	if (!after_bootmem)
779 		early_memtest(start, end);
780 
781 	return last_map_addr >> PAGE_SHIFT;
782 }
783 
784 #ifndef CONFIG_NUMA
785 void __init initmem_init(unsigned long start_pfn, unsigned long end_pfn)
786 {
787 	unsigned long bootmap_size, bootmap;
788 
789 	bootmap_size = bootmem_bootmap_pages(end_pfn)<<PAGE_SHIFT;
790 	bootmap = find_e820_area(0, end_pfn<<PAGE_SHIFT, bootmap_size,
791 				 PAGE_SIZE);
792 	if (bootmap == -1L)
793 		panic("Cannot find bootmem map of size %ld\n", bootmap_size);
794 	/* don't touch min_low_pfn */
795 	bootmap_size = init_bootmem_node(NODE_DATA(0), bootmap >> PAGE_SHIFT,
796 					 0, end_pfn);
797 	e820_register_active_regions(0, start_pfn, end_pfn);
798 	free_bootmem_with_active_regions(0, end_pfn);
799 	early_res_to_bootmem(0, end_pfn<<PAGE_SHIFT);
800 	reserve_bootmem(bootmap, bootmap_size, BOOTMEM_DEFAULT);
801 }
802 
803 void __init paging_init(void)
804 {
805 	unsigned long max_zone_pfns[MAX_NR_ZONES];
806 
807 	memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
808 	max_zone_pfns[ZONE_DMA] = MAX_DMA_PFN;
809 	max_zone_pfns[ZONE_DMA32] = MAX_DMA32_PFN;
810 	max_zone_pfns[ZONE_NORMAL] = max_pfn;
811 
812 	memory_present(0, 0, max_pfn);
813 	sparse_init();
814 	free_area_init_nodes(max_zone_pfns);
815 }
816 #endif
817 
818 /*
819  * Memory hotplug specific functions
820  */
821 #ifdef CONFIG_MEMORY_HOTPLUG
822 /*
823  * Memory is added always to NORMAL zone. This means you will never get
824  * additional DMA/DMA32 memory.
825  */
826 int arch_add_memory(int nid, u64 start, u64 size)
827 {
828 	struct pglist_data *pgdat = NODE_DATA(nid);
829 	struct zone *zone = pgdat->node_zones + ZONE_NORMAL;
830 	unsigned long last_mapped_pfn, start_pfn = start >> PAGE_SHIFT;
831 	unsigned long nr_pages = size >> PAGE_SHIFT;
832 	int ret;
833 
834 	last_mapped_pfn = init_memory_mapping(start, start + size-1);
835 	if (last_mapped_pfn > max_pfn_mapped)
836 		max_pfn_mapped = last_mapped_pfn;
837 
838 	ret = __add_pages(zone, start_pfn, nr_pages);
839 	WARN_ON(1);
840 
841 	return ret;
842 }
843 EXPORT_SYMBOL_GPL(arch_add_memory);
844 
845 #if !defined(CONFIG_ACPI_NUMA) && defined(CONFIG_NUMA)
846 int memory_add_physaddr_to_nid(u64 start)
847 {
848 	return 0;
849 }
850 EXPORT_SYMBOL_GPL(memory_add_physaddr_to_nid);
851 #endif
852 
853 #endif /* CONFIG_MEMORY_HOTPLUG */
854 
855 /*
856  * devmem_is_allowed() checks to see if /dev/mem access to a certain address
857  * is valid. The argument is a physical page number.
858  *
859  *
860  * On x86, access has to be given to the first megabyte of ram because that area
861  * contains bios code and data regions used by X and dosemu and similar apps.
862  * Access has to be given to non-kernel-ram areas as well, these contain the PCI
863  * mmio resources as well as potential bios/acpi data regions.
864  */
865 int devmem_is_allowed(unsigned long pagenr)
866 {
867 	if (pagenr <= 256)
868 		return 1;
869 	if (!page_is_ram(pagenr))
870 		return 1;
871 	return 0;
872 }
873 
874 
875 static struct kcore_list kcore_mem, kcore_vmalloc, kcore_kernel,
876 			 kcore_modules, kcore_vsyscall;
877 
878 void __init mem_init(void)
879 {
880 	long codesize, reservedpages, datasize, initsize;
881 
882 	start_periodic_check_for_corruption();
883 
884 	pci_iommu_alloc();
885 
886 	/* clear_bss() already clear the empty_zero_page */
887 
888 	reservedpages = 0;
889 
890 	/* this will put all low memory onto the freelists */
891 #ifdef CONFIG_NUMA
892 	totalram_pages = numa_free_all_bootmem();
893 #else
894 	totalram_pages = free_all_bootmem();
895 #endif
896 	reservedpages = max_pfn - totalram_pages -
897 					absent_pages_in_range(0, max_pfn);
898 	after_bootmem = 1;
899 
900 	codesize =  (unsigned long) &_etext - (unsigned long) &_text;
901 	datasize =  (unsigned long) &_edata - (unsigned long) &_etext;
902 	initsize =  (unsigned long) &__init_end - (unsigned long) &__init_begin;
903 
904 	/* Register memory areas for /proc/kcore */
905 	kclist_add(&kcore_mem, __va(0), max_low_pfn << PAGE_SHIFT);
906 	kclist_add(&kcore_vmalloc, (void *)VMALLOC_START,
907 		   VMALLOC_END-VMALLOC_START);
908 	kclist_add(&kcore_kernel, &_stext, _end - _stext);
909 	kclist_add(&kcore_modules, (void *)MODULES_VADDR, MODULES_LEN);
910 	kclist_add(&kcore_vsyscall, (void *)VSYSCALL_START,
911 				 VSYSCALL_END - VSYSCALL_START);
912 
913 	printk(KERN_INFO "Memory: %luk/%luk available (%ldk kernel code, "
914 				"%ldk reserved, %ldk data, %ldk init)\n",
915 		(unsigned long) nr_free_pages() << (PAGE_SHIFT-10),
916 		max_pfn << (PAGE_SHIFT-10),
917 		codesize >> 10,
918 		reservedpages << (PAGE_SHIFT-10),
919 		datasize >> 10,
920 		initsize >> 10);
921 }
922 
923 void free_init_pages(char *what, unsigned long begin, unsigned long end)
924 {
925 	unsigned long addr = begin;
926 
927 	if (addr >= end)
928 		return;
929 
930 	/*
931 	 * If debugging page accesses then do not free this memory but
932 	 * mark them not present - any buggy init-section access will
933 	 * create a kernel page fault:
934 	 */
935 #ifdef CONFIG_DEBUG_PAGEALLOC
936 	printk(KERN_INFO "debug: unmapping init memory %08lx..%08lx\n",
937 		begin, PAGE_ALIGN(end));
938 	set_memory_np(begin, (end - begin) >> PAGE_SHIFT);
939 #else
940 	printk(KERN_INFO "Freeing %s: %luk freed\n", what, (end - begin) >> 10);
941 
942 	for (; addr < end; addr += PAGE_SIZE) {
943 		ClearPageReserved(virt_to_page(addr));
944 		init_page_count(virt_to_page(addr));
945 		memset((void *)(addr & ~(PAGE_SIZE-1)),
946 			POISON_FREE_INITMEM, PAGE_SIZE);
947 		free_page(addr);
948 		totalram_pages++;
949 	}
950 #endif
951 }
952 
953 void free_initmem(void)
954 {
955 	free_init_pages("unused kernel memory",
956 			(unsigned long)(&__init_begin),
957 			(unsigned long)(&__init_end));
958 }
959 
960 #ifdef CONFIG_DEBUG_RODATA
961 const int rodata_test_data = 0xC3;
962 EXPORT_SYMBOL_GPL(rodata_test_data);
963 
964 void mark_rodata_ro(void)
965 {
966 	unsigned long start = PFN_ALIGN(_stext), end = PFN_ALIGN(__end_rodata);
967 	unsigned long rodata_start =
968 		((unsigned long)__start_rodata + PAGE_SIZE - 1) & PAGE_MASK;
969 
970 #ifdef CONFIG_DYNAMIC_FTRACE
971 	/* Dynamic tracing modifies the kernel text section */
972 	start = rodata_start;
973 #endif
974 
975 	printk(KERN_INFO "Write protecting the kernel read-only data: %luk\n",
976 	       (end - start) >> 10);
977 	set_memory_ro(start, (end - start) >> PAGE_SHIFT);
978 
979 	/*
980 	 * The rodata section (but not the kernel text!) should also be
981 	 * not-executable.
982 	 */
983 	set_memory_nx(rodata_start, (end - rodata_start) >> PAGE_SHIFT);
984 
985 	rodata_test();
986 
987 #ifdef CONFIG_CPA_DEBUG
988 	printk(KERN_INFO "Testing CPA: undo %lx-%lx\n", start, end);
989 	set_memory_rw(start, (end-start) >> PAGE_SHIFT);
990 
991 	printk(KERN_INFO "Testing CPA: again\n");
992 	set_memory_ro(start, (end-start) >> PAGE_SHIFT);
993 #endif
994 }
995 
996 #endif
997 
998 #ifdef CONFIG_BLK_DEV_INITRD
999 void free_initrd_mem(unsigned long start, unsigned long end)
1000 {
1001 	free_init_pages("initrd memory", start, end);
1002 }
1003 #endif
1004 
1005 int __init reserve_bootmem_generic(unsigned long phys, unsigned long len,
1006 				   int flags)
1007 {
1008 #ifdef CONFIG_NUMA
1009 	int nid, next_nid;
1010 	int ret;
1011 #endif
1012 	unsigned long pfn = phys >> PAGE_SHIFT;
1013 
1014 	if (pfn >= max_pfn) {
1015 		/*
1016 		 * This can happen with kdump kernels when accessing
1017 		 * firmware tables:
1018 		 */
1019 		if (pfn < max_pfn_mapped)
1020 			return -EFAULT;
1021 
1022 		printk(KERN_ERR "reserve_bootmem: illegal reserve %lx %lu\n",
1023 				phys, len);
1024 		return -EFAULT;
1025 	}
1026 
1027 	/* Should check here against the e820 map to avoid double free */
1028 #ifdef CONFIG_NUMA
1029 	nid = phys_to_nid(phys);
1030 	next_nid = phys_to_nid(phys + len - 1);
1031 	if (nid == next_nid)
1032 		ret = reserve_bootmem_node(NODE_DATA(nid), phys, len, flags);
1033 	else
1034 		ret = reserve_bootmem(phys, len, flags);
1035 
1036 	if (ret != 0)
1037 		return ret;
1038 
1039 #else
1040 	reserve_bootmem(phys, len, BOOTMEM_DEFAULT);
1041 #endif
1042 
1043 	if (phys+len <= MAX_DMA_PFN*PAGE_SIZE) {
1044 		dma_reserve += len / PAGE_SIZE;
1045 		set_dma_reserve(dma_reserve);
1046 	}
1047 
1048 	return 0;
1049 }
1050 
1051 int kern_addr_valid(unsigned long addr)
1052 {
1053 	unsigned long above = ((long)addr) >> __VIRTUAL_MASK_SHIFT;
1054 	pgd_t *pgd;
1055 	pud_t *pud;
1056 	pmd_t *pmd;
1057 	pte_t *pte;
1058 
1059 	if (above != 0 && above != -1UL)
1060 		return 0;
1061 
1062 	pgd = pgd_offset_k(addr);
1063 	if (pgd_none(*pgd))
1064 		return 0;
1065 
1066 	pud = pud_offset(pgd, addr);
1067 	if (pud_none(*pud))
1068 		return 0;
1069 
1070 	pmd = pmd_offset(pud, addr);
1071 	if (pmd_none(*pmd))
1072 		return 0;
1073 
1074 	if (pmd_large(*pmd))
1075 		return pfn_valid(pmd_pfn(*pmd));
1076 
1077 	pte = pte_offset_kernel(pmd, addr);
1078 	if (pte_none(*pte))
1079 		return 0;
1080 
1081 	return pfn_valid(pte_pfn(*pte));
1082 }
1083 
1084 /*
1085  * A pseudo VMA to allow ptrace access for the vsyscall page.  This only
1086  * covers the 64bit vsyscall page now. 32bit has a real VMA now and does
1087  * not need special handling anymore:
1088  */
1089 static struct vm_area_struct gate_vma = {
1090 	.vm_start	= VSYSCALL_START,
1091 	.vm_end		= VSYSCALL_START + (VSYSCALL_MAPPED_PAGES * PAGE_SIZE),
1092 	.vm_page_prot	= PAGE_READONLY_EXEC,
1093 	.vm_flags	= VM_READ | VM_EXEC
1094 };
1095 
1096 struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
1097 {
1098 #ifdef CONFIG_IA32_EMULATION
1099 	if (test_tsk_thread_flag(tsk, TIF_IA32))
1100 		return NULL;
1101 #endif
1102 	return &gate_vma;
1103 }
1104 
1105 int in_gate_area(struct task_struct *task, unsigned long addr)
1106 {
1107 	struct vm_area_struct *vma = get_gate_vma(task);
1108 
1109 	if (!vma)
1110 		return 0;
1111 
1112 	return (addr >= vma->vm_start) && (addr < vma->vm_end);
1113 }
1114 
1115 /*
1116  * Use this when you have no reliable task/vma, typically from interrupt
1117  * context. It is less reliable than using the task's vma and may give
1118  * false positives:
1119  */
1120 int in_gate_area_no_task(unsigned long addr)
1121 {
1122 	return (addr >= VSYSCALL_START) && (addr < VSYSCALL_END);
1123 }
1124 
1125 const char *arch_vma_name(struct vm_area_struct *vma)
1126 {
1127 	if (vma->vm_mm && vma->vm_start == (long)vma->vm_mm->context.vdso)
1128 		return "[vdso]";
1129 	if (vma == &gate_vma)
1130 		return "[vsyscall]";
1131 	return NULL;
1132 }
1133 
1134 #ifdef CONFIG_SPARSEMEM_VMEMMAP
1135 /*
1136  * Initialise the sparsemem vmemmap using huge-pages at the PMD level.
1137  */
1138 static long __meminitdata addr_start, addr_end;
1139 static void __meminitdata *p_start, *p_end;
1140 static int __meminitdata node_start;
1141 
1142 int __meminit
1143 vmemmap_populate(struct page *start_page, unsigned long size, int node)
1144 {
1145 	unsigned long addr = (unsigned long)start_page;
1146 	unsigned long end = (unsigned long)(start_page + size);
1147 	unsigned long next;
1148 	pgd_t *pgd;
1149 	pud_t *pud;
1150 	pmd_t *pmd;
1151 
1152 	for (; addr < end; addr = next) {
1153 		void *p = NULL;
1154 
1155 		pgd = vmemmap_pgd_populate(addr, node);
1156 		if (!pgd)
1157 			return -ENOMEM;
1158 
1159 		pud = vmemmap_pud_populate(pgd, addr, node);
1160 		if (!pud)
1161 			return -ENOMEM;
1162 
1163 		if (!cpu_has_pse) {
1164 			next = (addr + PAGE_SIZE) & PAGE_MASK;
1165 			pmd = vmemmap_pmd_populate(pud, addr, node);
1166 
1167 			if (!pmd)
1168 				return -ENOMEM;
1169 
1170 			p = vmemmap_pte_populate(pmd, addr, node);
1171 
1172 			if (!p)
1173 				return -ENOMEM;
1174 
1175 			addr_end = addr + PAGE_SIZE;
1176 			p_end = p + PAGE_SIZE;
1177 		} else {
1178 			next = pmd_addr_end(addr, end);
1179 
1180 			pmd = pmd_offset(pud, addr);
1181 			if (pmd_none(*pmd)) {
1182 				pte_t entry;
1183 
1184 				p = vmemmap_alloc_block(PMD_SIZE, node);
1185 				if (!p)
1186 					return -ENOMEM;
1187 
1188 				entry = pfn_pte(__pa(p) >> PAGE_SHIFT,
1189 						PAGE_KERNEL_LARGE);
1190 				set_pmd(pmd, __pmd(pte_val(entry)));
1191 
1192 				/* check to see if we have contiguous blocks */
1193 				if (p_end != p || node_start != node) {
1194 					if (p_start)
1195 						printk(KERN_DEBUG " [%lx-%lx] PMD -> [%p-%p] on node %d\n",
1196 						       addr_start, addr_end-1, p_start, p_end-1, node_start);
1197 					addr_start = addr;
1198 					node_start = node;
1199 					p_start = p;
1200 				}
1201 
1202 				addr_end = addr + PMD_SIZE;
1203 				p_end = p + PMD_SIZE;
1204 			} else
1205 				vmemmap_verify((pte_t *)pmd, node, addr, next);
1206 		}
1207 
1208 	}
1209 	return 0;
1210 }
1211 
1212 void __meminit vmemmap_populate_print_last(void)
1213 {
1214 	if (p_start) {
1215 		printk(KERN_DEBUG " [%lx-%lx] PMD -> [%p-%p] on node %d\n",
1216 			addr_start, addr_end-1, p_start, p_end-1, node_start);
1217 		p_start = NULL;
1218 		p_end = NULL;
1219 		node_start = 0;
1220 	}
1221 }
1222 #endif
1223