1 /* 2 * linux/arch/x86_64/mm/init.c 3 * 4 * Copyright (C) 1995 Linus Torvalds 5 * Copyright (C) 2000 Pavel Machek <pavel@suse.cz> 6 * Copyright (C) 2002,2003 Andi Kleen <ak@suse.de> 7 */ 8 9 #include <linux/signal.h> 10 #include <linux/sched.h> 11 #include <linux/kernel.h> 12 #include <linux/errno.h> 13 #include <linux/string.h> 14 #include <linux/types.h> 15 #include <linux/ptrace.h> 16 #include <linux/mman.h> 17 #include <linux/mm.h> 18 #include <linux/swap.h> 19 #include <linux/smp.h> 20 #include <linux/init.h> 21 #include <linux/initrd.h> 22 #include <linux/pagemap.h> 23 #include <linux/bootmem.h> 24 #include <linux/proc_fs.h> 25 #include <linux/pci.h> 26 #include <linux/pfn.h> 27 #include <linux/poison.h> 28 #include <linux/dma-mapping.h> 29 #include <linux/module.h> 30 #include <linux/memory_hotplug.h> 31 #include <linux/nmi.h> 32 33 #include <asm/processor.h> 34 #include <asm/bios_ebda.h> 35 #include <asm/system.h> 36 #include <asm/uaccess.h> 37 #include <asm/pgtable.h> 38 #include <asm/pgalloc.h> 39 #include <asm/dma.h> 40 #include <asm/fixmap.h> 41 #include <asm/e820.h> 42 #include <asm/apic.h> 43 #include <asm/tlb.h> 44 #include <asm/mmu_context.h> 45 #include <asm/proto.h> 46 #include <asm/smp.h> 47 #include <asm/sections.h> 48 #include <asm/kdebug.h> 49 #include <asm/numa.h> 50 #include <asm/cacheflush.h> 51 52 /* 53 * end_pfn only includes RAM, while max_pfn_mapped includes all e820 entries. 54 * The direct mapping extends to max_pfn_mapped, so that we can directly access 55 * apertures, ACPI and other tables without having to play with fixmaps. 56 */ 57 unsigned long max_low_pfn_mapped; 58 unsigned long max_pfn_mapped; 59 60 static unsigned long dma_reserve __initdata; 61 62 DEFINE_PER_CPU(struct mmu_gather, mmu_gathers); 63 64 int direct_gbpages 65 #ifdef CONFIG_DIRECT_GBPAGES 66 = 1 67 #endif 68 ; 69 70 static int __init parse_direct_gbpages_off(char *arg) 71 { 72 direct_gbpages = 0; 73 return 0; 74 } 75 early_param("nogbpages", parse_direct_gbpages_off); 76 77 static int __init parse_direct_gbpages_on(char *arg) 78 { 79 direct_gbpages = 1; 80 return 0; 81 } 82 early_param("gbpages", parse_direct_gbpages_on); 83 84 /* 85 * NOTE: pagetable_init alloc all the fixmap pagetables contiguous on the 86 * physical space so we can cache the place of the first one and move 87 * around without checking the pgd every time. 88 */ 89 90 int after_bootmem; 91 92 pteval_t __supported_pte_mask __read_mostly = ~_PAGE_IOMAP; 93 EXPORT_SYMBOL_GPL(__supported_pte_mask); 94 95 static int do_not_nx __cpuinitdata; 96 97 /* 98 * noexec=on|off 99 * Control non-executable mappings for 64-bit processes. 100 * 101 * on Enable (default) 102 * off Disable 103 */ 104 static int __init nonx_setup(char *str) 105 { 106 if (!str) 107 return -EINVAL; 108 if (!strncmp(str, "on", 2)) { 109 __supported_pte_mask |= _PAGE_NX; 110 do_not_nx = 0; 111 } else if (!strncmp(str, "off", 3)) { 112 do_not_nx = 1; 113 __supported_pte_mask &= ~_PAGE_NX; 114 } 115 return 0; 116 } 117 early_param("noexec", nonx_setup); 118 119 void __cpuinit check_efer(void) 120 { 121 unsigned long efer; 122 123 rdmsrl(MSR_EFER, efer); 124 if (!(efer & EFER_NX) || do_not_nx) 125 __supported_pte_mask &= ~_PAGE_NX; 126 } 127 128 int force_personality32; 129 130 /* 131 * noexec32=on|off 132 * Control non executable heap for 32bit processes. 133 * To control the stack too use noexec=off 134 * 135 * on PROT_READ does not imply PROT_EXEC for 32-bit processes (default) 136 * off PROT_READ implies PROT_EXEC 137 */ 138 static int __init nonx32_setup(char *str) 139 { 140 if (!strcmp(str, "on")) 141 force_personality32 &= ~READ_IMPLIES_EXEC; 142 else if (!strcmp(str, "off")) 143 force_personality32 |= READ_IMPLIES_EXEC; 144 return 1; 145 } 146 __setup("noexec32=", nonx32_setup); 147 148 /* 149 * NOTE: This function is marked __ref because it calls __init function 150 * (alloc_bootmem_pages). It's safe to do it ONLY when after_bootmem == 0. 151 */ 152 static __ref void *spp_getpage(void) 153 { 154 void *ptr; 155 156 if (after_bootmem) 157 ptr = (void *) get_zeroed_page(GFP_ATOMIC); 158 else 159 ptr = alloc_bootmem_pages(PAGE_SIZE); 160 161 if (!ptr || ((unsigned long)ptr & ~PAGE_MASK)) { 162 panic("set_pte_phys: cannot allocate page data %s\n", 163 after_bootmem ? "after bootmem" : ""); 164 } 165 166 pr_debug("spp_getpage %p\n", ptr); 167 168 return ptr; 169 } 170 171 void 172 set_pte_vaddr_pud(pud_t *pud_page, unsigned long vaddr, pte_t new_pte) 173 { 174 pud_t *pud; 175 pmd_t *pmd; 176 pte_t *pte; 177 178 pud = pud_page + pud_index(vaddr); 179 if (pud_none(*pud)) { 180 pmd = (pmd_t *) spp_getpage(); 181 pud_populate(&init_mm, pud, pmd); 182 if (pmd != pmd_offset(pud, 0)) { 183 printk(KERN_ERR "PAGETABLE BUG #01! %p <-> %p\n", 184 pmd, pmd_offset(pud, 0)); 185 return; 186 } 187 } 188 pmd = pmd_offset(pud, vaddr); 189 if (pmd_none(*pmd)) { 190 pte = (pte_t *) spp_getpage(); 191 pmd_populate_kernel(&init_mm, pmd, pte); 192 if (pte != pte_offset_kernel(pmd, 0)) { 193 printk(KERN_ERR "PAGETABLE BUG #02!\n"); 194 return; 195 } 196 } 197 198 pte = pte_offset_kernel(pmd, vaddr); 199 set_pte(pte, new_pte); 200 201 /* 202 * It's enough to flush this one mapping. 203 * (PGE mappings get flushed as well) 204 */ 205 __flush_tlb_one(vaddr); 206 } 207 208 void 209 set_pte_vaddr(unsigned long vaddr, pte_t pteval) 210 { 211 pgd_t *pgd; 212 pud_t *pud_page; 213 214 pr_debug("set_pte_vaddr %lx to %lx\n", vaddr, native_pte_val(pteval)); 215 216 pgd = pgd_offset_k(vaddr); 217 if (pgd_none(*pgd)) { 218 printk(KERN_ERR 219 "PGD FIXMAP MISSING, it should be setup in head.S!\n"); 220 return; 221 } 222 pud_page = (pud_t*)pgd_page_vaddr(*pgd); 223 set_pte_vaddr_pud(pud_page, vaddr, pteval); 224 } 225 226 /* 227 * Create large page table mappings for a range of physical addresses. 228 */ 229 static void __init __init_extra_mapping(unsigned long phys, unsigned long size, 230 pgprot_t prot) 231 { 232 pgd_t *pgd; 233 pud_t *pud; 234 pmd_t *pmd; 235 236 BUG_ON((phys & ~PMD_MASK) || (size & ~PMD_MASK)); 237 for (; size; phys += PMD_SIZE, size -= PMD_SIZE) { 238 pgd = pgd_offset_k((unsigned long)__va(phys)); 239 if (pgd_none(*pgd)) { 240 pud = (pud_t *) spp_getpage(); 241 set_pgd(pgd, __pgd(__pa(pud) | _KERNPG_TABLE | 242 _PAGE_USER)); 243 } 244 pud = pud_offset(pgd, (unsigned long)__va(phys)); 245 if (pud_none(*pud)) { 246 pmd = (pmd_t *) spp_getpage(); 247 set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE | 248 _PAGE_USER)); 249 } 250 pmd = pmd_offset(pud, phys); 251 BUG_ON(!pmd_none(*pmd)); 252 set_pmd(pmd, __pmd(phys | pgprot_val(prot))); 253 } 254 } 255 256 void __init init_extra_mapping_wb(unsigned long phys, unsigned long size) 257 { 258 __init_extra_mapping(phys, size, PAGE_KERNEL_LARGE); 259 } 260 261 void __init init_extra_mapping_uc(unsigned long phys, unsigned long size) 262 { 263 __init_extra_mapping(phys, size, PAGE_KERNEL_LARGE_NOCACHE); 264 } 265 266 /* 267 * The head.S code sets up the kernel high mapping: 268 * 269 * from __START_KERNEL_map to __START_KERNEL_map + size (== _end-_text) 270 * 271 * phys_addr holds the negative offset to the kernel, which is added 272 * to the compile time generated pmds. This results in invalid pmds up 273 * to the point where we hit the physaddr 0 mapping. 274 * 275 * We limit the mappings to the region from _text to _end. _end is 276 * rounded up to the 2MB boundary. This catches the invalid pmds as 277 * well, as they are located before _text: 278 */ 279 void __init cleanup_highmap(void) 280 { 281 unsigned long vaddr = __START_KERNEL_map; 282 unsigned long end = roundup((unsigned long)_end, PMD_SIZE) - 1; 283 pmd_t *pmd = level2_kernel_pgt; 284 pmd_t *last_pmd = pmd + PTRS_PER_PMD; 285 286 for (; pmd < last_pmd; pmd++, vaddr += PMD_SIZE) { 287 if (pmd_none(*pmd)) 288 continue; 289 if (vaddr < (unsigned long) _text || vaddr > end) 290 set_pmd(pmd, __pmd(0)); 291 } 292 } 293 294 static unsigned long __initdata table_start; 295 static unsigned long __meminitdata table_end; 296 static unsigned long __meminitdata table_top; 297 298 static __ref void *alloc_low_page(unsigned long *phys) 299 { 300 unsigned long pfn = table_end++; 301 void *adr; 302 303 if (after_bootmem) { 304 adr = (void *)get_zeroed_page(GFP_ATOMIC); 305 *phys = __pa(adr); 306 307 return adr; 308 } 309 310 if (pfn >= table_top) 311 panic("alloc_low_page: ran out of memory"); 312 313 adr = early_memremap(pfn * PAGE_SIZE, PAGE_SIZE); 314 memset(adr, 0, PAGE_SIZE); 315 *phys = pfn * PAGE_SIZE; 316 return adr; 317 } 318 319 static __ref void unmap_low_page(void *adr) 320 { 321 if (after_bootmem) 322 return; 323 324 early_iounmap(adr, PAGE_SIZE); 325 } 326 327 static unsigned long __meminit 328 phys_pte_init(pte_t *pte_page, unsigned long addr, unsigned long end, 329 pgprot_t prot) 330 { 331 unsigned pages = 0; 332 unsigned long last_map_addr = end; 333 int i; 334 335 pte_t *pte = pte_page + pte_index(addr); 336 337 for(i = pte_index(addr); i < PTRS_PER_PTE; i++, addr += PAGE_SIZE, pte++) { 338 339 if (addr >= end) { 340 if (!after_bootmem) { 341 for(; i < PTRS_PER_PTE; i++, pte++) 342 set_pte(pte, __pte(0)); 343 } 344 break; 345 } 346 347 /* 348 * We will re-use the existing mapping. 349 * Xen for example has some special requirements, like mapping 350 * pagetable pages as RO. So assume someone who pre-setup 351 * these mappings are more intelligent. 352 */ 353 if (pte_val(*pte)) { 354 pages++; 355 continue; 356 } 357 358 if (0) 359 printk(" pte=%p addr=%lx pte=%016lx\n", 360 pte, addr, pfn_pte(addr >> PAGE_SHIFT, PAGE_KERNEL).pte); 361 pages++; 362 set_pte(pte, pfn_pte(addr >> PAGE_SHIFT, prot)); 363 last_map_addr = (addr & PAGE_MASK) + PAGE_SIZE; 364 } 365 366 update_page_count(PG_LEVEL_4K, pages); 367 368 return last_map_addr; 369 } 370 371 static unsigned long __meminit 372 phys_pte_update(pmd_t *pmd, unsigned long address, unsigned long end, 373 pgprot_t prot) 374 { 375 pte_t *pte = (pte_t *)pmd_page_vaddr(*pmd); 376 377 return phys_pte_init(pte, address, end, prot); 378 } 379 380 static unsigned long __meminit 381 phys_pmd_init(pmd_t *pmd_page, unsigned long address, unsigned long end, 382 unsigned long page_size_mask, pgprot_t prot) 383 { 384 unsigned long pages = 0; 385 unsigned long last_map_addr = end; 386 387 int i = pmd_index(address); 388 389 for (; i < PTRS_PER_PMD; i++, address += PMD_SIZE) { 390 unsigned long pte_phys; 391 pmd_t *pmd = pmd_page + pmd_index(address); 392 pte_t *pte; 393 pgprot_t new_prot = prot; 394 395 if (address >= end) { 396 if (!after_bootmem) { 397 for (; i < PTRS_PER_PMD; i++, pmd++) 398 set_pmd(pmd, __pmd(0)); 399 } 400 break; 401 } 402 403 if (pmd_val(*pmd)) { 404 if (!pmd_large(*pmd)) { 405 spin_lock(&init_mm.page_table_lock); 406 last_map_addr = phys_pte_update(pmd, address, 407 end, prot); 408 spin_unlock(&init_mm.page_table_lock); 409 continue; 410 } 411 /* 412 * If we are ok with PG_LEVEL_2M mapping, then we will 413 * use the existing mapping, 414 * 415 * Otherwise, we will split the large page mapping but 416 * use the same existing protection bits except for 417 * large page, so that we don't violate Intel's TLB 418 * Application note (317080) which says, while changing 419 * the page sizes, new and old translations should 420 * not differ with respect to page frame and 421 * attributes. 422 */ 423 if (page_size_mask & (1 << PG_LEVEL_2M)) { 424 pages++; 425 continue; 426 } 427 new_prot = pte_pgprot(pte_clrhuge(*(pte_t *)pmd)); 428 } 429 430 if (page_size_mask & (1<<PG_LEVEL_2M)) { 431 pages++; 432 spin_lock(&init_mm.page_table_lock); 433 set_pte((pte_t *)pmd, 434 pfn_pte(address >> PAGE_SHIFT, 435 __pgprot(pgprot_val(prot) | _PAGE_PSE))); 436 spin_unlock(&init_mm.page_table_lock); 437 last_map_addr = (address & PMD_MASK) + PMD_SIZE; 438 continue; 439 } 440 441 pte = alloc_low_page(&pte_phys); 442 last_map_addr = phys_pte_init(pte, address, end, new_prot); 443 unmap_low_page(pte); 444 445 spin_lock(&init_mm.page_table_lock); 446 pmd_populate_kernel(&init_mm, pmd, __va(pte_phys)); 447 spin_unlock(&init_mm.page_table_lock); 448 } 449 update_page_count(PG_LEVEL_2M, pages); 450 return last_map_addr; 451 } 452 453 static unsigned long __meminit 454 phys_pmd_update(pud_t *pud, unsigned long address, unsigned long end, 455 unsigned long page_size_mask, pgprot_t prot) 456 { 457 pmd_t *pmd = pmd_offset(pud, 0); 458 unsigned long last_map_addr; 459 460 last_map_addr = phys_pmd_init(pmd, address, end, page_size_mask, prot); 461 __flush_tlb_all(); 462 return last_map_addr; 463 } 464 465 static unsigned long __meminit 466 phys_pud_init(pud_t *pud_page, unsigned long addr, unsigned long end, 467 unsigned long page_size_mask) 468 { 469 unsigned long pages = 0; 470 unsigned long last_map_addr = end; 471 int i = pud_index(addr); 472 473 for (; i < PTRS_PER_PUD; i++, addr = (addr & PUD_MASK) + PUD_SIZE) { 474 unsigned long pmd_phys; 475 pud_t *pud = pud_page + pud_index(addr); 476 pmd_t *pmd; 477 pgprot_t prot = PAGE_KERNEL; 478 479 if (addr >= end) 480 break; 481 482 if (!after_bootmem && 483 !e820_any_mapped(addr, addr+PUD_SIZE, 0)) { 484 set_pud(pud, __pud(0)); 485 continue; 486 } 487 488 if (pud_val(*pud)) { 489 if (!pud_large(*pud)) { 490 last_map_addr = phys_pmd_update(pud, addr, end, 491 page_size_mask, prot); 492 continue; 493 } 494 /* 495 * If we are ok with PG_LEVEL_1G mapping, then we will 496 * use the existing mapping. 497 * 498 * Otherwise, we will split the gbpage mapping but use 499 * the same existing protection bits except for large 500 * page, so that we don't violate Intel's TLB 501 * Application note (317080) which says, while changing 502 * the page sizes, new and old translations should 503 * not differ with respect to page frame and 504 * attributes. 505 */ 506 if (page_size_mask & (1 << PG_LEVEL_1G)) { 507 pages++; 508 continue; 509 } 510 prot = pte_pgprot(pte_clrhuge(*(pte_t *)pud)); 511 } 512 513 if (page_size_mask & (1<<PG_LEVEL_1G)) { 514 pages++; 515 spin_lock(&init_mm.page_table_lock); 516 set_pte((pte_t *)pud, 517 pfn_pte(addr >> PAGE_SHIFT, PAGE_KERNEL_LARGE)); 518 spin_unlock(&init_mm.page_table_lock); 519 last_map_addr = (addr & PUD_MASK) + PUD_SIZE; 520 continue; 521 } 522 523 pmd = alloc_low_page(&pmd_phys); 524 last_map_addr = phys_pmd_init(pmd, addr, end, page_size_mask, 525 prot); 526 unmap_low_page(pmd); 527 528 spin_lock(&init_mm.page_table_lock); 529 pud_populate(&init_mm, pud, __va(pmd_phys)); 530 spin_unlock(&init_mm.page_table_lock); 531 } 532 __flush_tlb_all(); 533 534 update_page_count(PG_LEVEL_1G, pages); 535 536 return last_map_addr; 537 } 538 539 static unsigned long __meminit 540 phys_pud_update(pgd_t *pgd, unsigned long addr, unsigned long end, 541 unsigned long page_size_mask) 542 { 543 pud_t *pud; 544 545 pud = (pud_t *)pgd_page_vaddr(*pgd); 546 547 return phys_pud_init(pud, addr, end, page_size_mask); 548 } 549 550 static void __init find_early_table_space(unsigned long end, int use_pse, 551 int use_gbpages) 552 { 553 unsigned long puds, pmds, ptes, tables, start; 554 555 puds = (end + PUD_SIZE - 1) >> PUD_SHIFT; 556 tables = roundup(puds * sizeof(pud_t), PAGE_SIZE); 557 if (use_gbpages) { 558 unsigned long extra; 559 extra = end - ((end>>PUD_SHIFT) << PUD_SHIFT); 560 pmds = (extra + PMD_SIZE - 1) >> PMD_SHIFT; 561 } else 562 pmds = (end + PMD_SIZE - 1) >> PMD_SHIFT; 563 tables += roundup(pmds * sizeof(pmd_t), PAGE_SIZE); 564 565 if (use_pse) { 566 unsigned long extra; 567 extra = end - ((end>>PMD_SHIFT) << PMD_SHIFT); 568 ptes = (extra + PAGE_SIZE - 1) >> PAGE_SHIFT; 569 } else 570 ptes = (end + PAGE_SIZE - 1) >> PAGE_SHIFT; 571 tables += roundup(ptes * sizeof(pte_t), PAGE_SIZE); 572 573 /* 574 * RED-PEN putting page tables only on node 0 could 575 * cause a hotspot and fill up ZONE_DMA. The page tables 576 * need roughly 0.5KB per GB. 577 */ 578 start = 0x8000; 579 table_start = find_e820_area(start, end, tables, PAGE_SIZE); 580 if (table_start == -1UL) 581 panic("Cannot find space for the kernel page tables"); 582 583 table_start >>= PAGE_SHIFT; 584 table_end = table_start; 585 table_top = table_start + (tables >> PAGE_SHIFT); 586 587 printk(KERN_DEBUG "kernel direct mapping tables up to %lx @ %lx-%lx\n", 588 end, table_start << PAGE_SHIFT, table_top << PAGE_SHIFT); 589 } 590 591 static void __init init_gbpages(void) 592 { 593 if (direct_gbpages && cpu_has_gbpages) 594 printk(KERN_INFO "Using GB pages for direct mapping\n"); 595 else 596 direct_gbpages = 0; 597 } 598 599 static unsigned long __init kernel_physical_mapping_init(unsigned long start, 600 unsigned long end, 601 unsigned long page_size_mask) 602 { 603 604 unsigned long next, last_map_addr = end; 605 606 start = (unsigned long)__va(start); 607 end = (unsigned long)__va(end); 608 609 for (; start < end; start = next) { 610 pgd_t *pgd = pgd_offset_k(start); 611 unsigned long pud_phys; 612 pud_t *pud; 613 614 next = (start + PGDIR_SIZE) & PGDIR_MASK; 615 if (next > end) 616 next = end; 617 618 if (pgd_val(*pgd)) { 619 last_map_addr = phys_pud_update(pgd, __pa(start), 620 __pa(end), page_size_mask); 621 continue; 622 } 623 624 pud = alloc_low_page(&pud_phys); 625 last_map_addr = phys_pud_init(pud, __pa(start), __pa(next), 626 page_size_mask); 627 unmap_low_page(pud); 628 629 spin_lock(&init_mm.page_table_lock); 630 pgd_populate(&init_mm, pgd, __va(pud_phys)); 631 spin_unlock(&init_mm.page_table_lock); 632 } 633 __flush_tlb_all(); 634 635 return last_map_addr; 636 } 637 638 struct map_range { 639 unsigned long start; 640 unsigned long end; 641 unsigned page_size_mask; 642 }; 643 644 #define NR_RANGE_MR 5 645 646 static int save_mr(struct map_range *mr, int nr_range, 647 unsigned long start_pfn, unsigned long end_pfn, 648 unsigned long page_size_mask) 649 { 650 651 if (start_pfn < end_pfn) { 652 if (nr_range >= NR_RANGE_MR) 653 panic("run out of range for init_memory_mapping\n"); 654 mr[nr_range].start = start_pfn<<PAGE_SHIFT; 655 mr[nr_range].end = end_pfn<<PAGE_SHIFT; 656 mr[nr_range].page_size_mask = page_size_mask; 657 nr_range++; 658 } 659 660 return nr_range; 661 } 662 663 /* 664 * Setup the direct mapping of the physical memory at PAGE_OFFSET. 665 * This runs before bootmem is initialized and gets pages directly from 666 * the physical memory. To access them they are temporarily mapped. 667 */ 668 unsigned long __init_refok init_memory_mapping(unsigned long start, 669 unsigned long end) 670 { 671 unsigned long last_map_addr = 0; 672 unsigned long page_size_mask = 0; 673 unsigned long start_pfn, end_pfn; 674 unsigned long pos; 675 676 struct map_range mr[NR_RANGE_MR]; 677 int nr_range, i; 678 int use_pse, use_gbpages; 679 680 printk(KERN_INFO "init_memory_mapping: %016lx-%016lx\n", start, end); 681 682 /* 683 * Find space for the kernel direct mapping tables. 684 * 685 * Later we should allocate these tables in the local node of the 686 * memory mapped. Unfortunately this is done currently before the 687 * nodes are discovered. 688 */ 689 if (!after_bootmem) 690 init_gbpages(); 691 692 #ifdef CONFIG_DEBUG_PAGEALLOC 693 /* 694 * For CONFIG_DEBUG_PAGEALLOC, identity mapping will use small pages. 695 * This will simplify cpa(), which otherwise needs to support splitting 696 * large pages into small in interrupt context, etc. 697 */ 698 use_pse = use_gbpages = 0; 699 #else 700 use_pse = cpu_has_pse; 701 use_gbpages = direct_gbpages; 702 #endif 703 704 if (use_gbpages) 705 page_size_mask |= 1 << PG_LEVEL_1G; 706 if (use_pse) 707 page_size_mask |= 1 << PG_LEVEL_2M; 708 709 memset(mr, 0, sizeof(mr)); 710 nr_range = 0; 711 712 /* head if not big page alignment ?*/ 713 start_pfn = start >> PAGE_SHIFT; 714 pos = start_pfn << PAGE_SHIFT; 715 end_pfn = ((pos + (PMD_SIZE - 1)) >> PMD_SHIFT) 716 << (PMD_SHIFT - PAGE_SHIFT); 717 if (start_pfn < end_pfn) { 718 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0); 719 pos = end_pfn << PAGE_SHIFT; 720 } 721 722 /* big page (2M) range*/ 723 start_pfn = ((pos + (PMD_SIZE - 1))>>PMD_SHIFT) 724 << (PMD_SHIFT - PAGE_SHIFT); 725 end_pfn = ((pos + (PUD_SIZE - 1))>>PUD_SHIFT) 726 << (PUD_SHIFT - PAGE_SHIFT); 727 if (end_pfn > ((end>>PMD_SHIFT)<<(PMD_SHIFT - PAGE_SHIFT))) 728 end_pfn = ((end>>PMD_SHIFT)<<(PMD_SHIFT - PAGE_SHIFT)); 729 if (start_pfn < end_pfn) { 730 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 731 page_size_mask & (1<<PG_LEVEL_2M)); 732 pos = end_pfn << PAGE_SHIFT; 733 } 734 735 /* big page (1G) range */ 736 start_pfn = ((pos + (PUD_SIZE - 1))>>PUD_SHIFT) 737 << (PUD_SHIFT - PAGE_SHIFT); 738 end_pfn = (end >> PUD_SHIFT) << (PUD_SHIFT - PAGE_SHIFT); 739 if (start_pfn < end_pfn) { 740 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 741 page_size_mask & 742 ((1<<PG_LEVEL_2M)|(1<<PG_LEVEL_1G))); 743 pos = end_pfn << PAGE_SHIFT; 744 } 745 746 /* tail is not big page (1G) alignment */ 747 start_pfn = ((pos + (PMD_SIZE - 1))>>PMD_SHIFT) 748 << (PMD_SHIFT - PAGE_SHIFT); 749 end_pfn = (end >> PMD_SHIFT) << (PMD_SHIFT - PAGE_SHIFT); 750 if (start_pfn < end_pfn) { 751 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 752 page_size_mask & (1<<PG_LEVEL_2M)); 753 pos = end_pfn << PAGE_SHIFT; 754 } 755 756 /* tail is not big page (2M) alignment */ 757 start_pfn = pos>>PAGE_SHIFT; 758 end_pfn = end>>PAGE_SHIFT; 759 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0); 760 761 /* try to merge same page size and continuous */ 762 for (i = 0; nr_range > 1 && i < nr_range - 1; i++) { 763 unsigned long old_start; 764 if (mr[i].end != mr[i+1].start || 765 mr[i].page_size_mask != mr[i+1].page_size_mask) 766 continue; 767 /* move it */ 768 old_start = mr[i].start; 769 memmove(&mr[i], &mr[i+1], 770 (nr_range - 1 - i) * sizeof (struct map_range)); 771 mr[i--].start = old_start; 772 nr_range--; 773 } 774 775 for (i = 0; i < nr_range; i++) 776 printk(KERN_DEBUG " %010lx - %010lx page %s\n", 777 mr[i].start, mr[i].end, 778 (mr[i].page_size_mask & (1<<PG_LEVEL_1G))?"1G":( 779 (mr[i].page_size_mask & (1<<PG_LEVEL_2M))?"2M":"4k")); 780 781 if (!after_bootmem) 782 find_early_table_space(end, use_pse, use_gbpages); 783 784 for (i = 0; i < nr_range; i++) 785 last_map_addr = kernel_physical_mapping_init( 786 mr[i].start, mr[i].end, 787 mr[i].page_size_mask); 788 789 if (!after_bootmem) 790 mmu_cr4_features = read_cr4(); 791 __flush_tlb_all(); 792 793 if (!after_bootmem && table_end > table_start) 794 reserve_early(table_start << PAGE_SHIFT, 795 table_end << PAGE_SHIFT, "PGTABLE"); 796 797 printk(KERN_INFO "last_map_addr: %lx end: %lx\n", 798 last_map_addr, end); 799 800 if (!after_bootmem) 801 early_memtest(start, end); 802 803 return last_map_addr >> PAGE_SHIFT; 804 } 805 806 #ifndef CONFIG_NUMA 807 void __init initmem_init(unsigned long start_pfn, unsigned long end_pfn) 808 { 809 unsigned long bootmap_size, bootmap; 810 811 bootmap_size = bootmem_bootmap_pages(end_pfn)<<PAGE_SHIFT; 812 bootmap = find_e820_area(0, end_pfn<<PAGE_SHIFT, bootmap_size, 813 PAGE_SIZE); 814 if (bootmap == -1L) 815 panic("Cannot find bootmem map of size %ld\n", bootmap_size); 816 /* don't touch min_low_pfn */ 817 bootmap_size = init_bootmem_node(NODE_DATA(0), bootmap >> PAGE_SHIFT, 818 0, end_pfn); 819 e820_register_active_regions(0, start_pfn, end_pfn); 820 free_bootmem_with_active_regions(0, end_pfn); 821 early_res_to_bootmem(0, end_pfn<<PAGE_SHIFT); 822 reserve_bootmem(bootmap, bootmap_size, BOOTMEM_DEFAULT); 823 } 824 825 void __init paging_init(void) 826 { 827 unsigned long max_zone_pfns[MAX_NR_ZONES]; 828 829 memset(max_zone_pfns, 0, sizeof(max_zone_pfns)); 830 max_zone_pfns[ZONE_DMA] = MAX_DMA_PFN; 831 max_zone_pfns[ZONE_DMA32] = MAX_DMA32_PFN; 832 max_zone_pfns[ZONE_NORMAL] = max_pfn; 833 834 memory_present(0, 0, max_pfn); 835 sparse_init(); 836 free_area_init_nodes(max_zone_pfns); 837 } 838 #endif 839 840 /* 841 * Memory hotplug specific functions 842 */ 843 #ifdef CONFIG_MEMORY_HOTPLUG 844 /* 845 * Memory is added always to NORMAL zone. This means you will never get 846 * additional DMA/DMA32 memory. 847 */ 848 int arch_add_memory(int nid, u64 start, u64 size) 849 { 850 struct pglist_data *pgdat = NODE_DATA(nid); 851 struct zone *zone = pgdat->node_zones + ZONE_NORMAL; 852 unsigned long last_mapped_pfn, start_pfn = start >> PAGE_SHIFT; 853 unsigned long nr_pages = size >> PAGE_SHIFT; 854 int ret; 855 856 last_mapped_pfn = init_memory_mapping(start, start + size); 857 if (last_mapped_pfn > max_pfn_mapped) 858 max_pfn_mapped = last_mapped_pfn; 859 860 ret = __add_pages(zone, start_pfn, nr_pages); 861 WARN_ON_ONCE(ret); 862 863 return ret; 864 } 865 EXPORT_SYMBOL_GPL(arch_add_memory); 866 867 #if !defined(CONFIG_ACPI_NUMA) && defined(CONFIG_NUMA) 868 int memory_add_physaddr_to_nid(u64 start) 869 { 870 return 0; 871 } 872 EXPORT_SYMBOL_GPL(memory_add_physaddr_to_nid); 873 #endif 874 875 #endif /* CONFIG_MEMORY_HOTPLUG */ 876 877 /* 878 * devmem_is_allowed() checks to see if /dev/mem access to a certain address 879 * is valid. The argument is a physical page number. 880 * 881 * 882 * On x86, access has to be given to the first megabyte of ram because that area 883 * contains bios code and data regions used by X and dosemu and similar apps. 884 * Access has to be given to non-kernel-ram areas as well, these contain the PCI 885 * mmio resources as well as potential bios/acpi data regions. 886 */ 887 int devmem_is_allowed(unsigned long pagenr) 888 { 889 if (pagenr <= 256) 890 return 1; 891 if (!page_is_ram(pagenr)) 892 return 1; 893 return 0; 894 } 895 896 897 static struct kcore_list kcore_mem, kcore_vmalloc, kcore_kernel, 898 kcore_modules, kcore_vsyscall; 899 900 void __init mem_init(void) 901 { 902 long codesize, reservedpages, datasize, initsize; 903 unsigned long absent_pages; 904 905 start_periodic_check_for_corruption(); 906 907 pci_iommu_alloc(); 908 909 /* clear_bss() already clear the empty_zero_page */ 910 911 reservedpages = 0; 912 913 /* this will put all low memory onto the freelists */ 914 #ifdef CONFIG_NUMA 915 totalram_pages = numa_free_all_bootmem(); 916 #else 917 totalram_pages = free_all_bootmem(); 918 #endif 919 920 absent_pages = absent_pages_in_range(0, max_pfn); 921 reservedpages = max_pfn - totalram_pages - absent_pages; 922 after_bootmem = 1; 923 924 codesize = (unsigned long) &_etext - (unsigned long) &_text; 925 datasize = (unsigned long) &_edata - (unsigned long) &_etext; 926 initsize = (unsigned long) &__init_end - (unsigned long) &__init_begin; 927 928 /* Register memory areas for /proc/kcore */ 929 kclist_add(&kcore_mem, __va(0), max_low_pfn << PAGE_SHIFT); 930 kclist_add(&kcore_vmalloc, (void *)VMALLOC_START, 931 VMALLOC_END-VMALLOC_START); 932 kclist_add(&kcore_kernel, &_stext, _end - _stext); 933 kclist_add(&kcore_modules, (void *)MODULES_VADDR, MODULES_LEN); 934 kclist_add(&kcore_vsyscall, (void *)VSYSCALL_START, 935 VSYSCALL_END - VSYSCALL_START); 936 937 printk(KERN_INFO "Memory: %luk/%luk available (%ldk kernel code, " 938 "%ldk absent, %ldk reserved, %ldk data, %ldk init)\n", 939 (unsigned long) nr_free_pages() << (PAGE_SHIFT-10), 940 max_pfn << (PAGE_SHIFT-10), 941 codesize >> 10, 942 absent_pages << (PAGE_SHIFT-10), 943 reservedpages << (PAGE_SHIFT-10), 944 datasize >> 10, 945 initsize >> 10); 946 } 947 948 void free_init_pages(char *what, unsigned long begin, unsigned long end) 949 { 950 unsigned long addr = begin; 951 952 if (addr >= end) 953 return; 954 955 /* 956 * If debugging page accesses then do not free this memory but 957 * mark them not present - any buggy init-section access will 958 * create a kernel page fault: 959 */ 960 #ifdef CONFIG_DEBUG_PAGEALLOC 961 printk(KERN_INFO "debug: unmapping init memory %08lx..%08lx\n", 962 begin, PAGE_ALIGN(end)); 963 set_memory_np(begin, (end - begin) >> PAGE_SHIFT); 964 #else 965 printk(KERN_INFO "Freeing %s: %luk freed\n", what, (end - begin) >> 10); 966 967 for (; addr < end; addr += PAGE_SIZE) { 968 ClearPageReserved(virt_to_page(addr)); 969 init_page_count(virt_to_page(addr)); 970 memset((void *)(addr & ~(PAGE_SIZE-1)), 971 POISON_FREE_INITMEM, PAGE_SIZE); 972 free_page(addr); 973 totalram_pages++; 974 } 975 #endif 976 } 977 978 void free_initmem(void) 979 { 980 free_init_pages("unused kernel memory", 981 (unsigned long)(&__init_begin), 982 (unsigned long)(&__init_end)); 983 } 984 985 #ifdef CONFIG_DEBUG_RODATA 986 const int rodata_test_data = 0xC3; 987 EXPORT_SYMBOL_GPL(rodata_test_data); 988 989 void mark_rodata_ro(void) 990 { 991 unsigned long start = PFN_ALIGN(_stext), end = PFN_ALIGN(__end_rodata); 992 unsigned long rodata_start = 993 ((unsigned long)__start_rodata + PAGE_SIZE - 1) & PAGE_MASK; 994 995 #ifdef CONFIG_DYNAMIC_FTRACE 996 /* Dynamic tracing modifies the kernel text section */ 997 start = rodata_start; 998 #endif 999 1000 printk(KERN_INFO "Write protecting the kernel read-only data: %luk\n", 1001 (end - start) >> 10); 1002 set_memory_ro(start, (end - start) >> PAGE_SHIFT); 1003 1004 /* 1005 * The rodata section (but not the kernel text!) should also be 1006 * not-executable. 1007 */ 1008 set_memory_nx(rodata_start, (end - rodata_start) >> PAGE_SHIFT); 1009 1010 rodata_test(); 1011 1012 #ifdef CONFIG_CPA_DEBUG 1013 printk(KERN_INFO "Testing CPA: undo %lx-%lx\n", start, end); 1014 set_memory_rw(start, (end-start) >> PAGE_SHIFT); 1015 1016 printk(KERN_INFO "Testing CPA: again\n"); 1017 set_memory_ro(start, (end-start) >> PAGE_SHIFT); 1018 #endif 1019 } 1020 1021 #endif 1022 1023 #ifdef CONFIG_BLK_DEV_INITRD 1024 void free_initrd_mem(unsigned long start, unsigned long end) 1025 { 1026 free_init_pages("initrd memory", start, end); 1027 } 1028 #endif 1029 1030 int __init reserve_bootmem_generic(unsigned long phys, unsigned long len, 1031 int flags) 1032 { 1033 #ifdef CONFIG_NUMA 1034 int nid, next_nid; 1035 int ret; 1036 #endif 1037 unsigned long pfn = phys >> PAGE_SHIFT; 1038 1039 if (pfn >= max_pfn) { 1040 /* 1041 * This can happen with kdump kernels when accessing 1042 * firmware tables: 1043 */ 1044 if (pfn < max_pfn_mapped) 1045 return -EFAULT; 1046 1047 printk(KERN_ERR "reserve_bootmem: illegal reserve %lx %lu\n", 1048 phys, len); 1049 return -EFAULT; 1050 } 1051 1052 /* Should check here against the e820 map to avoid double free */ 1053 #ifdef CONFIG_NUMA 1054 nid = phys_to_nid(phys); 1055 next_nid = phys_to_nid(phys + len - 1); 1056 if (nid == next_nid) 1057 ret = reserve_bootmem_node(NODE_DATA(nid), phys, len, flags); 1058 else 1059 ret = reserve_bootmem(phys, len, flags); 1060 1061 if (ret != 0) 1062 return ret; 1063 1064 #else 1065 reserve_bootmem(phys, len, BOOTMEM_DEFAULT); 1066 #endif 1067 1068 if (phys+len <= MAX_DMA_PFN*PAGE_SIZE) { 1069 dma_reserve += len / PAGE_SIZE; 1070 set_dma_reserve(dma_reserve); 1071 } 1072 1073 return 0; 1074 } 1075 1076 int kern_addr_valid(unsigned long addr) 1077 { 1078 unsigned long above = ((long)addr) >> __VIRTUAL_MASK_SHIFT; 1079 pgd_t *pgd; 1080 pud_t *pud; 1081 pmd_t *pmd; 1082 pte_t *pte; 1083 1084 if (above != 0 && above != -1UL) 1085 return 0; 1086 1087 pgd = pgd_offset_k(addr); 1088 if (pgd_none(*pgd)) 1089 return 0; 1090 1091 pud = pud_offset(pgd, addr); 1092 if (pud_none(*pud)) 1093 return 0; 1094 1095 pmd = pmd_offset(pud, addr); 1096 if (pmd_none(*pmd)) 1097 return 0; 1098 1099 if (pmd_large(*pmd)) 1100 return pfn_valid(pmd_pfn(*pmd)); 1101 1102 pte = pte_offset_kernel(pmd, addr); 1103 if (pte_none(*pte)) 1104 return 0; 1105 1106 return pfn_valid(pte_pfn(*pte)); 1107 } 1108 1109 /* 1110 * A pseudo VMA to allow ptrace access for the vsyscall page. This only 1111 * covers the 64bit vsyscall page now. 32bit has a real VMA now and does 1112 * not need special handling anymore: 1113 */ 1114 static struct vm_area_struct gate_vma = { 1115 .vm_start = VSYSCALL_START, 1116 .vm_end = VSYSCALL_START + (VSYSCALL_MAPPED_PAGES * PAGE_SIZE), 1117 .vm_page_prot = PAGE_READONLY_EXEC, 1118 .vm_flags = VM_READ | VM_EXEC 1119 }; 1120 1121 struct vm_area_struct *get_gate_vma(struct task_struct *tsk) 1122 { 1123 #ifdef CONFIG_IA32_EMULATION 1124 if (test_tsk_thread_flag(tsk, TIF_IA32)) 1125 return NULL; 1126 #endif 1127 return &gate_vma; 1128 } 1129 1130 int in_gate_area(struct task_struct *task, unsigned long addr) 1131 { 1132 struct vm_area_struct *vma = get_gate_vma(task); 1133 1134 if (!vma) 1135 return 0; 1136 1137 return (addr >= vma->vm_start) && (addr < vma->vm_end); 1138 } 1139 1140 /* 1141 * Use this when you have no reliable task/vma, typically from interrupt 1142 * context. It is less reliable than using the task's vma and may give 1143 * false positives: 1144 */ 1145 int in_gate_area_no_task(unsigned long addr) 1146 { 1147 return (addr >= VSYSCALL_START) && (addr < VSYSCALL_END); 1148 } 1149 1150 const char *arch_vma_name(struct vm_area_struct *vma) 1151 { 1152 if (vma->vm_mm && vma->vm_start == (long)vma->vm_mm->context.vdso) 1153 return "[vdso]"; 1154 if (vma == &gate_vma) 1155 return "[vsyscall]"; 1156 return NULL; 1157 } 1158 1159 #ifdef CONFIG_SPARSEMEM_VMEMMAP 1160 /* 1161 * Initialise the sparsemem vmemmap using huge-pages at the PMD level. 1162 */ 1163 static long __meminitdata addr_start, addr_end; 1164 static void __meminitdata *p_start, *p_end; 1165 static int __meminitdata node_start; 1166 1167 int __meminit 1168 vmemmap_populate(struct page *start_page, unsigned long size, int node) 1169 { 1170 unsigned long addr = (unsigned long)start_page; 1171 unsigned long end = (unsigned long)(start_page + size); 1172 unsigned long next; 1173 pgd_t *pgd; 1174 pud_t *pud; 1175 pmd_t *pmd; 1176 1177 for (; addr < end; addr = next) { 1178 void *p = NULL; 1179 1180 pgd = vmemmap_pgd_populate(addr, node); 1181 if (!pgd) 1182 return -ENOMEM; 1183 1184 pud = vmemmap_pud_populate(pgd, addr, node); 1185 if (!pud) 1186 return -ENOMEM; 1187 1188 if (!cpu_has_pse) { 1189 next = (addr + PAGE_SIZE) & PAGE_MASK; 1190 pmd = vmemmap_pmd_populate(pud, addr, node); 1191 1192 if (!pmd) 1193 return -ENOMEM; 1194 1195 p = vmemmap_pte_populate(pmd, addr, node); 1196 1197 if (!p) 1198 return -ENOMEM; 1199 1200 addr_end = addr + PAGE_SIZE; 1201 p_end = p + PAGE_SIZE; 1202 } else { 1203 next = pmd_addr_end(addr, end); 1204 1205 pmd = pmd_offset(pud, addr); 1206 if (pmd_none(*pmd)) { 1207 pte_t entry; 1208 1209 p = vmemmap_alloc_block(PMD_SIZE, node); 1210 if (!p) 1211 return -ENOMEM; 1212 1213 entry = pfn_pte(__pa(p) >> PAGE_SHIFT, 1214 PAGE_KERNEL_LARGE); 1215 set_pmd(pmd, __pmd(pte_val(entry))); 1216 1217 /* check to see if we have contiguous blocks */ 1218 if (p_end != p || node_start != node) { 1219 if (p_start) 1220 printk(KERN_DEBUG " [%lx-%lx] PMD -> [%p-%p] on node %d\n", 1221 addr_start, addr_end-1, p_start, p_end-1, node_start); 1222 addr_start = addr; 1223 node_start = node; 1224 p_start = p; 1225 } 1226 1227 addr_end = addr + PMD_SIZE; 1228 p_end = p + PMD_SIZE; 1229 } else 1230 vmemmap_verify((pte_t *)pmd, node, addr, next); 1231 } 1232 1233 } 1234 return 0; 1235 } 1236 1237 void __meminit vmemmap_populate_print_last(void) 1238 { 1239 if (p_start) { 1240 printk(KERN_DEBUG " [%lx-%lx] PMD -> [%p-%p] on node %d\n", 1241 addr_start, addr_end-1, p_start, p_end-1, node_start); 1242 p_start = NULL; 1243 p_end = NULL; 1244 node_start = 0; 1245 } 1246 } 1247 #endif 1248