1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/arch/x86_64/mm/init.c 4 * 5 * Copyright (C) 1995 Linus Torvalds 6 * Copyright (C) 2000 Pavel Machek <pavel@ucw.cz> 7 * Copyright (C) 2002,2003 Andi Kleen <ak@suse.de> 8 */ 9 10 #include <linux/signal.h> 11 #include <linux/sched.h> 12 #include <linux/kernel.h> 13 #include <linux/errno.h> 14 #include <linux/string.h> 15 #include <linux/types.h> 16 #include <linux/ptrace.h> 17 #include <linux/mman.h> 18 #include <linux/mm.h> 19 #include <linux/swap.h> 20 #include <linux/smp.h> 21 #include <linux/init.h> 22 #include <linux/initrd.h> 23 #include <linux/pagemap.h> 24 #include <linux/memblock.h> 25 #include <linux/proc_fs.h> 26 #include <linux/pci.h> 27 #include <linux/pfn.h> 28 #include <linux/poison.h> 29 #include <linux/dma-mapping.h> 30 #include <linux/memory.h> 31 #include <linux/memory_hotplug.h> 32 #include <linux/memremap.h> 33 #include <linux/nmi.h> 34 #include <linux/gfp.h> 35 #include <linux/kcore.h> 36 #include <linux/bootmem_info.h> 37 38 #include <asm/processor.h> 39 #include <asm/bios_ebda.h> 40 #include <linux/uaccess.h> 41 #include <asm/pgalloc.h> 42 #include <asm/dma.h> 43 #include <asm/fixmap.h> 44 #include <asm/e820/api.h> 45 #include <asm/apic.h> 46 #include <asm/tlb.h> 47 #include <asm/mmu_context.h> 48 #include <asm/proto.h> 49 #include <asm/smp.h> 50 #include <asm/sections.h> 51 #include <asm/kdebug.h> 52 #include <asm/numa.h> 53 #include <asm/set_memory.h> 54 #include <asm/init.h> 55 #include <asm/uv/uv.h> 56 #include <asm/setup.h> 57 #include <asm/ftrace.h> 58 59 #include "mm_internal.h" 60 61 #include "ident_map.c" 62 63 #define DEFINE_POPULATE(fname, type1, type2, init) \ 64 static inline void fname##_init(struct mm_struct *mm, \ 65 type1##_t *arg1, type2##_t *arg2, bool init) \ 66 { \ 67 if (init) \ 68 fname##_safe(mm, arg1, arg2); \ 69 else \ 70 fname(mm, arg1, arg2); \ 71 } 72 73 DEFINE_POPULATE(p4d_populate, p4d, pud, init) 74 DEFINE_POPULATE(pgd_populate, pgd, p4d, init) 75 DEFINE_POPULATE(pud_populate, pud, pmd, init) 76 DEFINE_POPULATE(pmd_populate_kernel, pmd, pte, init) 77 78 #define DEFINE_ENTRY(type1, type2, init) \ 79 static inline void set_##type1##_init(type1##_t *arg1, \ 80 type2##_t arg2, bool init) \ 81 { \ 82 if (init) \ 83 set_##type1##_safe(arg1, arg2); \ 84 else \ 85 set_##type1(arg1, arg2); \ 86 } 87 88 DEFINE_ENTRY(p4d, p4d, init) 89 DEFINE_ENTRY(pud, pud, init) 90 DEFINE_ENTRY(pmd, pmd, init) 91 DEFINE_ENTRY(pte, pte, init) 92 93 94 /* 95 * NOTE: pagetable_init alloc all the fixmap pagetables contiguous on the 96 * physical space so we can cache the place of the first one and move 97 * around without checking the pgd every time. 98 */ 99 100 /* Bits supported by the hardware: */ 101 pteval_t __supported_pte_mask __read_mostly = ~0; 102 /* Bits allowed in normal kernel mappings: */ 103 pteval_t __default_kernel_pte_mask __read_mostly = ~0; 104 EXPORT_SYMBOL_GPL(__supported_pte_mask); 105 /* Used in PAGE_KERNEL_* macros which are reasonably used out-of-tree: */ 106 EXPORT_SYMBOL(__default_kernel_pte_mask); 107 108 int force_personality32; 109 110 /* 111 * noexec32=on|off 112 * Control non executable heap for 32bit processes. 113 * 114 * on PROT_READ does not imply PROT_EXEC for 32-bit processes (default) 115 * off PROT_READ implies PROT_EXEC 116 */ 117 static int __init nonx32_setup(char *str) 118 { 119 if (!strcmp(str, "on")) 120 force_personality32 &= ~READ_IMPLIES_EXEC; 121 else if (!strcmp(str, "off")) 122 force_personality32 |= READ_IMPLIES_EXEC; 123 return 1; 124 } 125 __setup("noexec32=", nonx32_setup); 126 127 static void sync_global_pgds_l5(unsigned long start, unsigned long end) 128 { 129 unsigned long addr; 130 131 for (addr = start; addr <= end; addr = ALIGN(addr + 1, PGDIR_SIZE)) { 132 const pgd_t *pgd_ref = pgd_offset_k(addr); 133 struct page *page; 134 135 /* Check for overflow */ 136 if (addr < start) 137 break; 138 139 if (pgd_none(*pgd_ref)) 140 continue; 141 142 spin_lock(&pgd_lock); 143 list_for_each_entry(page, &pgd_list, lru) { 144 pgd_t *pgd; 145 spinlock_t *pgt_lock; 146 147 pgd = (pgd_t *)page_address(page) + pgd_index(addr); 148 /* the pgt_lock only for Xen */ 149 pgt_lock = &pgd_page_get_mm(page)->page_table_lock; 150 spin_lock(pgt_lock); 151 152 if (!pgd_none(*pgd_ref) && !pgd_none(*pgd)) 153 BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref)); 154 155 if (pgd_none(*pgd)) 156 set_pgd(pgd, *pgd_ref); 157 158 spin_unlock(pgt_lock); 159 } 160 spin_unlock(&pgd_lock); 161 } 162 } 163 164 static void sync_global_pgds_l4(unsigned long start, unsigned long end) 165 { 166 unsigned long addr; 167 168 for (addr = start; addr <= end; addr = ALIGN(addr + 1, PGDIR_SIZE)) { 169 pgd_t *pgd_ref = pgd_offset_k(addr); 170 const p4d_t *p4d_ref; 171 struct page *page; 172 173 /* 174 * With folded p4d, pgd_none() is always false, we need to 175 * handle synchronization on p4d level. 176 */ 177 MAYBE_BUILD_BUG_ON(pgd_none(*pgd_ref)); 178 p4d_ref = p4d_offset(pgd_ref, addr); 179 180 if (p4d_none(*p4d_ref)) 181 continue; 182 183 spin_lock(&pgd_lock); 184 list_for_each_entry(page, &pgd_list, lru) { 185 pgd_t *pgd; 186 p4d_t *p4d; 187 spinlock_t *pgt_lock; 188 189 pgd = (pgd_t *)page_address(page) + pgd_index(addr); 190 p4d = p4d_offset(pgd, addr); 191 /* the pgt_lock only for Xen */ 192 pgt_lock = &pgd_page_get_mm(page)->page_table_lock; 193 spin_lock(pgt_lock); 194 195 if (!p4d_none(*p4d_ref) && !p4d_none(*p4d)) 196 BUG_ON(p4d_pgtable(*p4d) 197 != p4d_pgtable(*p4d_ref)); 198 199 if (p4d_none(*p4d)) 200 set_p4d(p4d, *p4d_ref); 201 202 spin_unlock(pgt_lock); 203 } 204 spin_unlock(&pgd_lock); 205 } 206 } 207 208 /* 209 * When memory was added make sure all the processes MM have 210 * suitable PGD entries in the local PGD level page. 211 */ 212 static void sync_global_pgds(unsigned long start, unsigned long end) 213 { 214 if (pgtable_l5_enabled()) 215 sync_global_pgds_l5(start, end); 216 else 217 sync_global_pgds_l4(start, end); 218 } 219 220 /* 221 * NOTE: This function is marked __ref because it calls __init function 222 * (alloc_bootmem_pages). It's safe to do it ONLY when after_bootmem == 0. 223 */ 224 static __ref void *spp_getpage(void) 225 { 226 void *ptr; 227 228 if (after_bootmem) 229 ptr = (void *) get_zeroed_page(GFP_ATOMIC); 230 else 231 ptr = memblock_alloc(PAGE_SIZE, PAGE_SIZE); 232 233 if (!ptr || ((unsigned long)ptr & ~PAGE_MASK)) { 234 panic("set_pte_phys: cannot allocate page data %s\n", 235 after_bootmem ? "after bootmem" : ""); 236 } 237 238 pr_debug("spp_getpage %p\n", ptr); 239 240 return ptr; 241 } 242 243 static p4d_t *fill_p4d(pgd_t *pgd, unsigned long vaddr) 244 { 245 if (pgd_none(*pgd)) { 246 p4d_t *p4d = (p4d_t *)spp_getpage(); 247 pgd_populate(&init_mm, pgd, p4d); 248 if (p4d != p4d_offset(pgd, 0)) 249 printk(KERN_ERR "PAGETABLE BUG #00! %p <-> %p\n", 250 p4d, p4d_offset(pgd, 0)); 251 } 252 return p4d_offset(pgd, vaddr); 253 } 254 255 static pud_t *fill_pud(p4d_t *p4d, unsigned long vaddr) 256 { 257 if (p4d_none(*p4d)) { 258 pud_t *pud = (pud_t *)spp_getpage(); 259 p4d_populate(&init_mm, p4d, pud); 260 if (pud != pud_offset(p4d, 0)) 261 printk(KERN_ERR "PAGETABLE BUG #01! %p <-> %p\n", 262 pud, pud_offset(p4d, 0)); 263 } 264 return pud_offset(p4d, vaddr); 265 } 266 267 static pmd_t *fill_pmd(pud_t *pud, unsigned long vaddr) 268 { 269 if (pud_none(*pud)) { 270 pmd_t *pmd = (pmd_t *) spp_getpage(); 271 pud_populate(&init_mm, pud, pmd); 272 if (pmd != pmd_offset(pud, 0)) 273 printk(KERN_ERR "PAGETABLE BUG #02! %p <-> %p\n", 274 pmd, pmd_offset(pud, 0)); 275 } 276 return pmd_offset(pud, vaddr); 277 } 278 279 static pte_t *fill_pte(pmd_t *pmd, unsigned long vaddr) 280 { 281 if (pmd_none(*pmd)) { 282 pte_t *pte = (pte_t *) spp_getpage(); 283 pmd_populate_kernel(&init_mm, pmd, pte); 284 if (pte != pte_offset_kernel(pmd, 0)) 285 printk(KERN_ERR "PAGETABLE BUG #03!\n"); 286 } 287 return pte_offset_kernel(pmd, vaddr); 288 } 289 290 static void __set_pte_vaddr(pud_t *pud, unsigned long vaddr, pte_t new_pte) 291 { 292 pmd_t *pmd = fill_pmd(pud, vaddr); 293 pte_t *pte = fill_pte(pmd, vaddr); 294 295 set_pte(pte, new_pte); 296 297 /* 298 * It's enough to flush this one mapping. 299 * (PGE mappings get flushed as well) 300 */ 301 flush_tlb_one_kernel(vaddr); 302 } 303 304 void set_pte_vaddr_p4d(p4d_t *p4d_page, unsigned long vaddr, pte_t new_pte) 305 { 306 p4d_t *p4d = p4d_page + p4d_index(vaddr); 307 pud_t *pud = fill_pud(p4d, vaddr); 308 309 __set_pte_vaddr(pud, vaddr, new_pte); 310 } 311 312 void set_pte_vaddr_pud(pud_t *pud_page, unsigned long vaddr, pte_t new_pte) 313 { 314 pud_t *pud = pud_page + pud_index(vaddr); 315 316 __set_pte_vaddr(pud, vaddr, new_pte); 317 } 318 319 void set_pte_vaddr(unsigned long vaddr, pte_t pteval) 320 { 321 pgd_t *pgd; 322 p4d_t *p4d_page; 323 324 pr_debug("set_pte_vaddr %lx to %lx\n", vaddr, native_pte_val(pteval)); 325 326 pgd = pgd_offset_k(vaddr); 327 if (pgd_none(*pgd)) { 328 printk(KERN_ERR 329 "PGD FIXMAP MISSING, it should be setup in head.S!\n"); 330 return; 331 } 332 333 p4d_page = p4d_offset(pgd, 0); 334 set_pte_vaddr_p4d(p4d_page, vaddr, pteval); 335 } 336 337 pmd_t * __init populate_extra_pmd(unsigned long vaddr) 338 { 339 pgd_t *pgd; 340 p4d_t *p4d; 341 pud_t *pud; 342 343 pgd = pgd_offset_k(vaddr); 344 p4d = fill_p4d(pgd, vaddr); 345 pud = fill_pud(p4d, vaddr); 346 return fill_pmd(pud, vaddr); 347 } 348 349 pte_t * __init populate_extra_pte(unsigned long vaddr) 350 { 351 pmd_t *pmd; 352 353 pmd = populate_extra_pmd(vaddr); 354 return fill_pte(pmd, vaddr); 355 } 356 357 /* 358 * Create large page table mappings for a range of physical addresses. 359 */ 360 static void __init __init_extra_mapping(unsigned long phys, unsigned long size, 361 enum page_cache_mode cache) 362 { 363 pgd_t *pgd; 364 p4d_t *p4d; 365 pud_t *pud; 366 pmd_t *pmd; 367 pgprot_t prot; 368 369 pgprot_val(prot) = pgprot_val(PAGE_KERNEL_LARGE) | 370 protval_4k_2_large(cachemode2protval(cache)); 371 BUG_ON((phys & ~PMD_MASK) || (size & ~PMD_MASK)); 372 for (; size; phys += PMD_SIZE, size -= PMD_SIZE) { 373 pgd = pgd_offset_k((unsigned long)__va(phys)); 374 if (pgd_none(*pgd)) { 375 p4d = (p4d_t *) spp_getpage(); 376 set_pgd(pgd, __pgd(__pa(p4d) | _KERNPG_TABLE | 377 _PAGE_USER)); 378 } 379 p4d = p4d_offset(pgd, (unsigned long)__va(phys)); 380 if (p4d_none(*p4d)) { 381 pud = (pud_t *) spp_getpage(); 382 set_p4d(p4d, __p4d(__pa(pud) | _KERNPG_TABLE | 383 _PAGE_USER)); 384 } 385 pud = pud_offset(p4d, (unsigned long)__va(phys)); 386 if (pud_none(*pud)) { 387 pmd = (pmd_t *) spp_getpage(); 388 set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE | 389 _PAGE_USER)); 390 } 391 pmd = pmd_offset(pud, phys); 392 BUG_ON(!pmd_none(*pmd)); 393 set_pmd(pmd, __pmd(phys | pgprot_val(prot))); 394 } 395 } 396 397 void __init init_extra_mapping_wb(unsigned long phys, unsigned long size) 398 { 399 __init_extra_mapping(phys, size, _PAGE_CACHE_MODE_WB); 400 } 401 402 void __init init_extra_mapping_uc(unsigned long phys, unsigned long size) 403 { 404 __init_extra_mapping(phys, size, _PAGE_CACHE_MODE_UC); 405 } 406 407 /* 408 * The head.S code sets up the kernel high mapping: 409 * 410 * from __START_KERNEL_map to __START_KERNEL_map + size (== _end-_text) 411 * 412 * phys_base holds the negative offset to the kernel, which is added 413 * to the compile time generated pmds. This results in invalid pmds up 414 * to the point where we hit the physaddr 0 mapping. 415 * 416 * We limit the mappings to the region from _text to _brk_end. _brk_end 417 * is rounded up to the 2MB boundary. This catches the invalid pmds as 418 * well, as they are located before _text: 419 */ 420 void __init cleanup_highmap(void) 421 { 422 unsigned long vaddr = __START_KERNEL_map; 423 unsigned long vaddr_end = __START_KERNEL_map + KERNEL_IMAGE_SIZE; 424 unsigned long end = roundup((unsigned long)_brk_end, PMD_SIZE) - 1; 425 pmd_t *pmd = level2_kernel_pgt; 426 427 /* 428 * Native path, max_pfn_mapped is not set yet. 429 * Xen has valid max_pfn_mapped set in 430 * arch/x86/xen/mmu.c:xen_setup_kernel_pagetable(). 431 */ 432 if (max_pfn_mapped) 433 vaddr_end = __START_KERNEL_map + (max_pfn_mapped << PAGE_SHIFT); 434 435 for (; vaddr + PMD_SIZE - 1 < vaddr_end; pmd++, vaddr += PMD_SIZE) { 436 if (pmd_none(*pmd)) 437 continue; 438 if (vaddr < (unsigned long) _text || vaddr > end) 439 set_pmd(pmd, __pmd(0)); 440 } 441 } 442 443 /* 444 * Create PTE level page table mapping for physical addresses. 445 * It returns the last physical address mapped. 446 */ 447 static unsigned long __meminit 448 phys_pte_init(pte_t *pte_page, unsigned long paddr, unsigned long paddr_end, 449 pgprot_t prot, bool init) 450 { 451 unsigned long pages = 0, paddr_next; 452 unsigned long paddr_last = paddr_end; 453 pte_t *pte; 454 int i; 455 456 pte = pte_page + pte_index(paddr); 457 i = pte_index(paddr); 458 459 for (; i < PTRS_PER_PTE; i++, paddr = paddr_next, pte++) { 460 paddr_next = (paddr & PAGE_MASK) + PAGE_SIZE; 461 if (paddr >= paddr_end) { 462 if (!after_bootmem && 463 !e820__mapped_any(paddr & PAGE_MASK, paddr_next, 464 E820_TYPE_RAM) && 465 !e820__mapped_any(paddr & PAGE_MASK, paddr_next, 466 E820_TYPE_RESERVED_KERN)) 467 set_pte_init(pte, __pte(0), init); 468 continue; 469 } 470 471 /* 472 * We will re-use the existing mapping. 473 * Xen for example has some special requirements, like mapping 474 * pagetable pages as RO. So assume someone who pre-setup 475 * these mappings are more intelligent. 476 */ 477 if (!pte_none(*pte)) { 478 if (!after_bootmem) 479 pages++; 480 continue; 481 } 482 483 if (0) 484 pr_info(" pte=%p addr=%lx pte=%016lx\n", pte, paddr, 485 pfn_pte(paddr >> PAGE_SHIFT, PAGE_KERNEL).pte); 486 pages++; 487 set_pte_init(pte, pfn_pte(paddr >> PAGE_SHIFT, prot), init); 488 paddr_last = (paddr & PAGE_MASK) + PAGE_SIZE; 489 } 490 491 update_page_count(PG_LEVEL_4K, pages); 492 493 return paddr_last; 494 } 495 496 /* 497 * Create PMD level page table mapping for physical addresses. The virtual 498 * and physical address have to be aligned at this level. 499 * It returns the last physical address mapped. 500 */ 501 static unsigned long __meminit 502 phys_pmd_init(pmd_t *pmd_page, unsigned long paddr, unsigned long paddr_end, 503 unsigned long page_size_mask, pgprot_t prot, bool init) 504 { 505 unsigned long pages = 0, paddr_next; 506 unsigned long paddr_last = paddr_end; 507 508 int i = pmd_index(paddr); 509 510 for (; i < PTRS_PER_PMD; i++, paddr = paddr_next) { 511 pmd_t *pmd = pmd_page + pmd_index(paddr); 512 pte_t *pte; 513 pgprot_t new_prot = prot; 514 515 paddr_next = (paddr & PMD_MASK) + PMD_SIZE; 516 if (paddr >= paddr_end) { 517 if (!after_bootmem && 518 !e820__mapped_any(paddr & PMD_MASK, paddr_next, 519 E820_TYPE_RAM) && 520 !e820__mapped_any(paddr & PMD_MASK, paddr_next, 521 E820_TYPE_RESERVED_KERN)) 522 set_pmd_init(pmd, __pmd(0), init); 523 continue; 524 } 525 526 if (!pmd_none(*pmd)) { 527 if (!pmd_large(*pmd)) { 528 spin_lock(&init_mm.page_table_lock); 529 pte = (pte_t *)pmd_page_vaddr(*pmd); 530 paddr_last = phys_pte_init(pte, paddr, 531 paddr_end, prot, 532 init); 533 spin_unlock(&init_mm.page_table_lock); 534 continue; 535 } 536 /* 537 * If we are ok with PG_LEVEL_2M mapping, then we will 538 * use the existing mapping, 539 * 540 * Otherwise, we will split the large page mapping but 541 * use the same existing protection bits except for 542 * large page, so that we don't violate Intel's TLB 543 * Application note (317080) which says, while changing 544 * the page sizes, new and old translations should 545 * not differ with respect to page frame and 546 * attributes. 547 */ 548 if (page_size_mask & (1 << PG_LEVEL_2M)) { 549 if (!after_bootmem) 550 pages++; 551 paddr_last = paddr_next; 552 continue; 553 } 554 new_prot = pte_pgprot(pte_clrhuge(*(pte_t *)pmd)); 555 } 556 557 if (page_size_mask & (1<<PG_LEVEL_2M)) { 558 pages++; 559 spin_lock(&init_mm.page_table_lock); 560 set_pte_init((pte_t *)pmd, 561 pfn_pte((paddr & PMD_MASK) >> PAGE_SHIFT, 562 __pgprot(pgprot_val(prot) | _PAGE_PSE)), 563 init); 564 spin_unlock(&init_mm.page_table_lock); 565 paddr_last = paddr_next; 566 continue; 567 } 568 569 pte = alloc_low_page(); 570 paddr_last = phys_pte_init(pte, paddr, paddr_end, new_prot, init); 571 572 spin_lock(&init_mm.page_table_lock); 573 pmd_populate_kernel_init(&init_mm, pmd, pte, init); 574 spin_unlock(&init_mm.page_table_lock); 575 } 576 update_page_count(PG_LEVEL_2M, pages); 577 return paddr_last; 578 } 579 580 /* 581 * Create PUD level page table mapping for physical addresses. The virtual 582 * and physical address do not have to be aligned at this level. KASLR can 583 * randomize virtual addresses up to this level. 584 * It returns the last physical address mapped. 585 */ 586 static unsigned long __meminit 587 phys_pud_init(pud_t *pud_page, unsigned long paddr, unsigned long paddr_end, 588 unsigned long page_size_mask, pgprot_t _prot, bool init) 589 { 590 unsigned long pages = 0, paddr_next; 591 unsigned long paddr_last = paddr_end; 592 unsigned long vaddr = (unsigned long)__va(paddr); 593 int i = pud_index(vaddr); 594 595 for (; i < PTRS_PER_PUD; i++, paddr = paddr_next) { 596 pud_t *pud; 597 pmd_t *pmd; 598 pgprot_t prot = _prot; 599 600 vaddr = (unsigned long)__va(paddr); 601 pud = pud_page + pud_index(vaddr); 602 paddr_next = (paddr & PUD_MASK) + PUD_SIZE; 603 604 if (paddr >= paddr_end) { 605 if (!after_bootmem && 606 !e820__mapped_any(paddr & PUD_MASK, paddr_next, 607 E820_TYPE_RAM) && 608 !e820__mapped_any(paddr & PUD_MASK, paddr_next, 609 E820_TYPE_RESERVED_KERN)) 610 set_pud_init(pud, __pud(0), init); 611 continue; 612 } 613 614 if (!pud_none(*pud)) { 615 if (!pud_large(*pud)) { 616 pmd = pmd_offset(pud, 0); 617 paddr_last = phys_pmd_init(pmd, paddr, 618 paddr_end, 619 page_size_mask, 620 prot, init); 621 continue; 622 } 623 /* 624 * If we are ok with PG_LEVEL_1G mapping, then we will 625 * use the existing mapping. 626 * 627 * Otherwise, we will split the gbpage mapping but use 628 * the same existing protection bits except for large 629 * page, so that we don't violate Intel's TLB 630 * Application note (317080) which says, while changing 631 * the page sizes, new and old translations should 632 * not differ with respect to page frame and 633 * attributes. 634 */ 635 if (page_size_mask & (1 << PG_LEVEL_1G)) { 636 if (!after_bootmem) 637 pages++; 638 paddr_last = paddr_next; 639 continue; 640 } 641 prot = pte_pgprot(pte_clrhuge(*(pte_t *)pud)); 642 } 643 644 if (page_size_mask & (1<<PG_LEVEL_1G)) { 645 pages++; 646 spin_lock(&init_mm.page_table_lock); 647 648 prot = __pgprot(pgprot_val(prot) | __PAGE_KERNEL_LARGE); 649 650 set_pte_init((pte_t *)pud, 651 pfn_pte((paddr & PUD_MASK) >> PAGE_SHIFT, 652 prot), 653 init); 654 spin_unlock(&init_mm.page_table_lock); 655 paddr_last = paddr_next; 656 continue; 657 } 658 659 pmd = alloc_low_page(); 660 paddr_last = phys_pmd_init(pmd, paddr, paddr_end, 661 page_size_mask, prot, init); 662 663 spin_lock(&init_mm.page_table_lock); 664 pud_populate_init(&init_mm, pud, pmd, init); 665 spin_unlock(&init_mm.page_table_lock); 666 } 667 668 update_page_count(PG_LEVEL_1G, pages); 669 670 return paddr_last; 671 } 672 673 static unsigned long __meminit 674 phys_p4d_init(p4d_t *p4d_page, unsigned long paddr, unsigned long paddr_end, 675 unsigned long page_size_mask, pgprot_t prot, bool init) 676 { 677 unsigned long vaddr, vaddr_end, vaddr_next, paddr_next, paddr_last; 678 679 paddr_last = paddr_end; 680 vaddr = (unsigned long)__va(paddr); 681 vaddr_end = (unsigned long)__va(paddr_end); 682 683 if (!pgtable_l5_enabled()) 684 return phys_pud_init((pud_t *) p4d_page, paddr, paddr_end, 685 page_size_mask, prot, init); 686 687 for (; vaddr < vaddr_end; vaddr = vaddr_next) { 688 p4d_t *p4d = p4d_page + p4d_index(vaddr); 689 pud_t *pud; 690 691 vaddr_next = (vaddr & P4D_MASK) + P4D_SIZE; 692 paddr = __pa(vaddr); 693 694 if (paddr >= paddr_end) { 695 paddr_next = __pa(vaddr_next); 696 if (!after_bootmem && 697 !e820__mapped_any(paddr & P4D_MASK, paddr_next, 698 E820_TYPE_RAM) && 699 !e820__mapped_any(paddr & P4D_MASK, paddr_next, 700 E820_TYPE_RESERVED_KERN)) 701 set_p4d_init(p4d, __p4d(0), init); 702 continue; 703 } 704 705 if (!p4d_none(*p4d)) { 706 pud = pud_offset(p4d, 0); 707 paddr_last = phys_pud_init(pud, paddr, __pa(vaddr_end), 708 page_size_mask, prot, init); 709 continue; 710 } 711 712 pud = alloc_low_page(); 713 paddr_last = phys_pud_init(pud, paddr, __pa(vaddr_end), 714 page_size_mask, prot, init); 715 716 spin_lock(&init_mm.page_table_lock); 717 p4d_populate_init(&init_mm, p4d, pud, init); 718 spin_unlock(&init_mm.page_table_lock); 719 } 720 721 return paddr_last; 722 } 723 724 static unsigned long __meminit 725 __kernel_physical_mapping_init(unsigned long paddr_start, 726 unsigned long paddr_end, 727 unsigned long page_size_mask, 728 pgprot_t prot, bool init) 729 { 730 bool pgd_changed = false; 731 unsigned long vaddr, vaddr_start, vaddr_end, vaddr_next, paddr_last; 732 733 paddr_last = paddr_end; 734 vaddr = (unsigned long)__va(paddr_start); 735 vaddr_end = (unsigned long)__va(paddr_end); 736 vaddr_start = vaddr; 737 738 for (; vaddr < vaddr_end; vaddr = vaddr_next) { 739 pgd_t *pgd = pgd_offset_k(vaddr); 740 p4d_t *p4d; 741 742 vaddr_next = (vaddr & PGDIR_MASK) + PGDIR_SIZE; 743 744 if (pgd_val(*pgd)) { 745 p4d = (p4d_t *)pgd_page_vaddr(*pgd); 746 paddr_last = phys_p4d_init(p4d, __pa(vaddr), 747 __pa(vaddr_end), 748 page_size_mask, 749 prot, init); 750 continue; 751 } 752 753 p4d = alloc_low_page(); 754 paddr_last = phys_p4d_init(p4d, __pa(vaddr), __pa(vaddr_end), 755 page_size_mask, prot, init); 756 757 spin_lock(&init_mm.page_table_lock); 758 if (pgtable_l5_enabled()) 759 pgd_populate_init(&init_mm, pgd, p4d, init); 760 else 761 p4d_populate_init(&init_mm, p4d_offset(pgd, vaddr), 762 (pud_t *) p4d, init); 763 764 spin_unlock(&init_mm.page_table_lock); 765 pgd_changed = true; 766 } 767 768 if (pgd_changed) 769 sync_global_pgds(vaddr_start, vaddr_end - 1); 770 771 return paddr_last; 772 } 773 774 775 /* 776 * Create page table mapping for the physical memory for specific physical 777 * addresses. Note that it can only be used to populate non-present entries. 778 * The virtual and physical addresses have to be aligned on PMD level 779 * down. It returns the last physical address mapped. 780 */ 781 unsigned long __meminit 782 kernel_physical_mapping_init(unsigned long paddr_start, 783 unsigned long paddr_end, 784 unsigned long page_size_mask, pgprot_t prot) 785 { 786 return __kernel_physical_mapping_init(paddr_start, paddr_end, 787 page_size_mask, prot, true); 788 } 789 790 /* 791 * This function is similar to kernel_physical_mapping_init() above with the 792 * exception that it uses set_{pud,pmd}() instead of the set_{pud,pte}_safe() 793 * when updating the mapping. The caller is responsible to flush the TLBs after 794 * the function returns. 795 */ 796 unsigned long __meminit 797 kernel_physical_mapping_change(unsigned long paddr_start, 798 unsigned long paddr_end, 799 unsigned long page_size_mask) 800 { 801 return __kernel_physical_mapping_init(paddr_start, paddr_end, 802 page_size_mask, PAGE_KERNEL, 803 false); 804 } 805 806 #ifndef CONFIG_NUMA 807 void __init initmem_init(void) 808 { 809 memblock_set_node(0, PHYS_ADDR_MAX, &memblock.memory, 0); 810 } 811 #endif 812 813 void __init paging_init(void) 814 { 815 sparse_init(); 816 817 /* 818 * clear the default setting with node 0 819 * note: don't use nodes_clear here, that is really clearing when 820 * numa support is not compiled in, and later node_set_state 821 * will not set it back. 822 */ 823 node_clear_state(0, N_MEMORY); 824 node_clear_state(0, N_NORMAL_MEMORY); 825 826 zone_sizes_init(); 827 } 828 829 #ifdef CONFIG_SPARSEMEM_VMEMMAP 830 #define PAGE_UNUSED 0xFD 831 832 /* 833 * The unused vmemmap range, which was not yet memset(PAGE_UNUSED), ranges 834 * from unused_pmd_start to next PMD_SIZE boundary. 835 */ 836 static unsigned long unused_pmd_start __meminitdata; 837 838 static void __meminit vmemmap_flush_unused_pmd(void) 839 { 840 if (!unused_pmd_start) 841 return; 842 /* 843 * Clears (unused_pmd_start, PMD_END] 844 */ 845 memset((void *)unused_pmd_start, PAGE_UNUSED, 846 ALIGN(unused_pmd_start, PMD_SIZE) - unused_pmd_start); 847 unused_pmd_start = 0; 848 } 849 850 #ifdef CONFIG_MEMORY_HOTPLUG 851 /* Returns true if the PMD is completely unused and thus it can be freed */ 852 static bool __meminit vmemmap_pmd_is_unused(unsigned long addr, unsigned long end) 853 { 854 unsigned long start = ALIGN_DOWN(addr, PMD_SIZE); 855 856 /* 857 * Flush the unused range cache to ensure that memchr_inv() will work 858 * for the whole range. 859 */ 860 vmemmap_flush_unused_pmd(); 861 memset((void *)addr, PAGE_UNUSED, end - addr); 862 863 return !memchr_inv((void *)start, PAGE_UNUSED, PMD_SIZE); 864 } 865 #endif 866 867 static void __meminit __vmemmap_use_sub_pmd(unsigned long start) 868 { 869 /* 870 * As we expect to add in the same granularity as we remove, it's 871 * sufficient to mark only some piece used to block the memmap page from 872 * getting removed when removing some other adjacent memmap (just in 873 * case the first memmap never gets initialized e.g., because the memory 874 * block never gets onlined). 875 */ 876 memset((void *)start, 0, sizeof(struct page)); 877 } 878 879 static void __meminit vmemmap_use_sub_pmd(unsigned long start, unsigned long end) 880 { 881 /* 882 * We only optimize if the new used range directly follows the 883 * previously unused range (esp., when populating consecutive sections). 884 */ 885 if (unused_pmd_start == start) { 886 if (likely(IS_ALIGNED(end, PMD_SIZE))) 887 unused_pmd_start = 0; 888 else 889 unused_pmd_start = end; 890 return; 891 } 892 893 /* 894 * If the range does not contiguously follows previous one, make sure 895 * to mark the unused range of the previous one so it can be removed. 896 */ 897 vmemmap_flush_unused_pmd(); 898 __vmemmap_use_sub_pmd(start); 899 } 900 901 902 static void __meminit vmemmap_use_new_sub_pmd(unsigned long start, unsigned long end) 903 { 904 const unsigned long page = ALIGN_DOWN(start, PMD_SIZE); 905 906 vmemmap_flush_unused_pmd(); 907 908 /* 909 * Could be our memmap page is filled with PAGE_UNUSED already from a 910 * previous remove. Make sure to reset it. 911 */ 912 __vmemmap_use_sub_pmd(start); 913 914 /* 915 * Mark with PAGE_UNUSED the unused parts of the new memmap range 916 */ 917 if (!IS_ALIGNED(start, PMD_SIZE)) 918 memset((void *)page, PAGE_UNUSED, start - page); 919 920 /* 921 * We want to avoid memset(PAGE_UNUSED) when populating the vmemmap of 922 * consecutive sections. Remember for the last added PMD where the 923 * unused range begins. 924 */ 925 if (!IS_ALIGNED(end, PMD_SIZE)) 926 unused_pmd_start = end; 927 } 928 #endif 929 930 /* 931 * Memory hotplug specific functions 932 */ 933 #ifdef CONFIG_MEMORY_HOTPLUG 934 /* 935 * After memory hotplug the variables max_pfn, max_low_pfn and high_memory need 936 * updating. 937 */ 938 static void update_end_of_memory_vars(u64 start, u64 size) 939 { 940 unsigned long end_pfn = PFN_UP(start + size); 941 942 if (end_pfn > max_pfn) { 943 max_pfn = end_pfn; 944 max_low_pfn = end_pfn; 945 high_memory = (void *)__va(max_pfn * PAGE_SIZE - 1) + 1; 946 } 947 } 948 949 int add_pages(int nid, unsigned long start_pfn, unsigned long nr_pages, 950 struct mhp_params *params) 951 { 952 int ret; 953 954 ret = __add_pages(nid, start_pfn, nr_pages, params); 955 WARN_ON_ONCE(ret); 956 957 /* update max_pfn, max_low_pfn and high_memory */ 958 update_end_of_memory_vars(start_pfn << PAGE_SHIFT, 959 nr_pages << PAGE_SHIFT); 960 961 return ret; 962 } 963 964 int arch_add_memory(int nid, u64 start, u64 size, 965 struct mhp_params *params) 966 { 967 unsigned long start_pfn = start >> PAGE_SHIFT; 968 unsigned long nr_pages = size >> PAGE_SHIFT; 969 970 init_memory_mapping(start, start + size, params->pgprot); 971 972 return add_pages(nid, start_pfn, nr_pages, params); 973 } 974 975 static void __meminit free_pagetable(struct page *page, int order) 976 { 977 unsigned long magic; 978 unsigned int nr_pages = 1 << order; 979 980 /* bootmem page has reserved flag */ 981 if (PageReserved(page)) { 982 __ClearPageReserved(page); 983 984 magic = page->index; 985 if (magic == SECTION_INFO || magic == MIX_SECTION_INFO) { 986 while (nr_pages--) 987 put_page_bootmem(page++); 988 } else 989 while (nr_pages--) 990 free_reserved_page(page++); 991 } else 992 free_pages((unsigned long)page_address(page), order); 993 } 994 995 static void __meminit free_hugepage_table(struct page *page, 996 struct vmem_altmap *altmap) 997 { 998 if (altmap) 999 vmem_altmap_free(altmap, PMD_SIZE / PAGE_SIZE); 1000 else 1001 free_pagetable(page, get_order(PMD_SIZE)); 1002 } 1003 1004 static void __meminit free_pte_table(pte_t *pte_start, pmd_t *pmd) 1005 { 1006 pte_t *pte; 1007 int i; 1008 1009 for (i = 0; i < PTRS_PER_PTE; i++) { 1010 pte = pte_start + i; 1011 if (!pte_none(*pte)) 1012 return; 1013 } 1014 1015 /* free a pte talbe */ 1016 free_pagetable(pmd_page(*pmd), 0); 1017 spin_lock(&init_mm.page_table_lock); 1018 pmd_clear(pmd); 1019 spin_unlock(&init_mm.page_table_lock); 1020 } 1021 1022 static void __meminit free_pmd_table(pmd_t *pmd_start, pud_t *pud) 1023 { 1024 pmd_t *pmd; 1025 int i; 1026 1027 for (i = 0; i < PTRS_PER_PMD; i++) { 1028 pmd = pmd_start + i; 1029 if (!pmd_none(*pmd)) 1030 return; 1031 } 1032 1033 /* free a pmd talbe */ 1034 free_pagetable(pud_page(*pud), 0); 1035 spin_lock(&init_mm.page_table_lock); 1036 pud_clear(pud); 1037 spin_unlock(&init_mm.page_table_lock); 1038 } 1039 1040 static void __meminit free_pud_table(pud_t *pud_start, p4d_t *p4d) 1041 { 1042 pud_t *pud; 1043 int i; 1044 1045 for (i = 0; i < PTRS_PER_PUD; i++) { 1046 pud = pud_start + i; 1047 if (!pud_none(*pud)) 1048 return; 1049 } 1050 1051 /* free a pud talbe */ 1052 free_pagetable(p4d_page(*p4d), 0); 1053 spin_lock(&init_mm.page_table_lock); 1054 p4d_clear(p4d); 1055 spin_unlock(&init_mm.page_table_lock); 1056 } 1057 1058 static void __meminit 1059 remove_pte_table(pte_t *pte_start, unsigned long addr, unsigned long end, 1060 bool direct) 1061 { 1062 unsigned long next, pages = 0; 1063 pte_t *pte; 1064 phys_addr_t phys_addr; 1065 1066 pte = pte_start + pte_index(addr); 1067 for (; addr < end; addr = next, pte++) { 1068 next = (addr + PAGE_SIZE) & PAGE_MASK; 1069 if (next > end) 1070 next = end; 1071 1072 if (!pte_present(*pte)) 1073 continue; 1074 1075 /* 1076 * We mapped [0,1G) memory as identity mapping when 1077 * initializing, in arch/x86/kernel/head_64.S. These 1078 * pagetables cannot be removed. 1079 */ 1080 phys_addr = pte_val(*pte) + (addr & PAGE_MASK); 1081 if (phys_addr < (phys_addr_t)0x40000000) 1082 return; 1083 1084 if (!direct) 1085 free_pagetable(pte_page(*pte), 0); 1086 1087 spin_lock(&init_mm.page_table_lock); 1088 pte_clear(&init_mm, addr, pte); 1089 spin_unlock(&init_mm.page_table_lock); 1090 1091 /* For non-direct mapping, pages means nothing. */ 1092 pages++; 1093 } 1094 1095 /* Call free_pte_table() in remove_pmd_table(). */ 1096 flush_tlb_all(); 1097 if (direct) 1098 update_page_count(PG_LEVEL_4K, -pages); 1099 } 1100 1101 static void __meminit 1102 remove_pmd_table(pmd_t *pmd_start, unsigned long addr, unsigned long end, 1103 bool direct, struct vmem_altmap *altmap) 1104 { 1105 unsigned long next, pages = 0; 1106 pte_t *pte_base; 1107 pmd_t *pmd; 1108 1109 pmd = pmd_start + pmd_index(addr); 1110 for (; addr < end; addr = next, pmd++) { 1111 next = pmd_addr_end(addr, end); 1112 1113 if (!pmd_present(*pmd)) 1114 continue; 1115 1116 if (pmd_large(*pmd)) { 1117 if (IS_ALIGNED(addr, PMD_SIZE) && 1118 IS_ALIGNED(next, PMD_SIZE)) { 1119 if (!direct) 1120 free_hugepage_table(pmd_page(*pmd), 1121 altmap); 1122 1123 spin_lock(&init_mm.page_table_lock); 1124 pmd_clear(pmd); 1125 spin_unlock(&init_mm.page_table_lock); 1126 pages++; 1127 } 1128 #ifdef CONFIG_SPARSEMEM_VMEMMAP 1129 else if (vmemmap_pmd_is_unused(addr, next)) { 1130 free_hugepage_table(pmd_page(*pmd), 1131 altmap); 1132 spin_lock(&init_mm.page_table_lock); 1133 pmd_clear(pmd); 1134 spin_unlock(&init_mm.page_table_lock); 1135 } 1136 #endif 1137 continue; 1138 } 1139 1140 pte_base = (pte_t *)pmd_page_vaddr(*pmd); 1141 remove_pte_table(pte_base, addr, next, direct); 1142 free_pte_table(pte_base, pmd); 1143 } 1144 1145 /* Call free_pmd_table() in remove_pud_table(). */ 1146 if (direct) 1147 update_page_count(PG_LEVEL_2M, -pages); 1148 } 1149 1150 static void __meminit 1151 remove_pud_table(pud_t *pud_start, unsigned long addr, unsigned long end, 1152 struct vmem_altmap *altmap, bool direct) 1153 { 1154 unsigned long next, pages = 0; 1155 pmd_t *pmd_base; 1156 pud_t *pud; 1157 1158 pud = pud_start + pud_index(addr); 1159 for (; addr < end; addr = next, pud++) { 1160 next = pud_addr_end(addr, end); 1161 1162 if (!pud_present(*pud)) 1163 continue; 1164 1165 if (pud_large(*pud) && 1166 IS_ALIGNED(addr, PUD_SIZE) && 1167 IS_ALIGNED(next, PUD_SIZE)) { 1168 spin_lock(&init_mm.page_table_lock); 1169 pud_clear(pud); 1170 spin_unlock(&init_mm.page_table_lock); 1171 pages++; 1172 continue; 1173 } 1174 1175 pmd_base = pmd_offset(pud, 0); 1176 remove_pmd_table(pmd_base, addr, next, direct, altmap); 1177 free_pmd_table(pmd_base, pud); 1178 } 1179 1180 if (direct) 1181 update_page_count(PG_LEVEL_1G, -pages); 1182 } 1183 1184 static void __meminit 1185 remove_p4d_table(p4d_t *p4d_start, unsigned long addr, unsigned long end, 1186 struct vmem_altmap *altmap, bool direct) 1187 { 1188 unsigned long next, pages = 0; 1189 pud_t *pud_base; 1190 p4d_t *p4d; 1191 1192 p4d = p4d_start + p4d_index(addr); 1193 for (; addr < end; addr = next, p4d++) { 1194 next = p4d_addr_end(addr, end); 1195 1196 if (!p4d_present(*p4d)) 1197 continue; 1198 1199 BUILD_BUG_ON(p4d_large(*p4d)); 1200 1201 pud_base = pud_offset(p4d, 0); 1202 remove_pud_table(pud_base, addr, next, altmap, direct); 1203 /* 1204 * For 4-level page tables we do not want to free PUDs, but in the 1205 * 5-level case we should free them. This code will have to change 1206 * to adapt for boot-time switching between 4 and 5 level page tables. 1207 */ 1208 if (pgtable_l5_enabled()) 1209 free_pud_table(pud_base, p4d); 1210 } 1211 1212 if (direct) 1213 update_page_count(PG_LEVEL_512G, -pages); 1214 } 1215 1216 /* start and end are both virtual address. */ 1217 static void __meminit 1218 remove_pagetable(unsigned long start, unsigned long end, bool direct, 1219 struct vmem_altmap *altmap) 1220 { 1221 unsigned long next; 1222 unsigned long addr; 1223 pgd_t *pgd; 1224 p4d_t *p4d; 1225 1226 for (addr = start; addr < end; addr = next) { 1227 next = pgd_addr_end(addr, end); 1228 1229 pgd = pgd_offset_k(addr); 1230 if (!pgd_present(*pgd)) 1231 continue; 1232 1233 p4d = p4d_offset(pgd, 0); 1234 remove_p4d_table(p4d, addr, next, altmap, direct); 1235 } 1236 1237 flush_tlb_all(); 1238 } 1239 1240 void __ref vmemmap_free(unsigned long start, unsigned long end, 1241 struct vmem_altmap *altmap) 1242 { 1243 VM_BUG_ON(!PAGE_ALIGNED(start)); 1244 VM_BUG_ON(!PAGE_ALIGNED(end)); 1245 1246 remove_pagetable(start, end, false, altmap); 1247 } 1248 1249 static void __meminit 1250 kernel_physical_mapping_remove(unsigned long start, unsigned long end) 1251 { 1252 start = (unsigned long)__va(start); 1253 end = (unsigned long)__va(end); 1254 1255 remove_pagetable(start, end, true, NULL); 1256 } 1257 1258 void __ref arch_remove_memory(u64 start, u64 size, struct vmem_altmap *altmap) 1259 { 1260 unsigned long start_pfn = start >> PAGE_SHIFT; 1261 unsigned long nr_pages = size >> PAGE_SHIFT; 1262 1263 __remove_pages(start_pfn, nr_pages, altmap); 1264 kernel_physical_mapping_remove(start, start + size); 1265 } 1266 #endif /* CONFIG_MEMORY_HOTPLUG */ 1267 1268 static struct kcore_list kcore_vsyscall; 1269 1270 static void __init register_page_bootmem_info(void) 1271 { 1272 #if defined(CONFIG_NUMA) || defined(CONFIG_HUGETLB_PAGE_OPTIMIZE_VMEMMAP) 1273 int i; 1274 1275 for_each_online_node(i) 1276 register_page_bootmem_info_node(NODE_DATA(i)); 1277 #endif 1278 } 1279 1280 /* 1281 * Pre-allocates page-table pages for the vmalloc area in the kernel page-table. 1282 * Only the level which needs to be synchronized between all page-tables is 1283 * allocated because the synchronization can be expensive. 1284 */ 1285 static void __init preallocate_vmalloc_pages(void) 1286 { 1287 unsigned long addr; 1288 const char *lvl; 1289 1290 for (addr = VMALLOC_START; addr <= VMALLOC_END; addr = ALIGN(addr + 1, PGDIR_SIZE)) { 1291 pgd_t *pgd = pgd_offset_k(addr); 1292 p4d_t *p4d; 1293 pud_t *pud; 1294 1295 lvl = "p4d"; 1296 p4d = p4d_alloc(&init_mm, pgd, addr); 1297 if (!p4d) 1298 goto failed; 1299 1300 if (pgtable_l5_enabled()) 1301 continue; 1302 1303 /* 1304 * The goal here is to allocate all possibly required 1305 * hardware page tables pointed to by the top hardware 1306 * level. 1307 * 1308 * On 4-level systems, the P4D layer is folded away and 1309 * the above code does no preallocation. Below, go down 1310 * to the pud _software_ level to ensure the second 1311 * hardware level is allocated on 4-level systems too. 1312 */ 1313 lvl = "pud"; 1314 pud = pud_alloc(&init_mm, p4d, addr); 1315 if (!pud) 1316 goto failed; 1317 } 1318 1319 return; 1320 1321 failed: 1322 1323 /* 1324 * The pages have to be there now or they will be missing in 1325 * process page-tables later. 1326 */ 1327 panic("Failed to pre-allocate %s pages for vmalloc area\n", lvl); 1328 } 1329 1330 void __init mem_init(void) 1331 { 1332 pci_iommu_alloc(); 1333 1334 /* clear_bss() already clear the empty_zero_page */ 1335 1336 /* this will put all memory onto the freelists */ 1337 memblock_free_all(); 1338 after_bootmem = 1; 1339 x86_init.hyper.init_after_bootmem(); 1340 1341 /* 1342 * Must be done after boot memory is put on freelist, because here we 1343 * might set fields in deferred struct pages that have not yet been 1344 * initialized, and memblock_free_all() initializes all the reserved 1345 * deferred pages for us. 1346 */ 1347 register_page_bootmem_info(); 1348 1349 /* Register memory areas for /proc/kcore */ 1350 if (get_gate_vma(&init_mm)) 1351 kclist_add(&kcore_vsyscall, (void *)VSYSCALL_ADDR, PAGE_SIZE, KCORE_USER); 1352 1353 preallocate_vmalloc_pages(); 1354 } 1355 1356 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1357 int __init deferred_page_init_max_threads(const struct cpumask *node_cpumask) 1358 { 1359 /* 1360 * More CPUs always led to greater speedups on tested systems, up to 1361 * all the nodes' CPUs. Use all since the system is otherwise idle 1362 * now. 1363 */ 1364 return max_t(int, cpumask_weight(node_cpumask), 1); 1365 } 1366 #endif 1367 1368 int kernel_set_to_readonly; 1369 1370 void mark_rodata_ro(void) 1371 { 1372 unsigned long start = PFN_ALIGN(_text); 1373 unsigned long rodata_start = PFN_ALIGN(__start_rodata); 1374 unsigned long end = (unsigned long)__end_rodata_hpage_align; 1375 unsigned long text_end = PFN_ALIGN(_etext); 1376 unsigned long rodata_end = PFN_ALIGN(__end_rodata); 1377 unsigned long all_end; 1378 1379 printk(KERN_INFO "Write protecting the kernel read-only data: %luk\n", 1380 (end - start) >> 10); 1381 set_memory_ro(start, (end - start) >> PAGE_SHIFT); 1382 1383 kernel_set_to_readonly = 1; 1384 1385 /* 1386 * The rodata/data/bss/brk section (but not the kernel text!) 1387 * should also be not-executable. 1388 * 1389 * We align all_end to PMD_SIZE because the existing mapping 1390 * is a full PMD. If we would align _brk_end to PAGE_SIZE we 1391 * split the PMD and the reminder between _brk_end and the end 1392 * of the PMD will remain mapped executable. 1393 * 1394 * Any PMD which was setup after the one which covers _brk_end 1395 * has been zapped already via cleanup_highmem(). 1396 */ 1397 all_end = roundup((unsigned long)_brk_end, PMD_SIZE); 1398 set_memory_nx(text_end, (all_end - text_end) >> PAGE_SHIFT); 1399 1400 set_ftrace_ops_ro(); 1401 1402 #ifdef CONFIG_CPA_DEBUG 1403 printk(KERN_INFO "Testing CPA: undo %lx-%lx\n", start, end); 1404 set_memory_rw(start, (end-start) >> PAGE_SHIFT); 1405 1406 printk(KERN_INFO "Testing CPA: again\n"); 1407 set_memory_ro(start, (end-start) >> PAGE_SHIFT); 1408 #endif 1409 1410 free_kernel_image_pages("unused kernel image (text/rodata gap)", 1411 (void *)text_end, (void *)rodata_start); 1412 free_kernel_image_pages("unused kernel image (rodata/data gap)", 1413 (void *)rodata_end, (void *)_sdata); 1414 1415 debug_checkwx(); 1416 } 1417 1418 int kern_addr_valid(unsigned long addr) 1419 { 1420 unsigned long above = ((long)addr) >> __VIRTUAL_MASK_SHIFT; 1421 pgd_t *pgd; 1422 p4d_t *p4d; 1423 pud_t *pud; 1424 pmd_t *pmd; 1425 pte_t *pte; 1426 1427 if (above != 0 && above != -1UL) 1428 return 0; 1429 1430 pgd = pgd_offset_k(addr); 1431 if (pgd_none(*pgd)) 1432 return 0; 1433 1434 p4d = p4d_offset(pgd, addr); 1435 if (!p4d_present(*p4d)) 1436 return 0; 1437 1438 pud = pud_offset(p4d, addr); 1439 if (!pud_present(*pud)) 1440 return 0; 1441 1442 if (pud_large(*pud)) 1443 return pfn_valid(pud_pfn(*pud)); 1444 1445 pmd = pmd_offset(pud, addr); 1446 if (!pmd_present(*pmd)) 1447 return 0; 1448 1449 if (pmd_large(*pmd)) 1450 return pfn_valid(pmd_pfn(*pmd)); 1451 1452 pte = pte_offset_kernel(pmd, addr); 1453 if (pte_none(*pte)) 1454 return 0; 1455 1456 return pfn_valid(pte_pfn(*pte)); 1457 } 1458 1459 /* 1460 * Block size is the minimum amount of memory which can be hotplugged or 1461 * hotremoved. It must be power of two and must be equal or larger than 1462 * MIN_MEMORY_BLOCK_SIZE. 1463 */ 1464 #define MAX_BLOCK_SIZE (2UL << 30) 1465 1466 /* Amount of ram needed to start using large blocks */ 1467 #define MEM_SIZE_FOR_LARGE_BLOCK (64UL << 30) 1468 1469 /* Adjustable memory block size */ 1470 static unsigned long set_memory_block_size; 1471 int __init set_memory_block_size_order(unsigned int order) 1472 { 1473 unsigned long size = 1UL << order; 1474 1475 if (size > MEM_SIZE_FOR_LARGE_BLOCK || size < MIN_MEMORY_BLOCK_SIZE) 1476 return -EINVAL; 1477 1478 set_memory_block_size = size; 1479 return 0; 1480 } 1481 1482 static unsigned long probe_memory_block_size(void) 1483 { 1484 unsigned long boot_mem_end = max_pfn << PAGE_SHIFT; 1485 unsigned long bz; 1486 1487 /* If memory block size has been set, then use it */ 1488 bz = set_memory_block_size; 1489 if (bz) 1490 goto done; 1491 1492 /* Use regular block if RAM is smaller than MEM_SIZE_FOR_LARGE_BLOCK */ 1493 if (boot_mem_end < MEM_SIZE_FOR_LARGE_BLOCK) { 1494 bz = MIN_MEMORY_BLOCK_SIZE; 1495 goto done; 1496 } 1497 1498 /* 1499 * Use max block size to minimize overhead on bare metal, where 1500 * alignment for memory hotplug isn't a concern. 1501 */ 1502 if (!boot_cpu_has(X86_FEATURE_HYPERVISOR)) { 1503 bz = MAX_BLOCK_SIZE; 1504 goto done; 1505 } 1506 1507 /* Find the largest allowed block size that aligns to memory end */ 1508 for (bz = MAX_BLOCK_SIZE; bz > MIN_MEMORY_BLOCK_SIZE; bz >>= 1) { 1509 if (IS_ALIGNED(boot_mem_end, bz)) 1510 break; 1511 } 1512 done: 1513 pr_info("x86/mm: Memory block size: %ldMB\n", bz >> 20); 1514 1515 return bz; 1516 } 1517 1518 static unsigned long memory_block_size_probed; 1519 unsigned long memory_block_size_bytes(void) 1520 { 1521 if (!memory_block_size_probed) 1522 memory_block_size_probed = probe_memory_block_size(); 1523 1524 return memory_block_size_probed; 1525 } 1526 1527 #ifdef CONFIG_SPARSEMEM_VMEMMAP 1528 /* 1529 * Initialise the sparsemem vmemmap using huge-pages at the PMD level. 1530 */ 1531 static long __meminitdata addr_start, addr_end; 1532 static void __meminitdata *p_start, *p_end; 1533 static int __meminitdata node_start; 1534 1535 static int __meminit vmemmap_populate_hugepages(unsigned long start, 1536 unsigned long end, int node, struct vmem_altmap *altmap) 1537 { 1538 unsigned long addr; 1539 unsigned long next; 1540 pgd_t *pgd; 1541 p4d_t *p4d; 1542 pud_t *pud; 1543 pmd_t *pmd; 1544 1545 for (addr = start; addr < end; addr = next) { 1546 next = pmd_addr_end(addr, end); 1547 1548 pgd = vmemmap_pgd_populate(addr, node); 1549 if (!pgd) 1550 return -ENOMEM; 1551 1552 p4d = vmemmap_p4d_populate(pgd, addr, node); 1553 if (!p4d) 1554 return -ENOMEM; 1555 1556 pud = vmemmap_pud_populate(p4d, addr, node); 1557 if (!pud) 1558 return -ENOMEM; 1559 1560 pmd = pmd_offset(pud, addr); 1561 if (pmd_none(*pmd)) { 1562 void *p; 1563 1564 p = vmemmap_alloc_block_buf(PMD_SIZE, node, altmap); 1565 if (p) { 1566 pte_t entry; 1567 1568 entry = pfn_pte(__pa(p) >> PAGE_SHIFT, 1569 PAGE_KERNEL_LARGE); 1570 set_pmd(pmd, __pmd(pte_val(entry))); 1571 1572 /* check to see if we have contiguous blocks */ 1573 if (p_end != p || node_start != node) { 1574 if (p_start) 1575 pr_debug(" [%lx-%lx] PMD -> [%p-%p] on node %d\n", 1576 addr_start, addr_end-1, p_start, p_end-1, node_start); 1577 addr_start = addr; 1578 node_start = node; 1579 p_start = p; 1580 } 1581 1582 addr_end = addr + PMD_SIZE; 1583 p_end = p + PMD_SIZE; 1584 1585 if (!IS_ALIGNED(addr, PMD_SIZE) || 1586 !IS_ALIGNED(next, PMD_SIZE)) 1587 vmemmap_use_new_sub_pmd(addr, next); 1588 1589 continue; 1590 } else if (altmap) 1591 return -ENOMEM; /* no fallback */ 1592 } else if (pmd_large(*pmd)) { 1593 vmemmap_verify((pte_t *)pmd, node, addr, next); 1594 vmemmap_use_sub_pmd(addr, next); 1595 continue; 1596 } 1597 if (vmemmap_populate_basepages(addr, next, node, NULL)) 1598 return -ENOMEM; 1599 } 1600 return 0; 1601 } 1602 1603 int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node, 1604 struct vmem_altmap *altmap) 1605 { 1606 int err; 1607 1608 VM_BUG_ON(!PAGE_ALIGNED(start)); 1609 VM_BUG_ON(!PAGE_ALIGNED(end)); 1610 1611 if (end - start < PAGES_PER_SECTION * sizeof(struct page)) 1612 err = vmemmap_populate_basepages(start, end, node, NULL); 1613 else if (boot_cpu_has(X86_FEATURE_PSE)) 1614 err = vmemmap_populate_hugepages(start, end, node, altmap); 1615 else if (altmap) { 1616 pr_err_once("%s: no cpu support for altmap allocations\n", 1617 __func__); 1618 err = -ENOMEM; 1619 } else 1620 err = vmemmap_populate_basepages(start, end, node, NULL); 1621 if (!err) 1622 sync_global_pgds(start, end - 1); 1623 return err; 1624 } 1625 1626 #ifdef CONFIG_HAVE_BOOTMEM_INFO_NODE 1627 void register_page_bootmem_memmap(unsigned long section_nr, 1628 struct page *start_page, unsigned long nr_pages) 1629 { 1630 unsigned long addr = (unsigned long)start_page; 1631 unsigned long end = (unsigned long)(start_page + nr_pages); 1632 unsigned long next; 1633 pgd_t *pgd; 1634 p4d_t *p4d; 1635 pud_t *pud; 1636 pmd_t *pmd; 1637 unsigned int nr_pmd_pages; 1638 struct page *page; 1639 1640 for (; addr < end; addr = next) { 1641 pte_t *pte = NULL; 1642 1643 pgd = pgd_offset_k(addr); 1644 if (pgd_none(*pgd)) { 1645 next = (addr + PAGE_SIZE) & PAGE_MASK; 1646 continue; 1647 } 1648 get_page_bootmem(section_nr, pgd_page(*pgd), MIX_SECTION_INFO); 1649 1650 p4d = p4d_offset(pgd, addr); 1651 if (p4d_none(*p4d)) { 1652 next = (addr + PAGE_SIZE) & PAGE_MASK; 1653 continue; 1654 } 1655 get_page_bootmem(section_nr, p4d_page(*p4d), MIX_SECTION_INFO); 1656 1657 pud = pud_offset(p4d, addr); 1658 if (pud_none(*pud)) { 1659 next = (addr + PAGE_SIZE) & PAGE_MASK; 1660 continue; 1661 } 1662 get_page_bootmem(section_nr, pud_page(*pud), MIX_SECTION_INFO); 1663 1664 if (!boot_cpu_has(X86_FEATURE_PSE)) { 1665 next = (addr + PAGE_SIZE) & PAGE_MASK; 1666 pmd = pmd_offset(pud, addr); 1667 if (pmd_none(*pmd)) 1668 continue; 1669 get_page_bootmem(section_nr, pmd_page(*pmd), 1670 MIX_SECTION_INFO); 1671 1672 pte = pte_offset_kernel(pmd, addr); 1673 if (pte_none(*pte)) 1674 continue; 1675 get_page_bootmem(section_nr, pte_page(*pte), 1676 SECTION_INFO); 1677 } else { 1678 next = pmd_addr_end(addr, end); 1679 1680 pmd = pmd_offset(pud, addr); 1681 if (pmd_none(*pmd)) 1682 continue; 1683 1684 nr_pmd_pages = 1 << get_order(PMD_SIZE); 1685 page = pmd_page(*pmd); 1686 while (nr_pmd_pages--) 1687 get_page_bootmem(section_nr, page++, 1688 SECTION_INFO); 1689 } 1690 } 1691 } 1692 #endif 1693 1694 void __meminit vmemmap_populate_print_last(void) 1695 { 1696 if (p_start) { 1697 pr_debug(" [%lx-%lx] PMD -> [%p-%p] on node %d\n", 1698 addr_start, addr_end-1, p_start, p_end-1, node_start); 1699 p_start = NULL; 1700 p_end = NULL; 1701 node_start = 0; 1702 } 1703 } 1704 #endif 1705