xref: /linux/arch/x86/mm/init_64.c (revision 08ec212c0f92cbf30e3ecc7349f18151714041d6)
1 /*
2  *  linux/arch/x86_64/mm/init.c
3  *
4  *  Copyright (C) 1995  Linus Torvalds
5  *  Copyright (C) 2000  Pavel Machek <pavel@ucw.cz>
6  *  Copyright (C) 2002,2003 Andi Kleen <ak@suse.de>
7  */
8 
9 #include <linux/signal.h>
10 #include <linux/sched.h>
11 #include <linux/kernel.h>
12 #include <linux/errno.h>
13 #include <linux/string.h>
14 #include <linux/types.h>
15 #include <linux/ptrace.h>
16 #include <linux/mman.h>
17 #include <linux/mm.h>
18 #include <linux/swap.h>
19 #include <linux/smp.h>
20 #include <linux/init.h>
21 #include <linux/initrd.h>
22 #include <linux/pagemap.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/proc_fs.h>
26 #include <linux/pci.h>
27 #include <linux/pfn.h>
28 #include <linux/poison.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/module.h>
31 #include <linux/memory.h>
32 #include <linux/memory_hotplug.h>
33 #include <linux/nmi.h>
34 #include <linux/gfp.h>
35 
36 #include <asm/processor.h>
37 #include <asm/bios_ebda.h>
38 #include <asm/uaccess.h>
39 #include <asm/pgtable.h>
40 #include <asm/pgalloc.h>
41 #include <asm/dma.h>
42 #include <asm/fixmap.h>
43 #include <asm/e820.h>
44 #include <asm/apic.h>
45 #include <asm/tlb.h>
46 #include <asm/mmu_context.h>
47 #include <asm/proto.h>
48 #include <asm/smp.h>
49 #include <asm/sections.h>
50 #include <asm/kdebug.h>
51 #include <asm/numa.h>
52 #include <asm/cacheflush.h>
53 #include <asm/init.h>
54 #include <asm/uv/uv.h>
55 #include <asm/setup.h>
56 
57 static int __init parse_direct_gbpages_off(char *arg)
58 {
59 	direct_gbpages = 0;
60 	return 0;
61 }
62 early_param("nogbpages", parse_direct_gbpages_off);
63 
64 static int __init parse_direct_gbpages_on(char *arg)
65 {
66 	direct_gbpages = 1;
67 	return 0;
68 }
69 early_param("gbpages", parse_direct_gbpages_on);
70 
71 /*
72  * NOTE: pagetable_init alloc all the fixmap pagetables contiguous on the
73  * physical space so we can cache the place of the first one and move
74  * around without checking the pgd every time.
75  */
76 
77 pteval_t __supported_pte_mask __read_mostly = ~_PAGE_IOMAP;
78 EXPORT_SYMBOL_GPL(__supported_pte_mask);
79 
80 int force_personality32;
81 
82 /*
83  * noexec32=on|off
84  * Control non executable heap for 32bit processes.
85  * To control the stack too use noexec=off
86  *
87  * on	PROT_READ does not imply PROT_EXEC for 32-bit processes (default)
88  * off	PROT_READ implies PROT_EXEC
89  */
90 static int __init nonx32_setup(char *str)
91 {
92 	if (!strcmp(str, "on"))
93 		force_personality32 &= ~READ_IMPLIES_EXEC;
94 	else if (!strcmp(str, "off"))
95 		force_personality32 |= READ_IMPLIES_EXEC;
96 	return 1;
97 }
98 __setup("noexec32=", nonx32_setup);
99 
100 /*
101  * When memory was added/removed make sure all the processes MM have
102  * suitable PGD entries in the local PGD level page.
103  */
104 void sync_global_pgds(unsigned long start, unsigned long end)
105 {
106 	unsigned long address;
107 
108 	for (address = start; address <= end; address += PGDIR_SIZE) {
109 		const pgd_t *pgd_ref = pgd_offset_k(address);
110 		struct page *page;
111 
112 		if (pgd_none(*pgd_ref))
113 			continue;
114 
115 		spin_lock(&pgd_lock);
116 		list_for_each_entry(page, &pgd_list, lru) {
117 			pgd_t *pgd;
118 			spinlock_t *pgt_lock;
119 
120 			pgd = (pgd_t *)page_address(page) + pgd_index(address);
121 			/* the pgt_lock only for Xen */
122 			pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
123 			spin_lock(pgt_lock);
124 
125 			if (pgd_none(*pgd))
126 				set_pgd(pgd, *pgd_ref);
127 			else
128 				BUG_ON(pgd_page_vaddr(*pgd)
129 				       != pgd_page_vaddr(*pgd_ref));
130 
131 			spin_unlock(pgt_lock);
132 		}
133 		spin_unlock(&pgd_lock);
134 	}
135 }
136 
137 /*
138  * NOTE: This function is marked __ref because it calls __init function
139  * (alloc_bootmem_pages). It's safe to do it ONLY when after_bootmem == 0.
140  */
141 static __ref void *spp_getpage(void)
142 {
143 	void *ptr;
144 
145 	if (after_bootmem)
146 		ptr = (void *) get_zeroed_page(GFP_ATOMIC | __GFP_NOTRACK);
147 	else
148 		ptr = alloc_bootmem_pages(PAGE_SIZE);
149 
150 	if (!ptr || ((unsigned long)ptr & ~PAGE_MASK)) {
151 		panic("set_pte_phys: cannot allocate page data %s\n",
152 			after_bootmem ? "after bootmem" : "");
153 	}
154 
155 	pr_debug("spp_getpage %p\n", ptr);
156 
157 	return ptr;
158 }
159 
160 static pud_t *fill_pud(pgd_t *pgd, unsigned long vaddr)
161 {
162 	if (pgd_none(*pgd)) {
163 		pud_t *pud = (pud_t *)spp_getpage();
164 		pgd_populate(&init_mm, pgd, pud);
165 		if (pud != pud_offset(pgd, 0))
166 			printk(KERN_ERR "PAGETABLE BUG #00! %p <-> %p\n",
167 			       pud, pud_offset(pgd, 0));
168 	}
169 	return pud_offset(pgd, vaddr);
170 }
171 
172 static pmd_t *fill_pmd(pud_t *pud, unsigned long vaddr)
173 {
174 	if (pud_none(*pud)) {
175 		pmd_t *pmd = (pmd_t *) spp_getpage();
176 		pud_populate(&init_mm, pud, pmd);
177 		if (pmd != pmd_offset(pud, 0))
178 			printk(KERN_ERR "PAGETABLE BUG #01! %p <-> %p\n",
179 			       pmd, pmd_offset(pud, 0));
180 	}
181 	return pmd_offset(pud, vaddr);
182 }
183 
184 static pte_t *fill_pte(pmd_t *pmd, unsigned long vaddr)
185 {
186 	if (pmd_none(*pmd)) {
187 		pte_t *pte = (pte_t *) spp_getpage();
188 		pmd_populate_kernel(&init_mm, pmd, pte);
189 		if (pte != pte_offset_kernel(pmd, 0))
190 			printk(KERN_ERR "PAGETABLE BUG #02!\n");
191 	}
192 	return pte_offset_kernel(pmd, vaddr);
193 }
194 
195 void set_pte_vaddr_pud(pud_t *pud_page, unsigned long vaddr, pte_t new_pte)
196 {
197 	pud_t *pud;
198 	pmd_t *pmd;
199 	pte_t *pte;
200 
201 	pud = pud_page + pud_index(vaddr);
202 	pmd = fill_pmd(pud, vaddr);
203 	pte = fill_pte(pmd, vaddr);
204 
205 	set_pte(pte, new_pte);
206 
207 	/*
208 	 * It's enough to flush this one mapping.
209 	 * (PGE mappings get flushed as well)
210 	 */
211 	__flush_tlb_one(vaddr);
212 }
213 
214 void set_pte_vaddr(unsigned long vaddr, pte_t pteval)
215 {
216 	pgd_t *pgd;
217 	pud_t *pud_page;
218 
219 	pr_debug("set_pte_vaddr %lx to %lx\n", vaddr, native_pte_val(pteval));
220 
221 	pgd = pgd_offset_k(vaddr);
222 	if (pgd_none(*pgd)) {
223 		printk(KERN_ERR
224 			"PGD FIXMAP MISSING, it should be setup in head.S!\n");
225 		return;
226 	}
227 	pud_page = (pud_t*)pgd_page_vaddr(*pgd);
228 	set_pte_vaddr_pud(pud_page, vaddr, pteval);
229 }
230 
231 pmd_t * __init populate_extra_pmd(unsigned long vaddr)
232 {
233 	pgd_t *pgd;
234 	pud_t *pud;
235 
236 	pgd = pgd_offset_k(vaddr);
237 	pud = fill_pud(pgd, vaddr);
238 	return fill_pmd(pud, vaddr);
239 }
240 
241 pte_t * __init populate_extra_pte(unsigned long vaddr)
242 {
243 	pmd_t *pmd;
244 
245 	pmd = populate_extra_pmd(vaddr);
246 	return fill_pte(pmd, vaddr);
247 }
248 
249 /*
250  * Create large page table mappings for a range of physical addresses.
251  */
252 static void __init __init_extra_mapping(unsigned long phys, unsigned long size,
253 						pgprot_t prot)
254 {
255 	pgd_t *pgd;
256 	pud_t *pud;
257 	pmd_t *pmd;
258 
259 	BUG_ON((phys & ~PMD_MASK) || (size & ~PMD_MASK));
260 	for (; size; phys += PMD_SIZE, size -= PMD_SIZE) {
261 		pgd = pgd_offset_k((unsigned long)__va(phys));
262 		if (pgd_none(*pgd)) {
263 			pud = (pud_t *) spp_getpage();
264 			set_pgd(pgd, __pgd(__pa(pud) | _KERNPG_TABLE |
265 						_PAGE_USER));
266 		}
267 		pud = pud_offset(pgd, (unsigned long)__va(phys));
268 		if (pud_none(*pud)) {
269 			pmd = (pmd_t *) spp_getpage();
270 			set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE |
271 						_PAGE_USER));
272 		}
273 		pmd = pmd_offset(pud, phys);
274 		BUG_ON(!pmd_none(*pmd));
275 		set_pmd(pmd, __pmd(phys | pgprot_val(prot)));
276 	}
277 }
278 
279 void __init init_extra_mapping_wb(unsigned long phys, unsigned long size)
280 {
281 	__init_extra_mapping(phys, size, PAGE_KERNEL_LARGE);
282 }
283 
284 void __init init_extra_mapping_uc(unsigned long phys, unsigned long size)
285 {
286 	__init_extra_mapping(phys, size, PAGE_KERNEL_LARGE_NOCACHE);
287 }
288 
289 /*
290  * The head.S code sets up the kernel high mapping:
291  *
292  *   from __START_KERNEL_map to __START_KERNEL_map + size (== _end-_text)
293  *
294  * phys_addr holds the negative offset to the kernel, which is added
295  * to the compile time generated pmds. This results in invalid pmds up
296  * to the point where we hit the physaddr 0 mapping.
297  *
298  * We limit the mappings to the region from _text to _brk_end.  _brk_end
299  * is rounded up to the 2MB boundary. This catches the invalid pmds as
300  * well, as they are located before _text:
301  */
302 void __init cleanup_highmap(void)
303 {
304 	unsigned long vaddr = __START_KERNEL_map;
305 	unsigned long vaddr_end = __START_KERNEL_map + (max_pfn_mapped << PAGE_SHIFT);
306 	unsigned long end = roundup((unsigned long)_brk_end, PMD_SIZE) - 1;
307 	pmd_t *pmd = level2_kernel_pgt;
308 
309 	for (; vaddr + PMD_SIZE - 1 < vaddr_end; pmd++, vaddr += PMD_SIZE) {
310 		if (pmd_none(*pmd))
311 			continue;
312 		if (vaddr < (unsigned long) _text || vaddr > end)
313 			set_pmd(pmd, __pmd(0));
314 	}
315 }
316 
317 static __ref void *alloc_low_page(unsigned long *phys)
318 {
319 	unsigned long pfn = pgt_buf_end++;
320 	void *adr;
321 
322 	if (after_bootmem) {
323 		adr = (void *)get_zeroed_page(GFP_ATOMIC | __GFP_NOTRACK);
324 		*phys = __pa(adr);
325 
326 		return adr;
327 	}
328 
329 	if (pfn >= pgt_buf_top)
330 		panic("alloc_low_page: ran out of memory");
331 
332 	adr = early_memremap(pfn * PAGE_SIZE, PAGE_SIZE);
333 	clear_page(adr);
334 	*phys  = pfn * PAGE_SIZE;
335 	return adr;
336 }
337 
338 static __ref void *map_low_page(void *virt)
339 {
340 	void *adr;
341 	unsigned long phys, left;
342 
343 	if (after_bootmem)
344 		return virt;
345 
346 	phys = __pa(virt);
347 	left = phys & (PAGE_SIZE - 1);
348 	adr = early_memremap(phys & PAGE_MASK, PAGE_SIZE);
349 	adr = (void *)(((unsigned long)adr) | left);
350 
351 	return adr;
352 }
353 
354 static __ref void unmap_low_page(void *adr)
355 {
356 	if (after_bootmem)
357 		return;
358 
359 	early_iounmap((void *)((unsigned long)adr & PAGE_MASK), PAGE_SIZE);
360 }
361 
362 static unsigned long __meminit
363 phys_pte_init(pte_t *pte_page, unsigned long addr, unsigned long end,
364 	      pgprot_t prot)
365 {
366 	unsigned pages = 0;
367 	unsigned long last_map_addr = end;
368 	int i;
369 
370 	pte_t *pte = pte_page + pte_index(addr);
371 
372 	for(i = pte_index(addr); i < PTRS_PER_PTE; i++, addr += PAGE_SIZE, pte++) {
373 
374 		if (addr >= end) {
375 			if (!after_bootmem) {
376 				for(; i < PTRS_PER_PTE; i++, pte++)
377 					set_pte(pte, __pte(0));
378 			}
379 			break;
380 		}
381 
382 		/*
383 		 * We will re-use the existing mapping.
384 		 * Xen for example has some special requirements, like mapping
385 		 * pagetable pages as RO. So assume someone who pre-setup
386 		 * these mappings are more intelligent.
387 		 */
388 		if (pte_val(*pte)) {
389 			pages++;
390 			continue;
391 		}
392 
393 		if (0)
394 			printk("   pte=%p addr=%lx pte=%016lx\n",
395 			       pte, addr, pfn_pte(addr >> PAGE_SHIFT, PAGE_KERNEL).pte);
396 		pages++;
397 		set_pte(pte, pfn_pte(addr >> PAGE_SHIFT, prot));
398 		last_map_addr = (addr & PAGE_MASK) + PAGE_SIZE;
399 	}
400 
401 	update_page_count(PG_LEVEL_4K, pages);
402 
403 	return last_map_addr;
404 }
405 
406 static unsigned long __meminit
407 phys_pmd_init(pmd_t *pmd_page, unsigned long address, unsigned long end,
408 	      unsigned long page_size_mask, pgprot_t prot)
409 {
410 	unsigned long pages = 0, next;
411 	unsigned long last_map_addr = end;
412 
413 	int i = pmd_index(address);
414 
415 	for (; i < PTRS_PER_PMD; i++, address = next) {
416 		unsigned long pte_phys;
417 		pmd_t *pmd = pmd_page + pmd_index(address);
418 		pte_t *pte;
419 		pgprot_t new_prot = prot;
420 
421 		if (address >= end) {
422 			if (!after_bootmem) {
423 				for (; i < PTRS_PER_PMD; i++, pmd++)
424 					set_pmd(pmd, __pmd(0));
425 			}
426 			break;
427 		}
428 
429 		next = (address & PMD_MASK) + PMD_SIZE;
430 
431 		if (pmd_val(*pmd)) {
432 			if (!pmd_large(*pmd)) {
433 				spin_lock(&init_mm.page_table_lock);
434 				pte = map_low_page((pte_t *)pmd_page_vaddr(*pmd));
435 				last_map_addr = phys_pte_init(pte, address,
436 								end, prot);
437 				unmap_low_page(pte);
438 				spin_unlock(&init_mm.page_table_lock);
439 				continue;
440 			}
441 			/*
442 			 * If we are ok with PG_LEVEL_2M mapping, then we will
443 			 * use the existing mapping,
444 			 *
445 			 * Otherwise, we will split the large page mapping but
446 			 * use the same existing protection bits except for
447 			 * large page, so that we don't violate Intel's TLB
448 			 * Application note (317080) which says, while changing
449 			 * the page sizes, new and old translations should
450 			 * not differ with respect to page frame and
451 			 * attributes.
452 			 */
453 			if (page_size_mask & (1 << PG_LEVEL_2M)) {
454 				last_map_addr = next;
455 				continue;
456 			}
457 			new_prot = pte_pgprot(pte_clrhuge(*(pte_t *)pmd));
458 		}
459 
460 		if (page_size_mask & (1<<PG_LEVEL_2M)) {
461 			pages++;
462 			spin_lock(&init_mm.page_table_lock);
463 			set_pte((pte_t *)pmd,
464 				pfn_pte(address >> PAGE_SHIFT,
465 					__pgprot(pgprot_val(prot) | _PAGE_PSE)));
466 			spin_unlock(&init_mm.page_table_lock);
467 			last_map_addr = next;
468 			continue;
469 		}
470 
471 		pte = alloc_low_page(&pte_phys);
472 		last_map_addr = phys_pte_init(pte, address, end, new_prot);
473 		unmap_low_page(pte);
474 
475 		spin_lock(&init_mm.page_table_lock);
476 		pmd_populate_kernel(&init_mm, pmd, __va(pte_phys));
477 		spin_unlock(&init_mm.page_table_lock);
478 	}
479 	update_page_count(PG_LEVEL_2M, pages);
480 	return last_map_addr;
481 }
482 
483 static unsigned long __meminit
484 phys_pud_init(pud_t *pud_page, unsigned long addr, unsigned long end,
485 			 unsigned long page_size_mask)
486 {
487 	unsigned long pages = 0, next;
488 	unsigned long last_map_addr = end;
489 	int i = pud_index(addr);
490 
491 	for (; i < PTRS_PER_PUD; i++, addr = next) {
492 		unsigned long pmd_phys;
493 		pud_t *pud = pud_page + pud_index(addr);
494 		pmd_t *pmd;
495 		pgprot_t prot = PAGE_KERNEL;
496 
497 		if (addr >= end)
498 			break;
499 
500 		next = (addr & PUD_MASK) + PUD_SIZE;
501 
502 		if (!after_bootmem && !e820_any_mapped(addr, next, 0)) {
503 			set_pud(pud, __pud(0));
504 			continue;
505 		}
506 
507 		if (pud_val(*pud)) {
508 			if (!pud_large(*pud)) {
509 				pmd = map_low_page(pmd_offset(pud, 0));
510 				last_map_addr = phys_pmd_init(pmd, addr, end,
511 							 page_size_mask, prot);
512 				unmap_low_page(pmd);
513 				__flush_tlb_all();
514 				continue;
515 			}
516 			/*
517 			 * If we are ok with PG_LEVEL_1G mapping, then we will
518 			 * use the existing mapping.
519 			 *
520 			 * Otherwise, we will split the gbpage mapping but use
521 			 * the same existing protection  bits except for large
522 			 * page, so that we don't violate Intel's TLB
523 			 * Application note (317080) which says, while changing
524 			 * the page sizes, new and old translations should
525 			 * not differ with respect to page frame and
526 			 * attributes.
527 			 */
528 			if (page_size_mask & (1 << PG_LEVEL_1G)) {
529 				last_map_addr = next;
530 				continue;
531 			}
532 			prot = pte_pgprot(pte_clrhuge(*(pte_t *)pud));
533 		}
534 
535 		if (page_size_mask & (1<<PG_LEVEL_1G)) {
536 			pages++;
537 			spin_lock(&init_mm.page_table_lock);
538 			set_pte((pte_t *)pud,
539 				pfn_pte(addr >> PAGE_SHIFT, PAGE_KERNEL_LARGE));
540 			spin_unlock(&init_mm.page_table_lock);
541 			last_map_addr = next;
542 			continue;
543 		}
544 
545 		pmd = alloc_low_page(&pmd_phys);
546 		last_map_addr = phys_pmd_init(pmd, addr, end, page_size_mask,
547 					      prot);
548 		unmap_low_page(pmd);
549 
550 		spin_lock(&init_mm.page_table_lock);
551 		pud_populate(&init_mm, pud, __va(pmd_phys));
552 		spin_unlock(&init_mm.page_table_lock);
553 	}
554 	__flush_tlb_all();
555 
556 	update_page_count(PG_LEVEL_1G, pages);
557 
558 	return last_map_addr;
559 }
560 
561 unsigned long __meminit
562 kernel_physical_mapping_init(unsigned long start,
563 			     unsigned long end,
564 			     unsigned long page_size_mask)
565 {
566 	bool pgd_changed = false;
567 	unsigned long next, last_map_addr = end;
568 	unsigned long addr;
569 
570 	start = (unsigned long)__va(start);
571 	end = (unsigned long)__va(end);
572 	addr = start;
573 
574 	for (; start < end; start = next) {
575 		pgd_t *pgd = pgd_offset_k(start);
576 		unsigned long pud_phys;
577 		pud_t *pud;
578 
579 		next = (start + PGDIR_SIZE) & PGDIR_MASK;
580 		if (next > end)
581 			next = end;
582 
583 		if (pgd_val(*pgd)) {
584 			pud = map_low_page((pud_t *)pgd_page_vaddr(*pgd));
585 			last_map_addr = phys_pud_init(pud, __pa(start),
586 						 __pa(end), page_size_mask);
587 			unmap_low_page(pud);
588 			continue;
589 		}
590 
591 		pud = alloc_low_page(&pud_phys);
592 		last_map_addr = phys_pud_init(pud, __pa(start), __pa(next),
593 						 page_size_mask);
594 		unmap_low_page(pud);
595 
596 		spin_lock(&init_mm.page_table_lock);
597 		pgd_populate(&init_mm, pgd, __va(pud_phys));
598 		spin_unlock(&init_mm.page_table_lock);
599 		pgd_changed = true;
600 	}
601 
602 	if (pgd_changed)
603 		sync_global_pgds(addr, end);
604 
605 	__flush_tlb_all();
606 
607 	return last_map_addr;
608 }
609 
610 #ifndef CONFIG_NUMA
611 void __init initmem_init(void)
612 {
613 	memblock_set_node(0, (phys_addr_t)ULLONG_MAX, 0);
614 }
615 #endif
616 
617 void __init paging_init(void)
618 {
619 	sparse_memory_present_with_active_regions(MAX_NUMNODES);
620 	sparse_init();
621 
622 	/*
623 	 * clear the default setting with node 0
624 	 * note: don't use nodes_clear here, that is really clearing when
625 	 *	 numa support is not compiled in, and later node_set_state
626 	 *	 will not set it back.
627 	 */
628 	node_clear_state(0, N_NORMAL_MEMORY);
629 
630 	zone_sizes_init();
631 }
632 
633 /*
634  * Memory hotplug specific functions
635  */
636 #ifdef CONFIG_MEMORY_HOTPLUG
637 /*
638  * After memory hotplug the variables max_pfn, max_low_pfn and high_memory need
639  * updating.
640  */
641 static void  update_end_of_memory_vars(u64 start, u64 size)
642 {
643 	unsigned long end_pfn = PFN_UP(start + size);
644 
645 	if (end_pfn > max_pfn) {
646 		max_pfn = end_pfn;
647 		max_low_pfn = end_pfn;
648 		high_memory = (void *)__va(max_pfn * PAGE_SIZE - 1) + 1;
649 	}
650 }
651 
652 /*
653  * Memory is added always to NORMAL zone. This means you will never get
654  * additional DMA/DMA32 memory.
655  */
656 int arch_add_memory(int nid, u64 start, u64 size)
657 {
658 	struct pglist_data *pgdat = NODE_DATA(nid);
659 	struct zone *zone = pgdat->node_zones + ZONE_NORMAL;
660 	unsigned long last_mapped_pfn, start_pfn = start >> PAGE_SHIFT;
661 	unsigned long nr_pages = size >> PAGE_SHIFT;
662 	int ret;
663 
664 	last_mapped_pfn = init_memory_mapping(start, start + size);
665 	if (last_mapped_pfn > max_pfn_mapped)
666 		max_pfn_mapped = last_mapped_pfn;
667 
668 	ret = __add_pages(nid, zone, start_pfn, nr_pages);
669 	WARN_ON_ONCE(ret);
670 
671 	/* update max_pfn, max_low_pfn and high_memory */
672 	update_end_of_memory_vars(start, size);
673 
674 	return ret;
675 }
676 EXPORT_SYMBOL_GPL(arch_add_memory);
677 
678 #endif /* CONFIG_MEMORY_HOTPLUG */
679 
680 static struct kcore_list kcore_vsyscall;
681 
682 void __init mem_init(void)
683 {
684 	long codesize, reservedpages, datasize, initsize;
685 	unsigned long absent_pages;
686 
687 	pci_iommu_alloc();
688 
689 	/* clear_bss() already clear the empty_zero_page */
690 
691 	reservedpages = 0;
692 
693 	/* this will put all low memory onto the freelists */
694 #ifdef CONFIG_NUMA
695 	totalram_pages = numa_free_all_bootmem();
696 #else
697 	totalram_pages = free_all_bootmem();
698 #endif
699 
700 	absent_pages = absent_pages_in_range(0, max_pfn);
701 	reservedpages = max_pfn - totalram_pages - absent_pages;
702 	after_bootmem = 1;
703 
704 	codesize =  (unsigned long) &_etext - (unsigned long) &_text;
705 	datasize =  (unsigned long) &_edata - (unsigned long) &_etext;
706 	initsize =  (unsigned long) &__init_end - (unsigned long) &__init_begin;
707 
708 	/* Register memory areas for /proc/kcore */
709 	kclist_add(&kcore_vsyscall, (void *)VSYSCALL_START,
710 			 VSYSCALL_END - VSYSCALL_START, KCORE_OTHER);
711 
712 	printk(KERN_INFO "Memory: %luk/%luk available (%ldk kernel code, "
713 			 "%ldk absent, %ldk reserved, %ldk data, %ldk init)\n",
714 		nr_free_pages() << (PAGE_SHIFT-10),
715 		max_pfn << (PAGE_SHIFT-10),
716 		codesize >> 10,
717 		absent_pages << (PAGE_SHIFT-10),
718 		reservedpages << (PAGE_SHIFT-10),
719 		datasize >> 10,
720 		initsize >> 10);
721 }
722 
723 #ifdef CONFIG_DEBUG_RODATA
724 const int rodata_test_data = 0xC3;
725 EXPORT_SYMBOL_GPL(rodata_test_data);
726 
727 int kernel_set_to_readonly;
728 
729 void set_kernel_text_rw(void)
730 {
731 	unsigned long start = PFN_ALIGN(_text);
732 	unsigned long end = PFN_ALIGN(__stop___ex_table);
733 
734 	if (!kernel_set_to_readonly)
735 		return;
736 
737 	pr_debug("Set kernel text: %lx - %lx for read write\n",
738 		 start, end);
739 
740 	/*
741 	 * Make the kernel identity mapping for text RW. Kernel text
742 	 * mapping will always be RO. Refer to the comment in
743 	 * static_protections() in pageattr.c
744 	 */
745 	set_memory_rw(start, (end - start) >> PAGE_SHIFT);
746 }
747 
748 void set_kernel_text_ro(void)
749 {
750 	unsigned long start = PFN_ALIGN(_text);
751 	unsigned long end = PFN_ALIGN(__stop___ex_table);
752 
753 	if (!kernel_set_to_readonly)
754 		return;
755 
756 	pr_debug("Set kernel text: %lx - %lx for read only\n",
757 		 start, end);
758 
759 	/*
760 	 * Set the kernel identity mapping for text RO.
761 	 */
762 	set_memory_ro(start, (end - start) >> PAGE_SHIFT);
763 }
764 
765 void mark_rodata_ro(void)
766 {
767 	unsigned long start = PFN_ALIGN(_text);
768 	unsigned long rodata_start =
769 		((unsigned long)__start_rodata + PAGE_SIZE - 1) & PAGE_MASK;
770 	unsigned long end = (unsigned long) &__end_rodata_hpage_align;
771 	unsigned long text_end = PAGE_ALIGN((unsigned long) &__stop___ex_table);
772 	unsigned long rodata_end = PAGE_ALIGN((unsigned long) &__end_rodata);
773 	unsigned long data_start = (unsigned long) &_sdata;
774 
775 	printk(KERN_INFO "Write protecting the kernel read-only data: %luk\n",
776 	       (end - start) >> 10);
777 	set_memory_ro(start, (end - start) >> PAGE_SHIFT);
778 
779 	kernel_set_to_readonly = 1;
780 
781 	/*
782 	 * The rodata section (but not the kernel text!) should also be
783 	 * not-executable.
784 	 */
785 	set_memory_nx(rodata_start, (end - rodata_start) >> PAGE_SHIFT);
786 
787 	rodata_test();
788 
789 #ifdef CONFIG_CPA_DEBUG
790 	printk(KERN_INFO "Testing CPA: undo %lx-%lx\n", start, end);
791 	set_memory_rw(start, (end-start) >> PAGE_SHIFT);
792 
793 	printk(KERN_INFO "Testing CPA: again\n");
794 	set_memory_ro(start, (end-start) >> PAGE_SHIFT);
795 #endif
796 
797 	free_init_pages("unused kernel memory",
798 			(unsigned long) page_address(virt_to_page(text_end)),
799 			(unsigned long)
800 				 page_address(virt_to_page(rodata_start)));
801 	free_init_pages("unused kernel memory",
802 			(unsigned long) page_address(virt_to_page(rodata_end)),
803 			(unsigned long) page_address(virt_to_page(data_start)));
804 }
805 
806 #endif
807 
808 int kern_addr_valid(unsigned long addr)
809 {
810 	unsigned long above = ((long)addr) >> __VIRTUAL_MASK_SHIFT;
811 	pgd_t *pgd;
812 	pud_t *pud;
813 	pmd_t *pmd;
814 	pte_t *pte;
815 
816 	if (above != 0 && above != -1UL)
817 		return 0;
818 
819 	pgd = pgd_offset_k(addr);
820 	if (pgd_none(*pgd))
821 		return 0;
822 
823 	pud = pud_offset(pgd, addr);
824 	if (pud_none(*pud))
825 		return 0;
826 
827 	pmd = pmd_offset(pud, addr);
828 	if (pmd_none(*pmd))
829 		return 0;
830 
831 	if (pmd_large(*pmd))
832 		return pfn_valid(pmd_pfn(*pmd));
833 
834 	pte = pte_offset_kernel(pmd, addr);
835 	if (pte_none(*pte))
836 		return 0;
837 
838 	return pfn_valid(pte_pfn(*pte));
839 }
840 
841 /*
842  * A pseudo VMA to allow ptrace access for the vsyscall page.  This only
843  * covers the 64bit vsyscall page now. 32bit has a real VMA now and does
844  * not need special handling anymore:
845  */
846 static struct vm_area_struct gate_vma = {
847 	.vm_start	= VSYSCALL_START,
848 	.vm_end		= VSYSCALL_START + (VSYSCALL_MAPPED_PAGES * PAGE_SIZE),
849 	.vm_page_prot	= PAGE_READONLY_EXEC,
850 	.vm_flags	= VM_READ | VM_EXEC
851 };
852 
853 struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
854 {
855 #ifdef CONFIG_IA32_EMULATION
856 	if (!mm || mm->context.ia32_compat)
857 		return NULL;
858 #endif
859 	return &gate_vma;
860 }
861 
862 int in_gate_area(struct mm_struct *mm, unsigned long addr)
863 {
864 	struct vm_area_struct *vma = get_gate_vma(mm);
865 
866 	if (!vma)
867 		return 0;
868 
869 	return (addr >= vma->vm_start) && (addr < vma->vm_end);
870 }
871 
872 /*
873  * Use this when you have no reliable mm, typically from interrupt
874  * context. It is less reliable than using a task's mm and may give
875  * false positives.
876  */
877 int in_gate_area_no_mm(unsigned long addr)
878 {
879 	return (addr >= VSYSCALL_START) && (addr < VSYSCALL_END);
880 }
881 
882 const char *arch_vma_name(struct vm_area_struct *vma)
883 {
884 	if (vma->vm_mm && vma->vm_start == (long)vma->vm_mm->context.vdso)
885 		return "[vdso]";
886 	if (vma == &gate_vma)
887 		return "[vsyscall]";
888 	return NULL;
889 }
890 
891 #ifdef CONFIG_X86_UV
892 unsigned long memory_block_size_bytes(void)
893 {
894 	if (is_uv_system()) {
895 		printk(KERN_INFO "UV: memory block size 2GB\n");
896 		return 2UL * 1024 * 1024 * 1024;
897 	}
898 	return MIN_MEMORY_BLOCK_SIZE;
899 }
900 #endif
901 
902 #ifdef CONFIG_SPARSEMEM_VMEMMAP
903 /*
904  * Initialise the sparsemem vmemmap using huge-pages at the PMD level.
905  */
906 static long __meminitdata addr_start, addr_end;
907 static void __meminitdata *p_start, *p_end;
908 static int __meminitdata node_start;
909 
910 int __meminit
911 vmemmap_populate(struct page *start_page, unsigned long size, int node)
912 {
913 	unsigned long addr = (unsigned long)start_page;
914 	unsigned long end = (unsigned long)(start_page + size);
915 	unsigned long next;
916 	pgd_t *pgd;
917 	pud_t *pud;
918 	pmd_t *pmd;
919 
920 	for (; addr < end; addr = next) {
921 		void *p = NULL;
922 
923 		pgd = vmemmap_pgd_populate(addr, node);
924 		if (!pgd)
925 			return -ENOMEM;
926 
927 		pud = vmemmap_pud_populate(pgd, addr, node);
928 		if (!pud)
929 			return -ENOMEM;
930 
931 		if (!cpu_has_pse) {
932 			next = (addr + PAGE_SIZE) & PAGE_MASK;
933 			pmd = vmemmap_pmd_populate(pud, addr, node);
934 
935 			if (!pmd)
936 				return -ENOMEM;
937 
938 			p = vmemmap_pte_populate(pmd, addr, node);
939 
940 			if (!p)
941 				return -ENOMEM;
942 
943 			addr_end = addr + PAGE_SIZE;
944 			p_end = p + PAGE_SIZE;
945 		} else {
946 			next = pmd_addr_end(addr, end);
947 
948 			pmd = pmd_offset(pud, addr);
949 			if (pmd_none(*pmd)) {
950 				pte_t entry;
951 
952 				p = vmemmap_alloc_block_buf(PMD_SIZE, node);
953 				if (!p)
954 					return -ENOMEM;
955 
956 				entry = pfn_pte(__pa(p) >> PAGE_SHIFT,
957 						PAGE_KERNEL_LARGE);
958 				set_pmd(pmd, __pmd(pte_val(entry)));
959 
960 				/* check to see if we have contiguous blocks */
961 				if (p_end != p || node_start != node) {
962 					if (p_start)
963 						printk(KERN_DEBUG " [%lx-%lx] PMD -> [%p-%p] on node %d\n",
964 						       addr_start, addr_end-1, p_start, p_end-1, node_start);
965 					addr_start = addr;
966 					node_start = node;
967 					p_start = p;
968 				}
969 
970 				addr_end = addr + PMD_SIZE;
971 				p_end = p + PMD_SIZE;
972 			} else
973 				vmemmap_verify((pte_t *)pmd, node, addr, next);
974 		}
975 
976 	}
977 	sync_global_pgds((unsigned long)start_page, end);
978 	return 0;
979 }
980 
981 void __meminit vmemmap_populate_print_last(void)
982 {
983 	if (p_start) {
984 		printk(KERN_DEBUG " [%lx-%lx] PMD -> [%p-%p] on node %d\n",
985 			addr_start, addr_end-1, p_start, p_end-1, node_start);
986 		p_start = NULL;
987 		p_end = NULL;
988 		node_start = 0;
989 	}
990 }
991 #endif
992