xref: /linux/arch/x86/mm/init_64.c (revision 4494ce4fb4ff42946f48bbc8a5ac55ee18dca600)
1 /*
2  *  linux/arch/x86_64/mm/init.c
3  *
4  *  Copyright (C) 1995  Linus Torvalds
5  *  Copyright (C) 2000  Pavel Machek <pavel@ucw.cz>
6  *  Copyright (C) 2002,2003 Andi Kleen <ak@suse.de>
7  */
8 
9 #include <linux/signal.h>
10 #include <linux/sched.h>
11 #include <linux/kernel.h>
12 #include <linux/errno.h>
13 #include <linux/string.h>
14 #include <linux/types.h>
15 #include <linux/ptrace.h>
16 #include <linux/mman.h>
17 #include <linux/mm.h>
18 #include <linux/swap.h>
19 #include <linux/smp.h>
20 #include <linux/init.h>
21 #include <linux/initrd.h>
22 #include <linux/pagemap.h>
23 #include <linux/memblock.h>
24 #include <linux/proc_fs.h>
25 #include <linux/pci.h>
26 #include <linux/pfn.h>
27 #include <linux/poison.h>
28 #include <linux/dma-mapping.h>
29 #include <linux/memory.h>
30 #include <linux/memory_hotplug.h>
31 #include <linux/memremap.h>
32 #include <linux/nmi.h>
33 #include <linux/gfp.h>
34 #include <linux/kcore.h>
35 
36 #include <asm/processor.h>
37 #include <asm/bios_ebda.h>
38 #include <linux/uaccess.h>
39 #include <asm/pgtable.h>
40 #include <asm/pgalloc.h>
41 #include <asm/dma.h>
42 #include <asm/fixmap.h>
43 #include <asm/e820/api.h>
44 #include <asm/apic.h>
45 #include <asm/tlb.h>
46 #include <asm/mmu_context.h>
47 #include <asm/proto.h>
48 #include <asm/smp.h>
49 #include <asm/sections.h>
50 #include <asm/kdebug.h>
51 #include <asm/numa.h>
52 #include <asm/set_memory.h>
53 #include <asm/init.h>
54 #include <asm/uv/uv.h>
55 #include <asm/setup.h>
56 
57 #include "mm_internal.h"
58 
59 #include "ident_map.c"
60 
61 /*
62  * NOTE: pagetable_init alloc all the fixmap pagetables contiguous on the
63  * physical space so we can cache the place of the first one and move
64  * around without checking the pgd every time.
65  */
66 
67 /* Bits supported by the hardware: */
68 pteval_t __supported_pte_mask __read_mostly = ~0;
69 /* Bits allowed in normal kernel mappings: */
70 pteval_t __default_kernel_pte_mask __read_mostly = ~0;
71 EXPORT_SYMBOL_GPL(__supported_pte_mask);
72 /* Used in PAGE_KERNEL_* macros which are reasonably used out-of-tree: */
73 EXPORT_SYMBOL(__default_kernel_pte_mask);
74 
75 int force_personality32;
76 
77 /*
78  * noexec32=on|off
79  * Control non executable heap for 32bit processes.
80  * To control the stack too use noexec=off
81  *
82  * on	PROT_READ does not imply PROT_EXEC for 32-bit processes (default)
83  * off	PROT_READ implies PROT_EXEC
84  */
85 static int __init nonx32_setup(char *str)
86 {
87 	if (!strcmp(str, "on"))
88 		force_personality32 &= ~READ_IMPLIES_EXEC;
89 	else if (!strcmp(str, "off"))
90 		force_personality32 |= READ_IMPLIES_EXEC;
91 	return 1;
92 }
93 __setup("noexec32=", nonx32_setup);
94 
95 static void sync_global_pgds_l5(unsigned long start, unsigned long end)
96 {
97 	unsigned long addr;
98 
99 	for (addr = start; addr <= end; addr = ALIGN(addr + 1, PGDIR_SIZE)) {
100 		const pgd_t *pgd_ref = pgd_offset_k(addr);
101 		struct page *page;
102 
103 		/* Check for overflow */
104 		if (addr < start)
105 			break;
106 
107 		if (pgd_none(*pgd_ref))
108 			continue;
109 
110 		spin_lock(&pgd_lock);
111 		list_for_each_entry(page, &pgd_list, lru) {
112 			pgd_t *pgd;
113 			spinlock_t *pgt_lock;
114 
115 			pgd = (pgd_t *)page_address(page) + pgd_index(addr);
116 			/* the pgt_lock only for Xen */
117 			pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
118 			spin_lock(pgt_lock);
119 
120 			if (!pgd_none(*pgd_ref) && !pgd_none(*pgd))
121 				BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref));
122 
123 			if (pgd_none(*pgd))
124 				set_pgd(pgd, *pgd_ref);
125 
126 			spin_unlock(pgt_lock);
127 		}
128 		spin_unlock(&pgd_lock);
129 	}
130 }
131 
132 static void sync_global_pgds_l4(unsigned long start, unsigned long end)
133 {
134 	unsigned long addr;
135 
136 	for (addr = start; addr <= end; addr = ALIGN(addr + 1, PGDIR_SIZE)) {
137 		pgd_t *pgd_ref = pgd_offset_k(addr);
138 		const p4d_t *p4d_ref;
139 		struct page *page;
140 
141 		/*
142 		 * With folded p4d, pgd_none() is always false, we need to
143 		 * handle synchonization on p4d level.
144 		 */
145 		MAYBE_BUILD_BUG_ON(pgd_none(*pgd_ref));
146 		p4d_ref = p4d_offset(pgd_ref, addr);
147 
148 		if (p4d_none(*p4d_ref))
149 			continue;
150 
151 		spin_lock(&pgd_lock);
152 		list_for_each_entry(page, &pgd_list, lru) {
153 			pgd_t *pgd;
154 			p4d_t *p4d;
155 			spinlock_t *pgt_lock;
156 
157 			pgd = (pgd_t *)page_address(page) + pgd_index(addr);
158 			p4d = p4d_offset(pgd, addr);
159 			/* the pgt_lock only for Xen */
160 			pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
161 			spin_lock(pgt_lock);
162 
163 			if (!p4d_none(*p4d_ref) && !p4d_none(*p4d))
164 				BUG_ON(p4d_page_vaddr(*p4d)
165 				       != p4d_page_vaddr(*p4d_ref));
166 
167 			if (p4d_none(*p4d))
168 				set_p4d(p4d, *p4d_ref);
169 
170 			spin_unlock(pgt_lock);
171 		}
172 		spin_unlock(&pgd_lock);
173 	}
174 }
175 
176 /*
177  * When memory was added make sure all the processes MM have
178  * suitable PGD entries in the local PGD level page.
179  */
180 void sync_global_pgds(unsigned long start, unsigned long end)
181 {
182 	if (pgtable_l5_enabled())
183 		sync_global_pgds_l5(start, end);
184 	else
185 		sync_global_pgds_l4(start, end);
186 }
187 
188 /*
189  * NOTE: This function is marked __ref because it calls __init function
190  * (alloc_bootmem_pages). It's safe to do it ONLY when after_bootmem == 0.
191  */
192 static __ref void *spp_getpage(void)
193 {
194 	void *ptr;
195 
196 	if (after_bootmem)
197 		ptr = (void *) get_zeroed_page(GFP_ATOMIC);
198 	else
199 		ptr = memblock_alloc(PAGE_SIZE, PAGE_SIZE);
200 
201 	if (!ptr || ((unsigned long)ptr & ~PAGE_MASK)) {
202 		panic("set_pte_phys: cannot allocate page data %s\n",
203 			after_bootmem ? "after bootmem" : "");
204 	}
205 
206 	pr_debug("spp_getpage %p\n", ptr);
207 
208 	return ptr;
209 }
210 
211 static p4d_t *fill_p4d(pgd_t *pgd, unsigned long vaddr)
212 {
213 	if (pgd_none(*pgd)) {
214 		p4d_t *p4d = (p4d_t *)spp_getpage();
215 		pgd_populate(&init_mm, pgd, p4d);
216 		if (p4d != p4d_offset(pgd, 0))
217 			printk(KERN_ERR "PAGETABLE BUG #00! %p <-> %p\n",
218 			       p4d, p4d_offset(pgd, 0));
219 	}
220 	return p4d_offset(pgd, vaddr);
221 }
222 
223 static pud_t *fill_pud(p4d_t *p4d, unsigned long vaddr)
224 {
225 	if (p4d_none(*p4d)) {
226 		pud_t *pud = (pud_t *)spp_getpage();
227 		p4d_populate(&init_mm, p4d, pud);
228 		if (pud != pud_offset(p4d, 0))
229 			printk(KERN_ERR "PAGETABLE BUG #01! %p <-> %p\n",
230 			       pud, pud_offset(p4d, 0));
231 	}
232 	return pud_offset(p4d, vaddr);
233 }
234 
235 static pmd_t *fill_pmd(pud_t *pud, unsigned long vaddr)
236 {
237 	if (pud_none(*pud)) {
238 		pmd_t *pmd = (pmd_t *) spp_getpage();
239 		pud_populate(&init_mm, pud, pmd);
240 		if (pmd != pmd_offset(pud, 0))
241 			printk(KERN_ERR "PAGETABLE BUG #02! %p <-> %p\n",
242 			       pmd, pmd_offset(pud, 0));
243 	}
244 	return pmd_offset(pud, vaddr);
245 }
246 
247 static pte_t *fill_pte(pmd_t *pmd, unsigned long vaddr)
248 {
249 	if (pmd_none(*pmd)) {
250 		pte_t *pte = (pte_t *) spp_getpage();
251 		pmd_populate_kernel(&init_mm, pmd, pte);
252 		if (pte != pte_offset_kernel(pmd, 0))
253 			printk(KERN_ERR "PAGETABLE BUG #03!\n");
254 	}
255 	return pte_offset_kernel(pmd, vaddr);
256 }
257 
258 static void __set_pte_vaddr(pud_t *pud, unsigned long vaddr, pte_t new_pte)
259 {
260 	pmd_t *pmd = fill_pmd(pud, vaddr);
261 	pte_t *pte = fill_pte(pmd, vaddr);
262 
263 	set_pte(pte, new_pte);
264 
265 	/*
266 	 * It's enough to flush this one mapping.
267 	 * (PGE mappings get flushed as well)
268 	 */
269 	__flush_tlb_one_kernel(vaddr);
270 }
271 
272 void set_pte_vaddr_p4d(p4d_t *p4d_page, unsigned long vaddr, pte_t new_pte)
273 {
274 	p4d_t *p4d = p4d_page + p4d_index(vaddr);
275 	pud_t *pud = fill_pud(p4d, vaddr);
276 
277 	__set_pte_vaddr(pud, vaddr, new_pte);
278 }
279 
280 void set_pte_vaddr_pud(pud_t *pud_page, unsigned long vaddr, pte_t new_pte)
281 {
282 	pud_t *pud = pud_page + pud_index(vaddr);
283 
284 	__set_pte_vaddr(pud, vaddr, new_pte);
285 }
286 
287 void set_pte_vaddr(unsigned long vaddr, pte_t pteval)
288 {
289 	pgd_t *pgd;
290 	p4d_t *p4d_page;
291 
292 	pr_debug("set_pte_vaddr %lx to %lx\n", vaddr, native_pte_val(pteval));
293 
294 	pgd = pgd_offset_k(vaddr);
295 	if (pgd_none(*pgd)) {
296 		printk(KERN_ERR
297 			"PGD FIXMAP MISSING, it should be setup in head.S!\n");
298 		return;
299 	}
300 
301 	p4d_page = p4d_offset(pgd, 0);
302 	set_pte_vaddr_p4d(p4d_page, vaddr, pteval);
303 }
304 
305 pmd_t * __init populate_extra_pmd(unsigned long vaddr)
306 {
307 	pgd_t *pgd;
308 	p4d_t *p4d;
309 	pud_t *pud;
310 
311 	pgd = pgd_offset_k(vaddr);
312 	p4d = fill_p4d(pgd, vaddr);
313 	pud = fill_pud(p4d, vaddr);
314 	return fill_pmd(pud, vaddr);
315 }
316 
317 pte_t * __init populate_extra_pte(unsigned long vaddr)
318 {
319 	pmd_t *pmd;
320 
321 	pmd = populate_extra_pmd(vaddr);
322 	return fill_pte(pmd, vaddr);
323 }
324 
325 /*
326  * Create large page table mappings for a range of physical addresses.
327  */
328 static void __init __init_extra_mapping(unsigned long phys, unsigned long size,
329 					enum page_cache_mode cache)
330 {
331 	pgd_t *pgd;
332 	p4d_t *p4d;
333 	pud_t *pud;
334 	pmd_t *pmd;
335 	pgprot_t prot;
336 
337 	pgprot_val(prot) = pgprot_val(PAGE_KERNEL_LARGE) |
338 		pgprot_val(pgprot_4k_2_large(cachemode2pgprot(cache)));
339 	BUG_ON((phys & ~PMD_MASK) || (size & ~PMD_MASK));
340 	for (; size; phys += PMD_SIZE, size -= PMD_SIZE) {
341 		pgd = pgd_offset_k((unsigned long)__va(phys));
342 		if (pgd_none(*pgd)) {
343 			p4d = (p4d_t *) spp_getpage();
344 			set_pgd(pgd, __pgd(__pa(p4d) | _KERNPG_TABLE |
345 						_PAGE_USER));
346 		}
347 		p4d = p4d_offset(pgd, (unsigned long)__va(phys));
348 		if (p4d_none(*p4d)) {
349 			pud = (pud_t *) spp_getpage();
350 			set_p4d(p4d, __p4d(__pa(pud) | _KERNPG_TABLE |
351 						_PAGE_USER));
352 		}
353 		pud = pud_offset(p4d, (unsigned long)__va(phys));
354 		if (pud_none(*pud)) {
355 			pmd = (pmd_t *) spp_getpage();
356 			set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE |
357 						_PAGE_USER));
358 		}
359 		pmd = pmd_offset(pud, phys);
360 		BUG_ON(!pmd_none(*pmd));
361 		set_pmd(pmd, __pmd(phys | pgprot_val(prot)));
362 	}
363 }
364 
365 void __init init_extra_mapping_wb(unsigned long phys, unsigned long size)
366 {
367 	__init_extra_mapping(phys, size, _PAGE_CACHE_MODE_WB);
368 }
369 
370 void __init init_extra_mapping_uc(unsigned long phys, unsigned long size)
371 {
372 	__init_extra_mapping(phys, size, _PAGE_CACHE_MODE_UC);
373 }
374 
375 /*
376  * The head.S code sets up the kernel high mapping:
377  *
378  *   from __START_KERNEL_map to __START_KERNEL_map + size (== _end-_text)
379  *
380  * phys_base holds the negative offset to the kernel, which is added
381  * to the compile time generated pmds. This results in invalid pmds up
382  * to the point where we hit the physaddr 0 mapping.
383  *
384  * We limit the mappings to the region from _text to _brk_end.  _brk_end
385  * is rounded up to the 2MB boundary. This catches the invalid pmds as
386  * well, as they are located before _text:
387  */
388 void __init cleanup_highmap(void)
389 {
390 	unsigned long vaddr = __START_KERNEL_map;
391 	unsigned long vaddr_end = __START_KERNEL_map + KERNEL_IMAGE_SIZE;
392 	unsigned long end = roundup((unsigned long)_brk_end, PMD_SIZE) - 1;
393 	pmd_t *pmd = level2_kernel_pgt;
394 
395 	/*
396 	 * Native path, max_pfn_mapped is not set yet.
397 	 * Xen has valid max_pfn_mapped set in
398 	 *	arch/x86/xen/mmu.c:xen_setup_kernel_pagetable().
399 	 */
400 	if (max_pfn_mapped)
401 		vaddr_end = __START_KERNEL_map + (max_pfn_mapped << PAGE_SHIFT);
402 
403 	for (; vaddr + PMD_SIZE - 1 < vaddr_end; pmd++, vaddr += PMD_SIZE) {
404 		if (pmd_none(*pmd))
405 			continue;
406 		if (vaddr < (unsigned long) _text || vaddr > end)
407 			set_pmd(pmd, __pmd(0));
408 	}
409 }
410 
411 /*
412  * Create PTE level page table mapping for physical addresses.
413  * It returns the last physical address mapped.
414  */
415 static unsigned long __meminit
416 phys_pte_init(pte_t *pte_page, unsigned long paddr, unsigned long paddr_end,
417 	      pgprot_t prot)
418 {
419 	unsigned long pages = 0, paddr_next;
420 	unsigned long paddr_last = paddr_end;
421 	pte_t *pte;
422 	int i;
423 
424 	pte = pte_page + pte_index(paddr);
425 	i = pte_index(paddr);
426 
427 	for (; i < PTRS_PER_PTE; i++, paddr = paddr_next, pte++) {
428 		paddr_next = (paddr & PAGE_MASK) + PAGE_SIZE;
429 		if (paddr >= paddr_end) {
430 			if (!after_bootmem &&
431 			    !e820__mapped_any(paddr & PAGE_MASK, paddr_next,
432 					     E820_TYPE_RAM) &&
433 			    !e820__mapped_any(paddr & PAGE_MASK, paddr_next,
434 					     E820_TYPE_RESERVED_KERN))
435 				set_pte_safe(pte, __pte(0));
436 			continue;
437 		}
438 
439 		/*
440 		 * We will re-use the existing mapping.
441 		 * Xen for example has some special requirements, like mapping
442 		 * pagetable pages as RO. So assume someone who pre-setup
443 		 * these mappings are more intelligent.
444 		 */
445 		if (!pte_none(*pte)) {
446 			if (!after_bootmem)
447 				pages++;
448 			continue;
449 		}
450 
451 		if (0)
452 			pr_info("   pte=%p addr=%lx pte=%016lx\n", pte, paddr,
453 				pfn_pte(paddr >> PAGE_SHIFT, PAGE_KERNEL).pte);
454 		pages++;
455 		set_pte_safe(pte, pfn_pte(paddr >> PAGE_SHIFT, prot));
456 		paddr_last = (paddr & PAGE_MASK) + PAGE_SIZE;
457 	}
458 
459 	update_page_count(PG_LEVEL_4K, pages);
460 
461 	return paddr_last;
462 }
463 
464 /*
465  * Create PMD level page table mapping for physical addresses. The virtual
466  * and physical address have to be aligned at this level.
467  * It returns the last physical address mapped.
468  */
469 static unsigned long __meminit
470 phys_pmd_init(pmd_t *pmd_page, unsigned long paddr, unsigned long paddr_end,
471 	      unsigned long page_size_mask, pgprot_t prot)
472 {
473 	unsigned long pages = 0, paddr_next;
474 	unsigned long paddr_last = paddr_end;
475 
476 	int i = pmd_index(paddr);
477 
478 	for (; i < PTRS_PER_PMD; i++, paddr = paddr_next) {
479 		pmd_t *pmd = pmd_page + pmd_index(paddr);
480 		pte_t *pte;
481 		pgprot_t new_prot = prot;
482 
483 		paddr_next = (paddr & PMD_MASK) + PMD_SIZE;
484 		if (paddr >= paddr_end) {
485 			if (!after_bootmem &&
486 			    !e820__mapped_any(paddr & PMD_MASK, paddr_next,
487 					     E820_TYPE_RAM) &&
488 			    !e820__mapped_any(paddr & PMD_MASK, paddr_next,
489 					     E820_TYPE_RESERVED_KERN))
490 				set_pmd_safe(pmd, __pmd(0));
491 			continue;
492 		}
493 
494 		if (!pmd_none(*pmd)) {
495 			if (!pmd_large(*pmd)) {
496 				spin_lock(&init_mm.page_table_lock);
497 				pte = (pte_t *)pmd_page_vaddr(*pmd);
498 				paddr_last = phys_pte_init(pte, paddr,
499 							   paddr_end, prot);
500 				spin_unlock(&init_mm.page_table_lock);
501 				continue;
502 			}
503 			/*
504 			 * If we are ok with PG_LEVEL_2M mapping, then we will
505 			 * use the existing mapping,
506 			 *
507 			 * Otherwise, we will split the large page mapping but
508 			 * use the same existing protection bits except for
509 			 * large page, so that we don't violate Intel's TLB
510 			 * Application note (317080) which says, while changing
511 			 * the page sizes, new and old translations should
512 			 * not differ with respect to page frame and
513 			 * attributes.
514 			 */
515 			if (page_size_mask & (1 << PG_LEVEL_2M)) {
516 				if (!after_bootmem)
517 					pages++;
518 				paddr_last = paddr_next;
519 				continue;
520 			}
521 			new_prot = pte_pgprot(pte_clrhuge(*(pte_t *)pmd));
522 		}
523 
524 		if (page_size_mask & (1<<PG_LEVEL_2M)) {
525 			pages++;
526 			spin_lock(&init_mm.page_table_lock);
527 			set_pte_safe((pte_t *)pmd,
528 				pfn_pte((paddr & PMD_MASK) >> PAGE_SHIFT,
529 					__pgprot(pgprot_val(prot) | _PAGE_PSE)));
530 			spin_unlock(&init_mm.page_table_lock);
531 			paddr_last = paddr_next;
532 			continue;
533 		}
534 
535 		pte = alloc_low_page();
536 		paddr_last = phys_pte_init(pte, paddr, paddr_end, new_prot);
537 
538 		spin_lock(&init_mm.page_table_lock);
539 		pmd_populate_kernel_safe(&init_mm, pmd, pte);
540 		spin_unlock(&init_mm.page_table_lock);
541 	}
542 	update_page_count(PG_LEVEL_2M, pages);
543 	return paddr_last;
544 }
545 
546 /*
547  * Create PUD level page table mapping for physical addresses. The virtual
548  * and physical address do not have to be aligned at this level. KASLR can
549  * randomize virtual addresses up to this level.
550  * It returns the last physical address mapped.
551  */
552 static unsigned long __meminit
553 phys_pud_init(pud_t *pud_page, unsigned long paddr, unsigned long paddr_end,
554 	      unsigned long page_size_mask)
555 {
556 	unsigned long pages = 0, paddr_next;
557 	unsigned long paddr_last = paddr_end;
558 	unsigned long vaddr = (unsigned long)__va(paddr);
559 	int i = pud_index(vaddr);
560 
561 	for (; i < PTRS_PER_PUD; i++, paddr = paddr_next) {
562 		pud_t *pud;
563 		pmd_t *pmd;
564 		pgprot_t prot = PAGE_KERNEL;
565 
566 		vaddr = (unsigned long)__va(paddr);
567 		pud = pud_page + pud_index(vaddr);
568 		paddr_next = (paddr & PUD_MASK) + PUD_SIZE;
569 
570 		if (paddr >= paddr_end) {
571 			if (!after_bootmem &&
572 			    !e820__mapped_any(paddr & PUD_MASK, paddr_next,
573 					     E820_TYPE_RAM) &&
574 			    !e820__mapped_any(paddr & PUD_MASK, paddr_next,
575 					     E820_TYPE_RESERVED_KERN))
576 				set_pud_safe(pud, __pud(0));
577 			continue;
578 		}
579 
580 		if (!pud_none(*pud)) {
581 			if (!pud_large(*pud)) {
582 				pmd = pmd_offset(pud, 0);
583 				paddr_last = phys_pmd_init(pmd, paddr,
584 							   paddr_end,
585 							   page_size_mask,
586 							   prot);
587 				continue;
588 			}
589 			/*
590 			 * If we are ok with PG_LEVEL_1G mapping, then we will
591 			 * use the existing mapping.
592 			 *
593 			 * Otherwise, we will split the gbpage mapping but use
594 			 * the same existing protection  bits except for large
595 			 * page, so that we don't violate Intel's TLB
596 			 * Application note (317080) which says, while changing
597 			 * the page sizes, new and old translations should
598 			 * not differ with respect to page frame and
599 			 * attributes.
600 			 */
601 			if (page_size_mask & (1 << PG_LEVEL_1G)) {
602 				if (!after_bootmem)
603 					pages++;
604 				paddr_last = paddr_next;
605 				continue;
606 			}
607 			prot = pte_pgprot(pte_clrhuge(*(pte_t *)pud));
608 		}
609 
610 		if (page_size_mask & (1<<PG_LEVEL_1G)) {
611 			pages++;
612 			spin_lock(&init_mm.page_table_lock);
613 			set_pte_safe((pte_t *)pud,
614 				pfn_pte((paddr & PUD_MASK) >> PAGE_SHIFT,
615 					PAGE_KERNEL_LARGE));
616 			spin_unlock(&init_mm.page_table_lock);
617 			paddr_last = paddr_next;
618 			continue;
619 		}
620 
621 		pmd = alloc_low_page();
622 		paddr_last = phys_pmd_init(pmd, paddr, paddr_end,
623 					   page_size_mask, prot);
624 
625 		spin_lock(&init_mm.page_table_lock);
626 		pud_populate_safe(&init_mm, pud, pmd);
627 		spin_unlock(&init_mm.page_table_lock);
628 	}
629 
630 	update_page_count(PG_LEVEL_1G, pages);
631 
632 	return paddr_last;
633 }
634 
635 static unsigned long __meminit
636 phys_p4d_init(p4d_t *p4d_page, unsigned long paddr, unsigned long paddr_end,
637 	      unsigned long page_size_mask)
638 {
639 	unsigned long paddr_next, paddr_last = paddr_end;
640 	unsigned long vaddr = (unsigned long)__va(paddr);
641 	int i = p4d_index(vaddr);
642 
643 	if (!pgtable_l5_enabled())
644 		return phys_pud_init((pud_t *) p4d_page, paddr, paddr_end, page_size_mask);
645 
646 	for (; i < PTRS_PER_P4D; i++, paddr = paddr_next) {
647 		p4d_t *p4d;
648 		pud_t *pud;
649 
650 		vaddr = (unsigned long)__va(paddr);
651 		p4d = p4d_page + p4d_index(vaddr);
652 		paddr_next = (paddr & P4D_MASK) + P4D_SIZE;
653 
654 		if (paddr >= paddr_end) {
655 			if (!after_bootmem &&
656 			    !e820__mapped_any(paddr & P4D_MASK, paddr_next,
657 					     E820_TYPE_RAM) &&
658 			    !e820__mapped_any(paddr & P4D_MASK, paddr_next,
659 					     E820_TYPE_RESERVED_KERN))
660 				set_p4d_safe(p4d, __p4d(0));
661 			continue;
662 		}
663 
664 		if (!p4d_none(*p4d)) {
665 			pud = pud_offset(p4d, 0);
666 			paddr_last = phys_pud_init(pud, paddr,
667 					paddr_end,
668 					page_size_mask);
669 			continue;
670 		}
671 
672 		pud = alloc_low_page();
673 		paddr_last = phys_pud_init(pud, paddr, paddr_end,
674 					   page_size_mask);
675 
676 		spin_lock(&init_mm.page_table_lock);
677 		p4d_populate_safe(&init_mm, p4d, pud);
678 		spin_unlock(&init_mm.page_table_lock);
679 	}
680 
681 	return paddr_last;
682 }
683 
684 /*
685  * Create page table mapping for the physical memory for specific physical
686  * addresses. The virtual and physical addresses have to be aligned on PMD level
687  * down. It returns the last physical address mapped.
688  */
689 unsigned long __meminit
690 kernel_physical_mapping_init(unsigned long paddr_start,
691 			     unsigned long paddr_end,
692 			     unsigned long page_size_mask)
693 {
694 	bool pgd_changed = false;
695 	unsigned long vaddr, vaddr_start, vaddr_end, vaddr_next, paddr_last;
696 
697 	paddr_last = paddr_end;
698 	vaddr = (unsigned long)__va(paddr_start);
699 	vaddr_end = (unsigned long)__va(paddr_end);
700 	vaddr_start = vaddr;
701 
702 	for (; vaddr < vaddr_end; vaddr = vaddr_next) {
703 		pgd_t *pgd = pgd_offset_k(vaddr);
704 		p4d_t *p4d;
705 
706 		vaddr_next = (vaddr & PGDIR_MASK) + PGDIR_SIZE;
707 
708 		if (pgd_val(*pgd)) {
709 			p4d = (p4d_t *)pgd_page_vaddr(*pgd);
710 			paddr_last = phys_p4d_init(p4d, __pa(vaddr),
711 						   __pa(vaddr_end),
712 						   page_size_mask);
713 			continue;
714 		}
715 
716 		p4d = alloc_low_page();
717 		paddr_last = phys_p4d_init(p4d, __pa(vaddr), __pa(vaddr_end),
718 					   page_size_mask);
719 
720 		spin_lock(&init_mm.page_table_lock);
721 		if (pgtable_l5_enabled())
722 			pgd_populate_safe(&init_mm, pgd, p4d);
723 		else
724 			p4d_populate_safe(&init_mm, p4d_offset(pgd, vaddr), (pud_t *) p4d);
725 		spin_unlock(&init_mm.page_table_lock);
726 		pgd_changed = true;
727 	}
728 
729 	if (pgd_changed)
730 		sync_global_pgds(vaddr_start, vaddr_end - 1);
731 
732 	return paddr_last;
733 }
734 
735 #ifndef CONFIG_NUMA
736 void __init initmem_init(void)
737 {
738 	memblock_set_node(0, PHYS_ADDR_MAX, &memblock.memory, 0);
739 }
740 #endif
741 
742 void __init paging_init(void)
743 {
744 	sparse_memory_present_with_active_regions(MAX_NUMNODES);
745 	sparse_init();
746 
747 	/*
748 	 * clear the default setting with node 0
749 	 * note: don't use nodes_clear here, that is really clearing when
750 	 *	 numa support is not compiled in, and later node_set_state
751 	 *	 will not set it back.
752 	 */
753 	node_clear_state(0, N_MEMORY);
754 	if (N_MEMORY != N_NORMAL_MEMORY)
755 		node_clear_state(0, N_NORMAL_MEMORY);
756 
757 	zone_sizes_init();
758 }
759 
760 /*
761  * Memory hotplug specific functions
762  */
763 #ifdef CONFIG_MEMORY_HOTPLUG
764 /*
765  * After memory hotplug the variables max_pfn, max_low_pfn and high_memory need
766  * updating.
767  */
768 static void update_end_of_memory_vars(u64 start, u64 size)
769 {
770 	unsigned long end_pfn = PFN_UP(start + size);
771 
772 	if (end_pfn > max_pfn) {
773 		max_pfn = end_pfn;
774 		max_low_pfn = end_pfn;
775 		high_memory = (void *)__va(max_pfn * PAGE_SIZE - 1) + 1;
776 	}
777 }
778 
779 int add_pages(int nid, unsigned long start_pfn, unsigned long nr_pages,
780 		struct vmem_altmap *altmap, bool want_memblock)
781 {
782 	int ret;
783 
784 	ret = __add_pages(nid, start_pfn, nr_pages, altmap, want_memblock);
785 	WARN_ON_ONCE(ret);
786 
787 	/* update max_pfn, max_low_pfn and high_memory */
788 	update_end_of_memory_vars(start_pfn << PAGE_SHIFT,
789 				  nr_pages << PAGE_SHIFT);
790 
791 	return ret;
792 }
793 
794 int arch_add_memory(int nid, u64 start, u64 size, struct vmem_altmap *altmap,
795 		bool want_memblock)
796 {
797 	unsigned long start_pfn = start >> PAGE_SHIFT;
798 	unsigned long nr_pages = size >> PAGE_SHIFT;
799 
800 	init_memory_mapping(start, start + size);
801 
802 	return add_pages(nid, start_pfn, nr_pages, altmap, want_memblock);
803 }
804 
805 #define PAGE_INUSE 0xFD
806 
807 static void __meminit free_pagetable(struct page *page, int order)
808 {
809 	unsigned long magic;
810 	unsigned int nr_pages = 1 << order;
811 
812 	/* bootmem page has reserved flag */
813 	if (PageReserved(page)) {
814 		__ClearPageReserved(page);
815 
816 		magic = (unsigned long)page->freelist;
817 		if (magic == SECTION_INFO || magic == MIX_SECTION_INFO) {
818 			while (nr_pages--)
819 				put_page_bootmem(page++);
820 		} else
821 			while (nr_pages--)
822 				free_reserved_page(page++);
823 	} else
824 		free_pages((unsigned long)page_address(page), order);
825 }
826 
827 static void __meminit free_hugepage_table(struct page *page,
828 		struct vmem_altmap *altmap)
829 {
830 	if (altmap)
831 		vmem_altmap_free(altmap, PMD_SIZE / PAGE_SIZE);
832 	else
833 		free_pagetable(page, get_order(PMD_SIZE));
834 }
835 
836 static void __meminit free_pte_table(pte_t *pte_start, pmd_t *pmd)
837 {
838 	pte_t *pte;
839 	int i;
840 
841 	for (i = 0; i < PTRS_PER_PTE; i++) {
842 		pte = pte_start + i;
843 		if (!pte_none(*pte))
844 			return;
845 	}
846 
847 	/* free a pte talbe */
848 	free_pagetable(pmd_page(*pmd), 0);
849 	spin_lock(&init_mm.page_table_lock);
850 	pmd_clear(pmd);
851 	spin_unlock(&init_mm.page_table_lock);
852 }
853 
854 static void __meminit free_pmd_table(pmd_t *pmd_start, pud_t *pud)
855 {
856 	pmd_t *pmd;
857 	int i;
858 
859 	for (i = 0; i < PTRS_PER_PMD; i++) {
860 		pmd = pmd_start + i;
861 		if (!pmd_none(*pmd))
862 			return;
863 	}
864 
865 	/* free a pmd talbe */
866 	free_pagetable(pud_page(*pud), 0);
867 	spin_lock(&init_mm.page_table_lock);
868 	pud_clear(pud);
869 	spin_unlock(&init_mm.page_table_lock);
870 }
871 
872 static void __meminit free_pud_table(pud_t *pud_start, p4d_t *p4d)
873 {
874 	pud_t *pud;
875 	int i;
876 
877 	for (i = 0; i < PTRS_PER_PUD; i++) {
878 		pud = pud_start + i;
879 		if (!pud_none(*pud))
880 			return;
881 	}
882 
883 	/* free a pud talbe */
884 	free_pagetable(p4d_page(*p4d), 0);
885 	spin_lock(&init_mm.page_table_lock);
886 	p4d_clear(p4d);
887 	spin_unlock(&init_mm.page_table_lock);
888 }
889 
890 static void __meminit
891 remove_pte_table(pte_t *pte_start, unsigned long addr, unsigned long end,
892 		 bool direct)
893 {
894 	unsigned long next, pages = 0;
895 	pte_t *pte;
896 	void *page_addr;
897 	phys_addr_t phys_addr;
898 
899 	pte = pte_start + pte_index(addr);
900 	for (; addr < end; addr = next, pte++) {
901 		next = (addr + PAGE_SIZE) & PAGE_MASK;
902 		if (next > end)
903 			next = end;
904 
905 		if (!pte_present(*pte))
906 			continue;
907 
908 		/*
909 		 * We mapped [0,1G) memory as identity mapping when
910 		 * initializing, in arch/x86/kernel/head_64.S. These
911 		 * pagetables cannot be removed.
912 		 */
913 		phys_addr = pte_val(*pte) + (addr & PAGE_MASK);
914 		if (phys_addr < (phys_addr_t)0x40000000)
915 			return;
916 
917 		if (PAGE_ALIGNED(addr) && PAGE_ALIGNED(next)) {
918 			/*
919 			 * Do not free direct mapping pages since they were
920 			 * freed when offlining, or simplely not in use.
921 			 */
922 			if (!direct)
923 				free_pagetable(pte_page(*pte), 0);
924 
925 			spin_lock(&init_mm.page_table_lock);
926 			pte_clear(&init_mm, addr, pte);
927 			spin_unlock(&init_mm.page_table_lock);
928 
929 			/* For non-direct mapping, pages means nothing. */
930 			pages++;
931 		} else {
932 			/*
933 			 * If we are here, we are freeing vmemmap pages since
934 			 * direct mapped memory ranges to be freed are aligned.
935 			 *
936 			 * If we are not removing the whole page, it means
937 			 * other page structs in this page are being used and
938 			 * we canot remove them. So fill the unused page_structs
939 			 * with 0xFD, and remove the page when it is wholly
940 			 * filled with 0xFD.
941 			 */
942 			memset((void *)addr, PAGE_INUSE, next - addr);
943 
944 			page_addr = page_address(pte_page(*pte));
945 			if (!memchr_inv(page_addr, PAGE_INUSE, PAGE_SIZE)) {
946 				free_pagetable(pte_page(*pte), 0);
947 
948 				spin_lock(&init_mm.page_table_lock);
949 				pte_clear(&init_mm, addr, pte);
950 				spin_unlock(&init_mm.page_table_lock);
951 			}
952 		}
953 	}
954 
955 	/* Call free_pte_table() in remove_pmd_table(). */
956 	flush_tlb_all();
957 	if (direct)
958 		update_page_count(PG_LEVEL_4K, -pages);
959 }
960 
961 static void __meminit
962 remove_pmd_table(pmd_t *pmd_start, unsigned long addr, unsigned long end,
963 		 bool direct, struct vmem_altmap *altmap)
964 {
965 	unsigned long next, pages = 0;
966 	pte_t *pte_base;
967 	pmd_t *pmd;
968 	void *page_addr;
969 
970 	pmd = pmd_start + pmd_index(addr);
971 	for (; addr < end; addr = next, pmd++) {
972 		next = pmd_addr_end(addr, end);
973 
974 		if (!pmd_present(*pmd))
975 			continue;
976 
977 		if (pmd_large(*pmd)) {
978 			if (IS_ALIGNED(addr, PMD_SIZE) &&
979 			    IS_ALIGNED(next, PMD_SIZE)) {
980 				if (!direct)
981 					free_hugepage_table(pmd_page(*pmd),
982 							    altmap);
983 
984 				spin_lock(&init_mm.page_table_lock);
985 				pmd_clear(pmd);
986 				spin_unlock(&init_mm.page_table_lock);
987 				pages++;
988 			} else {
989 				/* If here, we are freeing vmemmap pages. */
990 				memset((void *)addr, PAGE_INUSE, next - addr);
991 
992 				page_addr = page_address(pmd_page(*pmd));
993 				if (!memchr_inv(page_addr, PAGE_INUSE,
994 						PMD_SIZE)) {
995 					free_hugepage_table(pmd_page(*pmd),
996 							    altmap);
997 
998 					spin_lock(&init_mm.page_table_lock);
999 					pmd_clear(pmd);
1000 					spin_unlock(&init_mm.page_table_lock);
1001 				}
1002 			}
1003 
1004 			continue;
1005 		}
1006 
1007 		pte_base = (pte_t *)pmd_page_vaddr(*pmd);
1008 		remove_pte_table(pte_base, addr, next, direct);
1009 		free_pte_table(pte_base, pmd);
1010 	}
1011 
1012 	/* Call free_pmd_table() in remove_pud_table(). */
1013 	if (direct)
1014 		update_page_count(PG_LEVEL_2M, -pages);
1015 }
1016 
1017 static void __meminit
1018 remove_pud_table(pud_t *pud_start, unsigned long addr, unsigned long end,
1019 		 struct vmem_altmap *altmap, bool direct)
1020 {
1021 	unsigned long next, pages = 0;
1022 	pmd_t *pmd_base;
1023 	pud_t *pud;
1024 	void *page_addr;
1025 
1026 	pud = pud_start + pud_index(addr);
1027 	for (; addr < end; addr = next, pud++) {
1028 		next = pud_addr_end(addr, end);
1029 
1030 		if (!pud_present(*pud))
1031 			continue;
1032 
1033 		if (pud_large(*pud)) {
1034 			if (IS_ALIGNED(addr, PUD_SIZE) &&
1035 			    IS_ALIGNED(next, PUD_SIZE)) {
1036 				if (!direct)
1037 					free_pagetable(pud_page(*pud),
1038 						       get_order(PUD_SIZE));
1039 
1040 				spin_lock(&init_mm.page_table_lock);
1041 				pud_clear(pud);
1042 				spin_unlock(&init_mm.page_table_lock);
1043 				pages++;
1044 			} else {
1045 				/* If here, we are freeing vmemmap pages. */
1046 				memset((void *)addr, PAGE_INUSE, next - addr);
1047 
1048 				page_addr = page_address(pud_page(*pud));
1049 				if (!memchr_inv(page_addr, PAGE_INUSE,
1050 						PUD_SIZE)) {
1051 					free_pagetable(pud_page(*pud),
1052 						       get_order(PUD_SIZE));
1053 
1054 					spin_lock(&init_mm.page_table_lock);
1055 					pud_clear(pud);
1056 					spin_unlock(&init_mm.page_table_lock);
1057 				}
1058 			}
1059 
1060 			continue;
1061 		}
1062 
1063 		pmd_base = pmd_offset(pud, 0);
1064 		remove_pmd_table(pmd_base, addr, next, direct, altmap);
1065 		free_pmd_table(pmd_base, pud);
1066 	}
1067 
1068 	if (direct)
1069 		update_page_count(PG_LEVEL_1G, -pages);
1070 }
1071 
1072 static void __meminit
1073 remove_p4d_table(p4d_t *p4d_start, unsigned long addr, unsigned long end,
1074 		 struct vmem_altmap *altmap, bool direct)
1075 {
1076 	unsigned long next, pages = 0;
1077 	pud_t *pud_base;
1078 	p4d_t *p4d;
1079 
1080 	p4d = p4d_start + p4d_index(addr);
1081 	for (; addr < end; addr = next, p4d++) {
1082 		next = p4d_addr_end(addr, end);
1083 
1084 		if (!p4d_present(*p4d))
1085 			continue;
1086 
1087 		BUILD_BUG_ON(p4d_large(*p4d));
1088 
1089 		pud_base = pud_offset(p4d, 0);
1090 		remove_pud_table(pud_base, addr, next, altmap, direct);
1091 		/*
1092 		 * For 4-level page tables we do not want to free PUDs, but in the
1093 		 * 5-level case we should free them. This code will have to change
1094 		 * to adapt for boot-time switching between 4 and 5 level page tables.
1095 		 */
1096 		if (pgtable_l5_enabled())
1097 			free_pud_table(pud_base, p4d);
1098 	}
1099 
1100 	if (direct)
1101 		update_page_count(PG_LEVEL_512G, -pages);
1102 }
1103 
1104 /* start and end are both virtual address. */
1105 static void __meminit
1106 remove_pagetable(unsigned long start, unsigned long end, bool direct,
1107 		struct vmem_altmap *altmap)
1108 {
1109 	unsigned long next;
1110 	unsigned long addr;
1111 	pgd_t *pgd;
1112 	p4d_t *p4d;
1113 
1114 	for (addr = start; addr < end; addr = next) {
1115 		next = pgd_addr_end(addr, end);
1116 
1117 		pgd = pgd_offset_k(addr);
1118 		if (!pgd_present(*pgd))
1119 			continue;
1120 
1121 		p4d = p4d_offset(pgd, 0);
1122 		remove_p4d_table(p4d, addr, next, altmap, direct);
1123 	}
1124 
1125 	flush_tlb_all();
1126 }
1127 
1128 void __ref vmemmap_free(unsigned long start, unsigned long end,
1129 		struct vmem_altmap *altmap)
1130 {
1131 	remove_pagetable(start, end, false, altmap);
1132 }
1133 
1134 #ifdef CONFIG_MEMORY_HOTREMOVE
1135 static void __meminit
1136 kernel_physical_mapping_remove(unsigned long start, unsigned long end)
1137 {
1138 	start = (unsigned long)__va(start);
1139 	end = (unsigned long)__va(end);
1140 
1141 	remove_pagetable(start, end, true, NULL);
1142 }
1143 
1144 int __ref arch_remove_memory(u64 start, u64 size, struct vmem_altmap *altmap)
1145 {
1146 	unsigned long start_pfn = start >> PAGE_SHIFT;
1147 	unsigned long nr_pages = size >> PAGE_SHIFT;
1148 	struct page *page = pfn_to_page(start_pfn);
1149 	struct zone *zone;
1150 	int ret;
1151 
1152 	/* With altmap the first mapped page is offset from @start */
1153 	if (altmap)
1154 		page += vmem_altmap_offset(altmap);
1155 	zone = page_zone(page);
1156 	ret = __remove_pages(zone, start_pfn, nr_pages, altmap);
1157 	WARN_ON_ONCE(ret);
1158 	kernel_physical_mapping_remove(start, start + size);
1159 
1160 	return ret;
1161 }
1162 #endif
1163 #endif /* CONFIG_MEMORY_HOTPLUG */
1164 
1165 static struct kcore_list kcore_vsyscall;
1166 
1167 static void __init register_page_bootmem_info(void)
1168 {
1169 #ifdef CONFIG_NUMA
1170 	int i;
1171 
1172 	for_each_online_node(i)
1173 		register_page_bootmem_info_node(NODE_DATA(i));
1174 #endif
1175 }
1176 
1177 void __init mem_init(void)
1178 {
1179 	pci_iommu_alloc();
1180 
1181 	/* clear_bss() already clear the empty_zero_page */
1182 
1183 	/* this will put all memory onto the freelists */
1184 	memblock_free_all();
1185 	after_bootmem = 1;
1186 	x86_init.hyper.init_after_bootmem();
1187 
1188 	/*
1189 	 * Must be done after boot memory is put on freelist, because here we
1190 	 * might set fields in deferred struct pages that have not yet been
1191 	 * initialized, and memblock_free_all() initializes all the reserved
1192 	 * deferred pages for us.
1193 	 */
1194 	register_page_bootmem_info();
1195 
1196 	/* Register memory areas for /proc/kcore */
1197 	if (get_gate_vma(&init_mm))
1198 		kclist_add(&kcore_vsyscall, (void *)VSYSCALL_ADDR, PAGE_SIZE, KCORE_USER);
1199 
1200 	mem_init_print_info(NULL);
1201 }
1202 
1203 int kernel_set_to_readonly;
1204 
1205 void set_kernel_text_rw(void)
1206 {
1207 	unsigned long start = PFN_ALIGN(_text);
1208 	unsigned long end = PFN_ALIGN(__stop___ex_table);
1209 
1210 	if (!kernel_set_to_readonly)
1211 		return;
1212 
1213 	pr_debug("Set kernel text: %lx - %lx for read write\n",
1214 		 start, end);
1215 
1216 	/*
1217 	 * Make the kernel identity mapping for text RW. Kernel text
1218 	 * mapping will always be RO. Refer to the comment in
1219 	 * static_protections() in pageattr.c
1220 	 */
1221 	set_memory_rw(start, (end - start) >> PAGE_SHIFT);
1222 }
1223 
1224 void set_kernel_text_ro(void)
1225 {
1226 	unsigned long start = PFN_ALIGN(_text);
1227 	unsigned long end = PFN_ALIGN(__stop___ex_table);
1228 
1229 	if (!kernel_set_to_readonly)
1230 		return;
1231 
1232 	pr_debug("Set kernel text: %lx - %lx for read only\n",
1233 		 start, end);
1234 
1235 	/*
1236 	 * Set the kernel identity mapping for text RO.
1237 	 */
1238 	set_memory_ro(start, (end - start) >> PAGE_SHIFT);
1239 }
1240 
1241 void mark_rodata_ro(void)
1242 {
1243 	unsigned long start = PFN_ALIGN(_text);
1244 	unsigned long rodata_start = PFN_ALIGN(__start_rodata);
1245 	unsigned long end = (unsigned long) &__end_rodata_hpage_align;
1246 	unsigned long text_end = PFN_ALIGN(&__stop___ex_table);
1247 	unsigned long rodata_end = PFN_ALIGN(&__end_rodata);
1248 	unsigned long all_end;
1249 
1250 	printk(KERN_INFO "Write protecting the kernel read-only data: %luk\n",
1251 	       (end - start) >> 10);
1252 	set_memory_ro(start, (end - start) >> PAGE_SHIFT);
1253 
1254 	kernel_set_to_readonly = 1;
1255 
1256 	/*
1257 	 * The rodata/data/bss/brk section (but not the kernel text!)
1258 	 * should also be not-executable.
1259 	 *
1260 	 * We align all_end to PMD_SIZE because the existing mapping
1261 	 * is a full PMD. If we would align _brk_end to PAGE_SIZE we
1262 	 * split the PMD and the reminder between _brk_end and the end
1263 	 * of the PMD will remain mapped executable.
1264 	 *
1265 	 * Any PMD which was setup after the one which covers _brk_end
1266 	 * has been zapped already via cleanup_highmem().
1267 	 */
1268 	all_end = roundup((unsigned long)_brk_end, PMD_SIZE);
1269 	set_memory_nx(text_end, (all_end - text_end) >> PAGE_SHIFT);
1270 
1271 #ifdef CONFIG_CPA_DEBUG
1272 	printk(KERN_INFO "Testing CPA: undo %lx-%lx\n", start, end);
1273 	set_memory_rw(start, (end-start) >> PAGE_SHIFT);
1274 
1275 	printk(KERN_INFO "Testing CPA: again\n");
1276 	set_memory_ro(start, (end-start) >> PAGE_SHIFT);
1277 #endif
1278 
1279 	free_kernel_image_pages((void *)text_end, (void *)rodata_start);
1280 	free_kernel_image_pages((void *)rodata_end, (void *)_sdata);
1281 
1282 	debug_checkwx();
1283 }
1284 
1285 int kern_addr_valid(unsigned long addr)
1286 {
1287 	unsigned long above = ((long)addr) >> __VIRTUAL_MASK_SHIFT;
1288 	pgd_t *pgd;
1289 	p4d_t *p4d;
1290 	pud_t *pud;
1291 	pmd_t *pmd;
1292 	pte_t *pte;
1293 
1294 	if (above != 0 && above != -1UL)
1295 		return 0;
1296 
1297 	pgd = pgd_offset_k(addr);
1298 	if (pgd_none(*pgd))
1299 		return 0;
1300 
1301 	p4d = p4d_offset(pgd, addr);
1302 	if (p4d_none(*p4d))
1303 		return 0;
1304 
1305 	pud = pud_offset(p4d, addr);
1306 	if (pud_none(*pud))
1307 		return 0;
1308 
1309 	if (pud_large(*pud))
1310 		return pfn_valid(pud_pfn(*pud));
1311 
1312 	pmd = pmd_offset(pud, addr);
1313 	if (pmd_none(*pmd))
1314 		return 0;
1315 
1316 	if (pmd_large(*pmd))
1317 		return pfn_valid(pmd_pfn(*pmd));
1318 
1319 	pte = pte_offset_kernel(pmd, addr);
1320 	if (pte_none(*pte))
1321 		return 0;
1322 
1323 	return pfn_valid(pte_pfn(*pte));
1324 }
1325 
1326 /*
1327  * Block size is the minimum amount of memory which can be hotplugged or
1328  * hotremoved. It must be power of two and must be equal or larger than
1329  * MIN_MEMORY_BLOCK_SIZE.
1330  */
1331 #define MAX_BLOCK_SIZE (2UL << 30)
1332 
1333 /* Amount of ram needed to start using large blocks */
1334 #define MEM_SIZE_FOR_LARGE_BLOCK (64UL << 30)
1335 
1336 /* Adjustable memory block size */
1337 static unsigned long set_memory_block_size;
1338 int __init set_memory_block_size_order(unsigned int order)
1339 {
1340 	unsigned long size = 1UL << order;
1341 
1342 	if (size > MEM_SIZE_FOR_LARGE_BLOCK || size < MIN_MEMORY_BLOCK_SIZE)
1343 		return -EINVAL;
1344 
1345 	set_memory_block_size = size;
1346 	return 0;
1347 }
1348 
1349 static unsigned long probe_memory_block_size(void)
1350 {
1351 	unsigned long boot_mem_end = max_pfn << PAGE_SHIFT;
1352 	unsigned long bz;
1353 
1354 	/* If memory block size has been set, then use it */
1355 	bz = set_memory_block_size;
1356 	if (bz)
1357 		goto done;
1358 
1359 	/* Use regular block if RAM is smaller than MEM_SIZE_FOR_LARGE_BLOCK */
1360 	if (boot_mem_end < MEM_SIZE_FOR_LARGE_BLOCK) {
1361 		bz = MIN_MEMORY_BLOCK_SIZE;
1362 		goto done;
1363 	}
1364 
1365 	/* Find the largest allowed block size that aligns to memory end */
1366 	for (bz = MAX_BLOCK_SIZE; bz > MIN_MEMORY_BLOCK_SIZE; bz >>= 1) {
1367 		if (IS_ALIGNED(boot_mem_end, bz))
1368 			break;
1369 	}
1370 done:
1371 	pr_info("x86/mm: Memory block size: %ldMB\n", bz >> 20);
1372 
1373 	return bz;
1374 }
1375 
1376 static unsigned long memory_block_size_probed;
1377 unsigned long memory_block_size_bytes(void)
1378 {
1379 	if (!memory_block_size_probed)
1380 		memory_block_size_probed = probe_memory_block_size();
1381 
1382 	return memory_block_size_probed;
1383 }
1384 
1385 #ifdef CONFIG_SPARSEMEM_VMEMMAP
1386 /*
1387  * Initialise the sparsemem vmemmap using huge-pages at the PMD level.
1388  */
1389 static long __meminitdata addr_start, addr_end;
1390 static void __meminitdata *p_start, *p_end;
1391 static int __meminitdata node_start;
1392 
1393 static int __meminit vmemmap_populate_hugepages(unsigned long start,
1394 		unsigned long end, int node, struct vmem_altmap *altmap)
1395 {
1396 	unsigned long addr;
1397 	unsigned long next;
1398 	pgd_t *pgd;
1399 	p4d_t *p4d;
1400 	pud_t *pud;
1401 	pmd_t *pmd;
1402 
1403 	for (addr = start; addr < end; addr = next) {
1404 		next = pmd_addr_end(addr, end);
1405 
1406 		pgd = vmemmap_pgd_populate(addr, node);
1407 		if (!pgd)
1408 			return -ENOMEM;
1409 
1410 		p4d = vmemmap_p4d_populate(pgd, addr, node);
1411 		if (!p4d)
1412 			return -ENOMEM;
1413 
1414 		pud = vmemmap_pud_populate(p4d, addr, node);
1415 		if (!pud)
1416 			return -ENOMEM;
1417 
1418 		pmd = pmd_offset(pud, addr);
1419 		if (pmd_none(*pmd)) {
1420 			void *p;
1421 
1422 			if (altmap)
1423 				p = altmap_alloc_block_buf(PMD_SIZE, altmap);
1424 			else
1425 				p = vmemmap_alloc_block_buf(PMD_SIZE, node);
1426 			if (p) {
1427 				pte_t entry;
1428 
1429 				entry = pfn_pte(__pa(p) >> PAGE_SHIFT,
1430 						PAGE_KERNEL_LARGE);
1431 				set_pmd(pmd, __pmd(pte_val(entry)));
1432 
1433 				/* check to see if we have contiguous blocks */
1434 				if (p_end != p || node_start != node) {
1435 					if (p_start)
1436 						pr_debug(" [%lx-%lx] PMD -> [%p-%p] on node %d\n",
1437 						       addr_start, addr_end-1, p_start, p_end-1, node_start);
1438 					addr_start = addr;
1439 					node_start = node;
1440 					p_start = p;
1441 				}
1442 
1443 				addr_end = addr + PMD_SIZE;
1444 				p_end = p + PMD_SIZE;
1445 				continue;
1446 			} else if (altmap)
1447 				return -ENOMEM; /* no fallback */
1448 		} else if (pmd_large(*pmd)) {
1449 			vmemmap_verify((pte_t *)pmd, node, addr, next);
1450 			continue;
1451 		}
1452 		if (vmemmap_populate_basepages(addr, next, node))
1453 			return -ENOMEM;
1454 	}
1455 	return 0;
1456 }
1457 
1458 int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node,
1459 		struct vmem_altmap *altmap)
1460 {
1461 	int err;
1462 
1463 	if (boot_cpu_has(X86_FEATURE_PSE))
1464 		err = vmemmap_populate_hugepages(start, end, node, altmap);
1465 	else if (altmap) {
1466 		pr_err_once("%s: no cpu support for altmap allocations\n",
1467 				__func__);
1468 		err = -ENOMEM;
1469 	} else
1470 		err = vmemmap_populate_basepages(start, end, node);
1471 	if (!err)
1472 		sync_global_pgds(start, end - 1);
1473 	return err;
1474 }
1475 
1476 #if defined(CONFIG_MEMORY_HOTPLUG_SPARSE) && defined(CONFIG_HAVE_BOOTMEM_INFO_NODE)
1477 void register_page_bootmem_memmap(unsigned long section_nr,
1478 				  struct page *start_page, unsigned long nr_pages)
1479 {
1480 	unsigned long addr = (unsigned long)start_page;
1481 	unsigned long end = (unsigned long)(start_page + nr_pages);
1482 	unsigned long next;
1483 	pgd_t *pgd;
1484 	p4d_t *p4d;
1485 	pud_t *pud;
1486 	pmd_t *pmd;
1487 	unsigned int nr_pmd_pages;
1488 	struct page *page;
1489 
1490 	for (; addr < end; addr = next) {
1491 		pte_t *pte = NULL;
1492 
1493 		pgd = pgd_offset_k(addr);
1494 		if (pgd_none(*pgd)) {
1495 			next = (addr + PAGE_SIZE) & PAGE_MASK;
1496 			continue;
1497 		}
1498 		get_page_bootmem(section_nr, pgd_page(*pgd), MIX_SECTION_INFO);
1499 
1500 		p4d = p4d_offset(pgd, addr);
1501 		if (p4d_none(*p4d)) {
1502 			next = (addr + PAGE_SIZE) & PAGE_MASK;
1503 			continue;
1504 		}
1505 		get_page_bootmem(section_nr, p4d_page(*p4d), MIX_SECTION_INFO);
1506 
1507 		pud = pud_offset(p4d, addr);
1508 		if (pud_none(*pud)) {
1509 			next = (addr + PAGE_SIZE) & PAGE_MASK;
1510 			continue;
1511 		}
1512 		get_page_bootmem(section_nr, pud_page(*pud), MIX_SECTION_INFO);
1513 
1514 		if (!boot_cpu_has(X86_FEATURE_PSE)) {
1515 			next = (addr + PAGE_SIZE) & PAGE_MASK;
1516 			pmd = pmd_offset(pud, addr);
1517 			if (pmd_none(*pmd))
1518 				continue;
1519 			get_page_bootmem(section_nr, pmd_page(*pmd),
1520 					 MIX_SECTION_INFO);
1521 
1522 			pte = pte_offset_kernel(pmd, addr);
1523 			if (pte_none(*pte))
1524 				continue;
1525 			get_page_bootmem(section_nr, pte_page(*pte),
1526 					 SECTION_INFO);
1527 		} else {
1528 			next = pmd_addr_end(addr, end);
1529 
1530 			pmd = pmd_offset(pud, addr);
1531 			if (pmd_none(*pmd))
1532 				continue;
1533 
1534 			nr_pmd_pages = 1 << get_order(PMD_SIZE);
1535 			page = pmd_page(*pmd);
1536 			while (nr_pmd_pages--)
1537 				get_page_bootmem(section_nr, page++,
1538 						 SECTION_INFO);
1539 		}
1540 	}
1541 }
1542 #endif
1543 
1544 void __meminit vmemmap_populate_print_last(void)
1545 {
1546 	if (p_start) {
1547 		pr_debug(" [%lx-%lx] PMD -> [%p-%p] on node %d\n",
1548 			addr_start, addr_end-1, p_start, p_end-1, node_start);
1549 		p_start = NULL;
1550 		p_end = NULL;
1551 		node_start = 0;
1552 	}
1553 }
1554 #endif
1555