xref: /linux/arch/x86/mm/init.c (revision b889fcf63cb62e7fdb7816565e28f44dbe4a76a5)
1 #include <linux/gfp.h>
2 #include <linux/initrd.h>
3 #include <linux/ioport.h>
4 #include <linux/swap.h>
5 #include <linux/memblock.h>
6 #include <linux/bootmem.h>	/* for max_low_pfn */
7 
8 #include <asm/cacheflush.h>
9 #include <asm/e820.h>
10 #include <asm/init.h>
11 #include <asm/page.h>
12 #include <asm/page_types.h>
13 #include <asm/sections.h>
14 #include <asm/setup.h>
15 #include <asm/tlbflush.h>
16 #include <asm/tlb.h>
17 #include <asm/proto.h>
18 #include <asm/dma.h>		/* for MAX_DMA_PFN */
19 
20 unsigned long __initdata pgt_buf_start;
21 unsigned long __meminitdata pgt_buf_end;
22 unsigned long __meminitdata pgt_buf_top;
23 
24 int after_bootmem;
25 
26 int direct_gbpages
27 #ifdef CONFIG_DIRECT_GBPAGES
28 				= 1
29 #endif
30 ;
31 
32 struct map_range {
33 	unsigned long start;
34 	unsigned long end;
35 	unsigned page_size_mask;
36 };
37 
38 /*
39  * First calculate space needed for kernel direct mapping page tables to cover
40  * mr[0].start to mr[nr_range - 1].end, while accounting for possible 2M and 1GB
41  * pages. Then find enough contiguous space for those page tables.
42  */
43 static void __init find_early_table_space(struct map_range *mr, int nr_range)
44 {
45 	int i;
46 	unsigned long puds = 0, pmds = 0, ptes = 0, tables;
47 	unsigned long start = 0, good_end;
48 	phys_addr_t base;
49 
50 	for (i = 0; i < nr_range; i++) {
51 		unsigned long range, extra;
52 
53 		range = mr[i].end - mr[i].start;
54 		puds += (range + PUD_SIZE - 1) >> PUD_SHIFT;
55 
56 		if (mr[i].page_size_mask & (1 << PG_LEVEL_1G)) {
57 			extra = range - ((range >> PUD_SHIFT) << PUD_SHIFT);
58 			pmds += (extra + PMD_SIZE - 1) >> PMD_SHIFT;
59 		} else {
60 			pmds += (range + PMD_SIZE - 1) >> PMD_SHIFT;
61 		}
62 
63 		if (mr[i].page_size_mask & (1 << PG_LEVEL_2M)) {
64 			extra = range - ((range >> PMD_SHIFT) << PMD_SHIFT);
65 #ifdef CONFIG_X86_32
66 			extra += PMD_SIZE;
67 #endif
68 			ptes += (extra + PAGE_SIZE - 1) >> PAGE_SHIFT;
69 		} else {
70 			ptes += (range + PAGE_SIZE - 1) >> PAGE_SHIFT;
71 		}
72 	}
73 
74 	tables = roundup(puds * sizeof(pud_t), PAGE_SIZE);
75 	tables += roundup(pmds * sizeof(pmd_t), PAGE_SIZE);
76 	tables += roundup(ptes * sizeof(pte_t), PAGE_SIZE);
77 
78 #ifdef CONFIG_X86_32
79 	/* for fixmap */
80 	tables += roundup(__end_of_fixed_addresses * sizeof(pte_t), PAGE_SIZE);
81 #endif
82 	good_end = max_pfn_mapped << PAGE_SHIFT;
83 
84 	base = memblock_find_in_range(start, good_end, tables, PAGE_SIZE);
85 	if (!base)
86 		panic("Cannot find space for the kernel page tables");
87 
88 	pgt_buf_start = base >> PAGE_SHIFT;
89 	pgt_buf_end = pgt_buf_start;
90 	pgt_buf_top = pgt_buf_start + (tables >> PAGE_SHIFT);
91 
92 	printk(KERN_DEBUG "kernel direct mapping tables up to %#lx @ [mem %#010lx-%#010lx]\n",
93 		mr[nr_range - 1].end - 1, pgt_buf_start << PAGE_SHIFT,
94 		(pgt_buf_top << PAGE_SHIFT) - 1);
95 }
96 
97 void __init native_pagetable_reserve(u64 start, u64 end)
98 {
99 	memblock_reserve(start, end - start);
100 }
101 
102 #ifdef CONFIG_X86_32
103 #define NR_RANGE_MR 3
104 #else /* CONFIG_X86_64 */
105 #define NR_RANGE_MR 5
106 #endif
107 
108 static int __meminit save_mr(struct map_range *mr, int nr_range,
109 			     unsigned long start_pfn, unsigned long end_pfn,
110 			     unsigned long page_size_mask)
111 {
112 	if (start_pfn < end_pfn) {
113 		if (nr_range >= NR_RANGE_MR)
114 			panic("run out of range for init_memory_mapping\n");
115 		mr[nr_range].start = start_pfn<<PAGE_SHIFT;
116 		mr[nr_range].end   = end_pfn<<PAGE_SHIFT;
117 		mr[nr_range].page_size_mask = page_size_mask;
118 		nr_range++;
119 	}
120 
121 	return nr_range;
122 }
123 
124 /*
125  * Setup the direct mapping of the physical memory at PAGE_OFFSET.
126  * This runs before bootmem is initialized and gets pages directly from
127  * the physical memory. To access them they are temporarily mapped.
128  */
129 unsigned long __init_refok init_memory_mapping(unsigned long start,
130 					       unsigned long end)
131 {
132 	unsigned long page_size_mask = 0;
133 	unsigned long start_pfn, end_pfn;
134 	unsigned long ret = 0;
135 	unsigned long pos;
136 
137 	struct map_range mr[NR_RANGE_MR];
138 	int nr_range, i;
139 	int use_pse, use_gbpages;
140 
141 	printk(KERN_INFO "init_memory_mapping: [mem %#010lx-%#010lx]\n",
142 	       start, end - 1);
143 
144 #if defined(CONFIG_DEBUG_PAGEALLOC) || defined(CONFIG_KMEMCHECK)
145 	/*
146 	 * For CONFIG_DEBUG_PAGEALLOC, identity mapping will use small pages.
147 	 * This will simplify cpa(), which otherwise needs to support splitting
148 	 * large pages into small in interrupt context, etc.
149 	 */
150 	use_pse = use_gbpages = 0;
151 #else
152 	use_pse = cpu_has_pse;
153 	use_gbpages = direct_gbpages;
154 #endif
155 
156 	/* Enable PSE if available */
157 	if (cpu_has_pse)
158 		set_in_cr4(X86_CR4_PSE);
159 
160 	/* Enable PGE if available */
161 	if (cpu_has_pge) {
162 		set_in_cr4(X86_CR4_PGE);
163 		__supported_pte_mask |= _PAGE_GLOBAL;
164 	}
165 
166 	if (use_gbpages)
167 		page_size_mask |= 1 << PG_LEVEL_1G;
168 	if (use_pse)
169 		page_size_mask |= 1 << PG_LEVEL_2M;
170 
171 	memset(mr, 0, sizeof(mr));
172 	nr_range = 0;
173 
174 	/* head if not big page alignment ? */
175 	start_pfn = start >> PAGE_SHIFT;
176 	pos = start_pfn << PAGE_SHIFT;
177 #ifdef CONFIG_X86_32
178 	/*
179 	 * Don't use a large page for the first 2/4MB of memory
180 	 * because there are often fixed size MTRRs in there
181 	 * and overlapping MTRRs into large pages can cause
182 	 * slowdowns.
183 	 */
184 	if (pos == 0)
185 		end_pfn = 1<<(PMD_SHIFT - PAGE_SHIFT);
186 	else
187 		end_pfn = ((pos + (PMD_SIZE - 1))>>PMD_SHIFT)
188 				 << (PMD_SHIFT - PAGE_SHIFT);
189 #else /* CONFIG_X86_64 */
190 	end_pfn = ((pos + (PMD_SIZE - 1)) >> PMD_SHIFT)
191 			<< (PMD_SHIFT - PAGE_SHIFT);
192 #endif
193 	if (end_pfn > (end >> PAGE_SHIFT))
194 		end_pfn = end >> PAGE_SHIFT;
195 	if (start_pfn < end_pfn) {
196 		nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
197 		pos = end_pfn << PAGE_SHIFT;
198 	}
199 
200 	/* big page (2M) range */
201 	start_pfn = ((pos + (PMD_SIZE - 1))>>PMD_SHIFT)
202 			 << (PMD_SHIFT - PAGE_SHIFT);
203 #ifdef CONFIG_X86_32
204 	end_pfn = (end>>PMD_SHIFT) << (PMD_SHIFT - PAGE_SHIFT);
205 #else /* CONFIG_X86_64 */
206 	end_pfn = ((pos + (PUD_SIZE - 1))>>PUD_SHIFT)
207 			 << (PUD_SHIFT - PAGE_SHIFT);
208 	if (end_pfn > ((end>>PMD_SHIFT)<<(PMD_SHIFT - PAGE_SHIFT)))
209 		end_pfn = ((end>>PMD_SHIFT)<<(PMD_SHIFT - PAGE_SHIFT));
210 #endif
211 
212 	if (start_pfn < end_pfn) {
213 		nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
214 				page_size_mask & (1<<PG_LEVEL_2M));
215 		pos = end_pfn << PAGE_SHIFT;
216 	}
217 
218 #ifdef CONFIG_X86_64
219 	/* big page (1G) range */
220 	start_pfn = ((pos + (PUD_SIZE - 1))>>PUD_SHIFT)
221 			 << (PUD_SHIFT - PAGE_SHIFT);
222 	end_pfn = (end >> PUD_SHIFT) << (PUD_SHIFT - PAGE_SHIFT);
223 	if (start_pfn < end_pfn) {
224 		nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
225 				page_size_mask &
226 				 ((1<<PG_LEVEL_2M)|(1<<PG_LEVEL_1G)));
227 		pos = end_pfn << PAGE_SHIFT;
228 	}
229 
230 	/* tail is not big page (1G) alignment */
231 	start_pfn = ((pos + (PMD_SIZE - 1))>>PMD_SHIFT)
232 			 << (PMD_SHIFT - PAGE_SHIFT);
233 	end_pfn = (end >> PMD_SHIFT) << (PMD_SHIFT - PAGE_SHIFT);
234 	if (start_pfn < end_pfn) {
235 		nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
236 				page_size_mask & (1<<PG_LEVEL_2M));
237 		pos = end_pfn << PAGE_SHIFT;
238 	}
239 #endif
240 
241 	/* tail is not big page (2M) alignment */
242 	start_pfn = pos>>PAGE_SHIFT;
243 	end_pfn = end>>PAGE_SHIFT;
244 	nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
245 
246 	/* try to merge same page size and continuous */
247 	for (i = 0; nr_range > 1 && i < nr_range - 1; i++) {
248 		unsigned long old_start;
249 		if (mr[i].end != mr[i+1].start ||
250 		    mr[i].page_size_mask != mr[i+1].page_size_mask)
251 			continue;
252 		/* move it */
253 		old_start = mr[i].start;
254 		memmove(&mr[i], &mr[i+1],
255 			(nr_range - 1 - i) * sizeof(struct map_range));
256 		mr[i--].start = old_start;
257 		nr_range--;
258 	}
259 
260 	for (i = 0; i < nr_range; i++)
261 		printk(KERN_DEBUG " [mem %#010lx-%#010lx] page %s\n",
262 				mr[i].start, mr[i].end - 1,
263 			(mr[i].page_size_mask & (1<<PG_LEVEL_1G))?"1G":(
264 			 (mr[i].page_size_mask & (1<<PG_LEVEL_2M))?"2M":"4k"));
265 
266 	/*
267 	 * Find space for the kernel direct mapping tables.
268 	 *
269 	 * Later we should allocate these tables in the local node of the
270 	 * memory mapped. Unfortunately this is done currently before the
271 	 * nodes are discovered.
272 	 */
273 	if (!after_bootmem)
274 		find_early_table_space(mr, nr_range);
275 
276 	for (i = 0; i < nr_range; i++)
277 		ret = kernel_physical_mapping_init(mr[i].start, mr[i].end,
278 						   mr[i].page_size_mask);
279 
280 #ifdef CONFIG_X86_32
281 	early_ioremap_page_table_range_init();
282 
283 	load_cr3(swapper_pg_dir);
284 #endif
285 
286 	__flush_tlb_all();
287 
288 	/*
289 	 * Reserve the kernel pagetable pages we used (pgt_buf_start -
290 	 * pgt_buf_end) and free the other ones (pgt_buf_end - pgt_buf_top)
291 	 * so that they can be reused for other purposes.
292 	 *
293 	 * On native it just means calling memblock_reserve, on Xen it also
294 	 * means marking RW the pagetable pages that we allocated before
295 	 * but that haven't been used.
296 	 *
297 	 * In fact on xen we mark RO the whole range pgt_buf_start -
298 	 * pgt_buf_top, because we have to make sure that when
299 	 * init_memory_mapping reaches the pagetable pages area, it maps
300 	 * RO all the pagetable pages, including the ones that are beyond
301 	 * pgt_buf_end at that time.
302 	 */
303 	if (!after_bootmem && pgt_buf_end > pgt_buf_start)
304 		x86_init.mapping.pagetable_reserve(PFN_PHYS(pgt_buf_start),
305 				PFN_PHYS(pgt_buf_end));
306 
307 	if (!after_bootmem)
308 		early_memtest(start, end);
309 
310 	return ret >> PAGE_SHIFT;
311 }
312 
313 
314 /*
315  * devmem_is_allowed() checks to see if /dev/mem access to a certain address
316  * is valid. The argument is a physical page number.
317  *
318  *
319  * On x86, access has to be given to the first megabyte of ram because that area
320  * contains bios code and data regions used by X and dosemu and similar apps.
321  * Access has to be given to non-kernel-ram areas as well, these contain the PCI
322  * mmio resources as well as potential bios/acpi data regions.
323  */
324 int devmem_is_allowed(unsigned long pagenr)
325 {
326 	if (pagenr < 256)
327 		return 1;
328 	if (iomem_is_exclusive(pagenr << PAGE_SHIFT))
329 		return 0;
330 	if (!page_is_ram(pagenr))
331 		return 1;
332 	return 0;
333 }
334 
335 void free_init_pages(char *what, unsigned long begin, unsigned long end)
336 {
337 	unsigned long addr;
338 	unsigned long begin_aligned, end_aligned;
339 
340 	/* Make sure boundaries are page aligned */
341 	begin_aligned = PAGE_ALIGN(begin);
342 	end_aligned   = end & PAGE_MASK;
343 
344 	if (WARN_ON(begin_aligned != begin || end_aligned != end)) {
345 		begin = begin_aligned;
346 		end   = end_aligned;
347 	}
348 
349 	if (begin >= end)
350 		return;
351 
352 	addr = begin;
353 
354 	/*
355 	 * If debugging page accesses then do not free this memory but
356 	 * mark them not present - any buggy init-section access will
357 	 * create a kernel page fault:
358 	 */
359 #ifdef CONFIG_DEBUG_PAGEALLOC
360 	printk(KERN_INFO "debug: unmapping init [mem %#010lx-%#010lx]\n",
361 		begin, end - 1);
362 	set_memory_np(begin, (end - begin) >> PAGE_SHIFT);
363 #else
364 	/*
365 	 * We just marked the kernel text read only above, now that
366 	 * we are going to free part of that, we need to make that
367 	 * writeable and non-executable first.
368 	 */
369 	set_memory_nx(begin, (end - begin) >> PAGE_SHIFT);
370 	set_memory_rw(begin, (end - begin) >> PAGE_SHIFT);
371 
372 	printk(KERN_INFO "Freeing %s: %luk freed\n", what, (end - begin) >> 10);
373 
374 	for (; addr < end; addr += PAGE_SIZE) {
375 		ClearPageReserved(virt_to_page(addr));
376 		init_page_count(virt_to_page(addr));
377 		memset((void *)addr, POISON_FREE_INITMEM, PAGE_SIZE);
378 		free_page(addr);
379 		totalram_pages++;
380 	}
381 #endif
382 }
383 
384 void free_initmem(void)
385 {
386 	free_init_pages("unused kernel memory",
387 			(unsigned long)(&__init_begin),
388 			(unsigned long)(&__init_end));
389 }
390 
391 #ifdef CONFIG_BLK_DEV_INITRD
392 void __init free_initrd_mem(unsigned long start, unsigned long end)
393 {
394 	/*
395 	 * end could be not aligned, and We can not align that,
396 	 * decompresser could be confused by aligned initrd_end
397 	 * We already reserve the end partial page before in
398 	 *   - i386_start_kernel()
399 	 *   - x86_64_start_kernel()
400 	 *   - relocate_initrd()
401 	 * So here We can do PAGE_ALIGN() safely to get partial page to be freed
402 	 */
403 	free_init_pages("initrd memory", start, PAGE_ALIGN(end));
404 }
405 #endif
406 
407 void __init zone_sizes_init(void)
408 {
409 	unsigned long max_zone_pfns[MAX_NR_ZONES];
410 
411 	memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
412 
413 #ifdef CONFIG_ZONE_DMA
414 	max_zone_pfns[ZONE_DMA]		= MAX_DMA_PFN;
415 #endif
416 #ifdef CONFIG_ZONE_DMA32
417 	max_zone_pfns[ZONE_DMA32]	= MAX_DMA32_PFN;
418 #endif
419 	max_zone_pfns[ZONE_NORMAL]	= max_low_pfn;
420 #ifdef CONFIG_HIGHMEM
421 	max_zone_pfns[ZONE_HIGHMEM]	= max_pfn;
422 #endif
423 
424 	free_area_init_nodes(max_zone_pfns);
425 }
426 
427