xref: /linux/arch/x86/mm/init.c (revision b234e8a09003af108d3573f0369e25c080676b14)
1 #include <linux/gfp.h>
2 #include <linux/initrd.h>
3 #include <linux/ioport.h>
4 #include <linux/swap.h>
5 #include <linux/memblock.h>
6 #include <linux/bootmem.h>	/* for max_low_pfn */
7 
8 #include <asm/cacheflush.h>
9 #include <asm/e820.h>
10 #include <asm/init.h>
11 #include <asm/page.h>
12 #include <asm/page_types.h>
13 #include <asm/sections.h>
14 #include <asm/setup.h>
15 #include <asm/tlbflush.h>
16 #include <asm/tlb.h>
17 #include <asm/proto.h>
18 #include <asm/dma.h>		/* for MAX_DMA_PFN */
19 #include <asm/microcode.h>
20 
21 /*
22  * We need to define the tracepoints somewhere, and tlb.c
23  * is only compied when SMP=y.
24  */
25 #define CREATE_TRACE_POINTS
26 #include <trace/events/tlb.h>
27 
28 #include "mm_internal.h"
29 
30 /*
31  * Tables translating between page_cache_type_t and pte encoding.
32  *
33  * The default values are defined statically as minimal supported mode;
34  * WC and WT fall back to UC-.  pat_init() updates these values to support
35  * more cache modes, WC and WT, when it is safe to do so.  See pat_init()
36  * for the details.  Note, __early_ioremap() used during early boot-time
37  * takes pgprot_t (pte encoding) and does not use these tables.
38  *
39  *   Index into __cachemode2pte_tbl[] is the cachemode.
40  *
41  *   Index into __pte2cachemode_tbl[] are the caching attribute bits of the pte
42  *   (_PAGE_PWT, _PAGE_PCD, _PAGE_PAT) at index bit positions 0, 1, 2.
43  */
44 uint16_t __cachemode2pte_tbl[_PAGE_CACHE_MODE_NUM] = {
45 	[_PAGE_CACHE_MODE_WB      ]	= 0         | 0        ,
46 	[_PAGE_CACHE_MODE_WC      ]	= 0         | _PAGE_PCD,
47 	[_PAGE_CACHE_MODE_UC_MINUS]	= 0         | _PAGE_PCD,
48 	[_PAGE_CACHE_MODE_UC      ]	= _PAGE_PWT | _PAGE_PCD,
49 	[_PAGE_CACHE_MODE_WT      ]	= 0         | _PAGE_PCD,
50 	[_PAGE_CACHE_MODE_WP      ]	= 0         | _PAGE_PCD,
51 };
52 EXPORT_SYMBOL(__cachemode2pte_tbl);
53 
54 uint8_t __pte2cachemode_tbl[8] = {
55 	[__pte2cm_idx( 0        | 0         | 0        )] = _PAGE_CACHE_MODE_WB,
56 	[__pte2cm_idx(_PAGE_PWT | 0         | 0        )] = _PAGE_CACHE_MODE_UC_MINUS,
57 	[__pte2cm_idx( 0        | _PAGE_PCD | 0        )] = _PAGE_CACHE_MODE_UC_MINUS,
58 	[__pte2cm_idx(_PAGE_PWT | _PAGE_PCD | 0        )] = _PAGE_CACHE_MODE_UC,
59 	[__pte2cm_idx( 0        | 0         | _PAGE_PAT)] = _PAGE_CACHE_MODE_WB,
60 	[__pte2cm_idx(_PAGE_PWT | 0         | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC_MINUS,
61 	[__pte2cm_idx(0         | _PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC_MINUS,
62 	[__pte2cm_idx(_PAGE_PWT | _PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC,
63 };
64 EXPORT_SYMBOL(__pte2cachemode_tbl);
65 
66 static unsigned long __initdata pgt_buf_start;
67 static unsigned long __initdata pgt_buf_end;
68 static unsigned long __initdata pgt_buf_top;
69 
70 static unsigned long min_pfn_mapped;
71 
72 static bool __initdata can_use_brk_pgt = true;
73 
74 /*
75  * Pages returned are already directly mapped.
76  *
77  * Changing that is likely to break Xen, see commit:
78  *
79  *    279b706 x86,xen: introduce x86_init.mapping.pagetable_reserve
80  *
81  * for detailed information.
82  */
83 __ref void *alloc_low_pages(unsigned int num)
84 {
85 	unsigned long pfn;
86 	int i;
87 
88 	if (after_bootmem) {
89 		unsigned int order;
90 
91 		order = get_order((unsigned long)num << PAGE_SHIFT);
92 		return (void *)__get_free_pages(GFP_ATOMIC | __GFP_NOTRACK |
93 						__GFP_ZERO, order);
94 	}
95 
96 	if ((pgt_buf_end + num) > pgt_buf_top || !can_use_brk_pgt) {
97 		unsigned long ret;
98 		if (min_pfn_mapped >= max_pfn_mapped)
99 			panic("alloc_low_pages: ran out of memory");
100 		ret = memblock_find_in_range(min_pfn_mapped << PAGE_SHIFT,
101 					max_pfn_mapped << PAGE_SHIFT,
102 					PAGE_SIZE * num , PAGE_SIZE);
103 		if (!ret)
104 			panic("alloc_low_pages: can not alloc memory");
105 		memblock_reserve(ret, PAGE_SIZE * num);
106 		pfn = ret >> PAGE_SHIFT;
107 	} else {
108 		pfn = pgt_buf_end;
109 		pgt_buf_end += num;
110 		printk(KERN_DEBUG "BRK [%#010lx, %#010lx] PGTABLE\n",
111 			pfn << PAGE_SHIFT, (pgt_buf_end << PAGE_SHIFT) - 1);
112 	}
113 
114 	for (i = 0; i < num; i++) {
115 		void *adr;
116 
117 		adr = __va((pfn + i) << PAGE_SHIFT);
118 		clear_page(adr);
119 	}
120 
121 	return __va(pfn << PAGE_SHIFT);
122 }
123 
124 /* need 3 4k for initial PMD_SIZE,  3 4k for 0-ISA_END_ADDRESS */
125 #define INIT_PGT_BUF_SIZE	(6 * PAGE_SIZE)
126 RESERVE_BRK(early_pgt_alloc, INIT_PGT_BUF_SIZE);
127 void  __init early_alloc_pgt_buf(void)
128 {
129 	unsigned long tables = INIT_PGT_BUF_SIZE;
130 	phys_addr_t base;
131 
132 	base = __pa(extend_brk(tables, PAGE_SIZE));
133 
134 	pgt_buf_start = base >> PAGE_SHIFT;
135 	pgt_buf_end = pgt_buf_start;
136 	pgt_buf_top = pgt_buf_start + (tables >> PAGE_SHIFT);
137 }
138 
139 int after_bootmem;
140 
141 early_param_on_off("gbpages", "nogbpages", direct_gbpages, CONFIG_X86_DIRECT_GBPAGES);
142 
143 struct map_range {
144 	unsigned long start;
145 	unsigned long end;
146 	unsigned page_size_mask;
147 };
148 
149 static int page_size_mask;
150 
151 static void __init probe_page_size_mask(void)
152 {
153 #if !defined(CONFIG_KMEMCHECK)
154 	/*
155 	 * For CONFIG_KMEMCHECK or pagealloc debugging, identity mapping will
156 	 * use small pages.
157 	 * This will simplify cpa(), which otherwise needs to support splitting
158 	 * large pages into small in interrupt context, etc.
159 	 */
160 	if (boot_cpu_has(X86_FEATURE_PSE) && !debug_pagealloc_enabled())
161 		page_size_mask |= 1 << PG_LEVEL_2M;
162 #endif
163 
164 	/* Enable PSE if available */
165 	if (boot_cpu_has(X86_FEATURE_PSE))
166 		cr4_set_bits_and_update_boot(X86_CR4_PSE);
167 
168 	/* Enable PGE if available */
169 	if (boot_cpu_has(X86_FEATURE_PGE)) {
170 		cr4_set_bits_and_update_boot(X86_CR4_PGE);
171 		__supported_pte_mask |= _PAGE_GLOBAL;
172 	} else
173 		__supported_pte_mask &= ~_PAGE_GLOBAL;
174 
175 	/* Enable 1 GB linear kernel mappings if available: */
176 	if (direct_gbpages && boot_cpu_has(X86_FEATURE_GBPAGES)) {
177 		printk(KERN_INFO "Using GB pages for direct mapping\n");
178 		page_size_mask |= 1 << PG_LEVEL_1G;
179 	} else {
180 		direct_gbpages = 0;
181 	}
182 }
183 
184 #ifdef CONFIG_X86_32
185 #define NR_RANGE_MR 3
186 #else /* CONFIG_X86_64 */
187 #define NR_RANGE_MR 5
188 #endif
189 
190 static int __meminit save_mr(struct map_range *mr, int nr_range,
191 			     unsigned long start_pfn, unsigned long end_pfn,
192 			     unsigned long page_size_mask)
193 {
194 	if (start_pfn < end_pfn) {
195 		if (nr_range >= NR_RANGE_MR)
196 			panic("run out of range for init_memory_mapping\n");
197 		mr[nr_range].start = start_pfn<<PAGE_SHIFT;
198 		mr[nr_range].end   = end_pfn<<PAGE_SHIFT;
199 		mr[nr_range].page_size_mask = page_size_mask;
200 		nr_range++;
201 	}
202 
203 	return nr_range;
204 }
205 
206 /*
207  * adjust the page_size_mask for small range to go with
208  *	big page size instead small one if nearby are ram too.
209  */
210 static void __init_refok adjust_range_page_size_mask(struct map_range *mr,
211 							 int nr_range)
212 {
213 	int i;
214 
215 	for (i = 0; i < nr_range; i++) {
216 		if ((page_size_mask & (1<<PG_LEVEL_2M)) &&
217 		    !(mr[i].page_size_mask & (1<<PG_LEVEL_2M))) {
218 			unsigned long start = round_down(mr[i].start, PMD_SIZE);
219 			unsigned long end = round_up(mr[i].end, PMD_SIZE);
220 
221 #ifdef CONFIG_X86_32
222 			if ((end >> PAGE_SHIFT) > max_low_pfn)
223 				continue;
224 #endif
225 
226 			if (memblock_is_region_memory(start, end - start))
227 				mr[i].page_size_mask |= 1<<PG_LEVEL_2M;
228 		}
229 		if ((page_size_mask & (1<<PG_LEVEL_1G)) &&
230 		    !(mr[i].page_size_mask & (1<<PG_LEVEL_1G))) {
231 			unsigned long start = round_down(mr[i].start, PUD_SIZE);
232 			unsigned long end = round_up(mr[i].end, PUD_SIZE);
233 
234 			if (memblock_is_region_memory(start, end - start))
235 				mr[i].page_size_mask |= 1<<PG_LEVEL_1G;
236 		}
237 	}
238 }
239 
240 static const char *page_size_string(struct map_range *mr)
241 {
242 	static const char str_1g[] = "1G";
243 	static const char str_2m[] = "2M";
244 	static const char str_4m[] = "4M";
245 	static const char str_4k[] = "4k";
246 
247 	if (mr->page_size_mask & (1<<PG_LEVEL_1G))
248 		return str_1g;
249 	/*
250 	 * 32-bit without PAE has a 4M large page size.
251 	 * PG_LEVEL_2M is misnamed, but we can at least
252 	 * print out the right size in the string.
253 	 */
254 	if (IS_ENABLED(CONFIG_X86_32) &&
255 	    !IS_ENABLED(CONFIG_X86_PAE) &&
256 	    mr->page_size_mask & (1<<PG_LEVEL_2M))
257 		return str_4m;
258 
259 	if (mr->page_size_mask & (1<<PG_LEVEL_2M))
260 		return str_2m;
261 
262 	return str_4k;
263 }
264 
265 static int __meminit split_mem_range(struct map_range *mr, int nr_range,
266 				     unsigned long start,
267 				     unsigned long end)
268 {
269 	unsigned long start_pfn, end_pfn, limit_pfn;
270 	unsigned long pfn;
271 	int i;
272 
273 	limit_pfn = PFN_DOWN(end);
274 
275 	/* head if not big page alignment ? */
276 	pfn = start_pfn = PFN_DOWN(start);
277 #ifdef CONFIG_X86_32
278 	/*
279 	 * Don't use a large page for the first 2/4MB of memory
280 	 * because there are often fixed size MTRRs in there
281 	 * and overlapping MTRRs into large pages can cause
282 	 * slowdowns.
283 	 */
284 	if (pfn == 0)
285 		end_pfn = PFN_DOWN(PMD_SIZE);
286 	else
287 		end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
288 #else /* CONFIG_X86_64 */
289 	end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
290 #endif
291 	if (end_pfn > limit_pfn)
292 		end_pfn = limit_pfn;
293 	if (start_pfn < end_pfn) {
294 		nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
295 		pfn = end_pfn;
296 	}
297 
298 	/* big page (2M) range */
299 	start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
300 #ifdef CONFIG_X86_32
301 	end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
302 #else /* CONFIG_X86_64 */
303 	end_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
304 	if (end_pfn > round_down(limit_pfn, PFN_DOWN(PMD_SIZE)))
305 		end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
306 #endif
307 
308 	if (start_pfn < end_pfn) {
309 		nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
310 				page_size_mask & (1<<PG_LEVEL_2M));
311 		pfn = end_pfn;
312 	}
313 
314 #ifdef CONFIG_X86_64
315 	/* big page (1G) range */
316 	start_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
317 	end_pfn = round_down(limit_pfn, PFN_DOWN(PUD_SIZE));
318 	if (start_pfn < end_pfn) {
319 		nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
320 				page_size_mask &
321 				 ((1<<PG_LEVEL_2M)|(1<<PG_LEVEL_1G)));
322 		pfn = end_pfn;
323 	}
324 
325 	/* tail is not big page (1G) alignment */
326 	start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
327 	end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
328 	if (start_pfn < end_pfn) {
329 		nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
330 				page_size_mask & (1<<PG_LEVEL_2M));
331 		pfn = end_pfn;
332 	}
333 #endif
334 
335 	/* tail is not big page (2M) alignment */
336 	start_pfn = pfn;
337 	end_pfn = limit_pfn;
338 	nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
339 
340 	if (!after_bootmem)
341 		adjust_range_page_size_mask(mr, nr_range);
342 
343 	/* try to merge same page size and continuous */
344 	for (i = 0; nr_range > 1 && i < nr_range - 1; i++) {
345 		unsigned long old_start;
346 		if (mr[i].end != mr[i+1].start ||
347 		    mr[i].page_size_mask != mr[i+1].page_size_mask)
348 			continue;
349 		/* move it */
350 		old_start = mr[i].start;
351 		memmove(&mr[i], &mr[i+1],
352 			(nr_range - 1 - i) * sizeof(struct map_range));
353 		mr[i--].start = old_start;
354 		nr_range--;
355 	}
356 
357 	for (i = 0; i < nr_range; i++)
358 		pr_debug(" [mem %#010lx-%#010lx] page %s\n",
359 				mr[i].start, mr[i].end - 1,
360 				page_size_string(&mr[i]));
361 
362 	return nr_range;
363 }
364 
365 struct range pfn_mapped[E820_X_MAX];
366 int nr_pfn_mapped;
367 
368 static void add_pfn_range_mapped(unsigned long start_pfn, unsigned long end_pfn)
369 {
370 	nr_pfn_mapped = add_range_with_merge(pfn_mapped, E820_X_MAX,
371 					     nr_pfn_mapped, start_pfn, end_pfn);
372 	nr_pfn_mapped = clean_sort_range(pfn_mapped, E820_X_MAX);
373 
374 	max_pfn_mapped = max(max_pfn_mapped, end_pfn);
375 
376 	if (start_pfn < (1UL<<(32-PAGE_SHIFT)))
377 		max_low_pfn_mapped = max(max_low_pfn_mapped,
378 					 min(end_pfn, 1UL<<(32-PAGE_SHIFT)));
379 }
380 
381 bool pfn_range_is_mapped(unsigned long start_pfn, unsigned long end_pfn)
382 {
383 	int i;
384 
385 	for (i = 0; i < nr_pfn_mapped; i++)
386 		if ((start_pfn >= pfn_mapped[i].start) &&
387 		    (end_pfn <= pfn_mapped[i].end))
388 			return true;
389 
390 	return false;
391 }
392 
393 /*
394  * Setup the direct mapping of the physical memory at PAGE_OFFSET.
395  * This runs before bootmem is initialized and gets pages directly from
396  * the physical memory. To access them they are temporarily mapped.
397  */
398 unsigned long __init_refok init_memory_mapping(unsigned long start,
399 					       unsigned long end)
400 {
401 	struct map_range mr[NR_RANGE_MR];
402 	unsigned long ret = 0;
403 	int nr_range, i;
404 
405 	pr_debug("init_memory_mapping: [mem %#010lx-%#010lx]\n",
406 	       start, end - 1);
407 
408 	memset(mr, 0, sizeof(mr));
409 	nr_range = split_mem_range(mr, 0, start, end);
410 
411 	for (i = 0; i < nr_range; i++)
412 		ret = kernel_physical_mapping_init(mr[i].start, mr[i].end,
413 						   mr[i].page_size_mask);
414 
415 	add_pfn_range_mapped(start >> PAGE_SHIFT, ret >> PAGE_SHIFT);
416 
417 	return ret >> PAGE_SHIFT;
418 }
419 
420 /*
421  * We need to iterate through the E820 memory map and create direct mappings
422  * for only E820_RAM and E820_KERN_RESERVED regions. We cannot simply
423  * create direct mappings for all pfns from [0 to max_low_pfn) and
424  * [4GB to max_pfn) because of possible memory holes in high addresses
425  * that cannot be marked as UC by fixed/variable range MTRRs.
426  * Depending on the alignment of E820 ranges, this may possibly result
427  * in using smaller size (i.e. 4K instead of 2M or 1G) page tables.
428  *
429  * init_mem_mapping() calls init_range_memory_mapping() with big range.
430  * That range would have hole in the middle or ends, and only ram parts
431  * will be mapped in init_range_memory_mapping().
432  */
433 static unsigned long __init init_range_memory_mapping(
434 					   unsigned long r_start,
435 					   unsigned long r_end)
436 {
437 	unsigned long start_pfn, end_pfn;
438 	unsigned long mapped_ram_size = 0;
439 	int i;
440 
441 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) {
442 		u64 start = clamp_val(PFN_PHYS(start_pfn), r_start, r_end);
443 		u64 end = clamp_val(PFN_PHYS(end_pfn), r_start, r_end);
444 		if (start >= end)
445 			continue;
446 
447 		/*
448 		 * if it is overlapping with brk pgt, we need to
449 		 * alloc pgt buf from memblock instead.
450 		 */
451 		can_use_brk_pgt = max(start, (u64)pgt_buf_end<<PAGE_SHIFT) >=
452 				    min(end, (u64)pgt_buf_top<<PAGE_SHIFT);
453 		init_memory_mapping(start, end);
454 		mapped_ram_size += end - start;
455 		can_use_brk_pgt = true;
456 	}
457 
458 	return mapped_ram_size;
459 }
460 
461 static unsigned long __init get_new_step_size(unsigned long step_size)
462 {
463 	/*
464 	 * Initial mapped size is PMD_SIZE (2M).
465 	 * We can not set step_size to be PUD_SIZE (1G) yet.
466 	 * In worse case, when we cross the 1G boundary, and
467 	 * PG_LEVEL_2M is not set, we will need 1+1+512 pages (2M + 8k)
468 	 * to map 1G range with PTE. Hence we use one less than the
469 	 * difference of page table level shifts.
470 	 *
471 	 * Don't need to worry about overflow in the top-down case, on 32bit,
472 	 * when step_size is 0, round_down() returns 0 for start, and that
473 	 * turns it into 0x100000000ULL.
474 	 * In the bottom-up case, round_up(x, 0) returns 0 though too, which
475 	 * needs to be taken into consideration by the code below.
476 	 */
477 	return step_size << (PMD_SHIFT - PAGE_SHIFT - 1);
478 }
479 
480 /**
481  * memory_map_top_down - Map [map_start, map_end) top down
482  * @map_start: start address of the target memory range
483  * @map_end: end address of the target memory range
484  *
485  * This function will setup direct mapping for memory range
486  * [map_start, map_end) in top-down. That said, the page tables
487  * will be allocated at the end of the memory, and we map the
488  * memory in top-down.
489  */
490 static void __init memory_map_top_down(unsigned long map_start,
491 				       unsigned long map_end)
492 {
493 	unsigned long real_end, start, last_start;
494 	unsigned long step_size;
495 	unsigned long addr;
496 	unsigned long mapped_ram_size = 0;
497 
498 	/* xen has big range in reserved near end of ram, skip it at first.*/
499 	addr = memblock_find_in_range(map_start, map_end, PMD_SIZE, PMD_SIZE);
500 	real_end = addr + PMD_SIZE;
501 
502 	/* step_size need to be small so pgt_buf from BRK could cover it */
503 	step_size = PMD_SIZE;
504 	max_pfn_mapped = 0; /* will get exact value next */
505 	min_pfn_mapped = real_end >> PAGE_SHIFT;
506 	last_start = start = real_end;
507 
508 	/*
509 	 * We start from the top (end of memory) and go to the bottom.
510 	 * The memblock_find_in_range() gets us a block of RAM from the
511 	 * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
512 	 * for page table.
513 	 */
514 	while (last_start > map_start) {
515 		if (last_start > step_size) {
516 			start = round_down(last_start - 1, step_size);
517 			if (start < map_start)
518 				start = map_start;
519 		} else
520 			start = map_start;
521 		mapped_ram_size += init_range_memory_mapping(start,
522 							last_start);
523 		last_start = start;
524 		min_pfn_mapped = last_start >> PAGE_SHIFT;
525 		if (mapped_ram_size >= step_size)
526 			step_size = get_new_step_size(step_size);
527 	}
528 
529 	if (real_end < map_end)
530 		init_range_memory_mapping(real_end, map_end);
531 }
532 
533 /**
534  * memory_map_bottom_up - Map [map_start, map_end) bottom up
535  * @map_start: start address of the target memory range
536  * @map_end: end address of the target memory range
537  *
538  * This function will setup direct mapping for memory range
539  * [map_start, map_end) in bottom-up. Since we have limited the
540  * bottom-up allocation above the kernel, the page tables will
541  * be allocated just above the kernel and we map the memory
542  * in [map_start, map_end) in bottom-up.
543  */
544 static void __init memory_map_bottom_up(unsigned long map_start,
545 					unsigned long map_end)
546 {
547 	unsigned long next, start;
548 	unsigned long mapped_ram_size = 0;
549 	/* step_size need to be small so pgt_buf from BRK could cover it */
550 	unsigned long step_size = PMD_SIZE;
551 
552 	start = map_start;
553 	min_pfn_mapped = start >> PAGE_SHIFT;
554 
555 	/*
556 	 * We start from the bottom (@map_start) and go to the top (@map_end).
557 	 * The memblock_find_in_range() gets us a block of RAM from the
558 	 * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
559 	 * for page table.
560 	 */
561 	while (start < map_end) {
562 		if (step_size && map_end - start > step_size) {
563 			next = round_up(start + 1, step_size);
564 			if (next > map_end)
565 				next = map_end;
566 		} else {
567 			next = map_end;
568 		}
569 
570 		mapped_ram_size += init_range_memory_mapping(start, next);
571 		start = next;
572 
573 		if (mapped_ram_size >= step_size)
574 			step_size = get_new_step_size(step_size);
575 	}
576 }
577 
578 void __init init_mem_mapping(void)
579 {
580 	unsigned long end;
581 
582 	probe_page_size_mask();
583 
584 #ifdef CONFIG_X86_64
585 	end = max_pfn << PAGE_SHIFT;
586 #else
587 	end = max_low_pfn << PAGE_SHIFT;
588 #endif
589 
590 	/* the ISA range is always mapped regardless of memory holes */
591 	init_memory_mapping(0, ISA_END_ADDRESS);
592 
593 	/* Init the trampoline, possibly with KASLR memory offset */
594 	init_trampoline();
595 
596 	/*
597 	 * If the allocation is in bottom-up direction, we setup direct mapping
598 	 * in bottom-up, otherwise we setup direct mapping in top-down.
599 	 */
600 	if (memblock_bottom_up()) {
601 		unsigned long kernel_end = __pa_symbol(_end);
602 
603 		/*
604 		 * we need two separate calls here. This is because we want to
605 		 * allocate page tables above the kernel. So we first map
606 		 * [kernel_end, end) to make memory above the kernel be mapped
607 		 * as soon as possible. And then use page tables allocated above
608 		 * the kernel to map [ISA_END_ADDRESS, kernel_end).
609 		 */
610 		memory_map_bottom_up(kernel_end, end);
611 		memory_map_bottom_up(ISA_END_ADDRESS, kernel_end);
612 	} else {
613 		memory_map_top_down(ISA_END_ADDRESS, end);
614 	}
615 
616 #ifdef CONFIG_X86_64
617 	if (max_pfn > max_low_pfn) {
618 		/* can we preseve max_low_pfn ?*/
619 		max_low_pfn = max_pfn;
620 	}
621 #else
622 	early_ioremap_page_table_range_init();
623 #endif
624 
625 	load_cr3(swapper_pg_dir);
626 	__flush_tlb_all();
627 
628 	early_memtest(0, max_pfn_mapped << PAGE_SHIFT);
629 }
630 
631 /*
632  * devmem_is_allowed() checks to see if /dev/mem access to a certain address
633  * is valid. The argument is a physical page number.
634  *
635  *
636  * On x86, access has to be given to the first megabyte of ram because that area
637  * contains BIOS code and data regions used by X and dosemu and similar apps.
638  * Access has to be given to non-kernel-ram areas as well, these contain the PCI
639  * mmio resources as well as potential bios/acpi data regions.
640  */
641 int devmem_is_allowed(unsigned long pagenr)
642 {
643 	if (pagenr < 256)
644 		return 1;
645 	if (iomem_is_exclusive(pagenr << PAGE_SHIFT))
646 		return 0;
647 	if (!page_is_ram(pagenr))
648 		return 1;
649 	return 0;
650 }
651 
652 void free_init_pages(char *what, unsigned long begin, unsigned long end)
653 {
654 	unsigned long begin_aligned, end_aligned;
655 
656 	/* Make sure boundaries are page aligned */
657 	begin_aligned = PAGE_ALIGN(begin);
658 	end_aligned   = end & PAGE_MASK;
659 
660 	if (WARN_ON(begin_aligned != begin || end_aligned != end)) {
661 		begin = begin_aligned;
662 		end   = end_aligned;
663 	}
664 
665 	if (begin >= end)
666 		return;
667 
668 	/*
669 	 * If debugging page accesses then do not free this memory but
670 	 * mark them not present - any buggy init-section access will
671 	 * create a kernel page fault:
672 	 */
673 	if (debug_pagealloc_enabled()) {
674 		pr_info("debug: unmapping init [mem %#010lx-%#010lx]\n",
675 			begin, end - 1);
676 		set_memory_np(begin, (end - begin) >> PAGE_SHIFT);
677 	} else {
678 		/*
679 		 * We just marked the kernel text read only above, now that
680 		 * we are going to free part of that, we need to make that
681 		 * writeable and non-executable first.
682 		 */
683 		set_memory_nx(begin, (end - begin) >> PAGE_SHIFT);
684 		set_memory_rw(begin, (end - begin) >> PAGE_SHIFT);
685 
686 		free_reserved_area((void *)begin, (void *)end,
687 				   POISON_FREE_INITMEM, what);
688 	}
689 }
690 
691 void free_initmem(void)
692 {
693 	free_init_pages("unused kernel",
694 			(unsigned long)(&__init_begin),
695 			(unsigned long)(&__init_end));
696 }
697 
698 #ifdef CONFIG_BLK_DEV_INITRD
699 void __init free_initrd_mem(unsigned long start, unsigned long end)
700 {
701 	/*
702 	 * Remember, initrd memory may contain microcode or other useful things.
703 	 * Before we lose initrd mem, we need to find a place to hold them
704 	 * now that normal virtual memory is enabled.
705 	 */
706 	save_microcode_in_initrd();
707 
708 	/*
709 	 * end could be not aligned, and We can not align that,
710 	 * decompresser could be confused by aligned initrd_end
711 	 * We already reserve the end partial page before in
712 	 *   - i386_start_kernel()
713 	 *   - x86_64_start_kernel()
714 	 *   - relocate_initrd()
715 	 * So here We can do PAGE_ALIGN() safely to get partial page to be freed
716 	 */
717 	free_init_pages("initrd", start, PAGE_ALIGN(end));
718 }
719 #endif
720 
721 void __init zone_sizes_init(void)
722 {
723 	unsigned long max_zone_pfns[MAX_NR_ZONES];
724 
725 	memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
726 
727 #ifdef CONFIG_ZONE_DMA
728 	max_zone_pfns[ZONE_DMA]		= min(MAX_DMA_PFN, max_low_pfn);
729 #endif
730 #ifdef CONFIG_ZONE_DMA32
731 	max_zone_pfns[ZONE_DMA32]	= min(MAX_DMA32_PFN, max_low_pfn);
732 #endif
733 	max_zone_pfns[ZONE_NORMAL]	= max_low_pfn;
734 #ifdef CONFIG_HIGHMEM
735 	max_zone_pfns[ZONE_HIGHMEM]	= max_pfn;
736 #endif
737 
738 	free_area_init_nodes(max_zone_pfns);
739 }
740 
741 DEFINE_PER_CPU_SHARED_ALIGNED(struct tlb_state, cpu_tlbstate) = {
742 #ifdef CONFIG_SMP
743 	.active_mm = &init_mm,
744 	.state = 0,
745 #endif
746 	.cr4 = ~0UL,	/* fail hard if we screw up cr4 shadow initialization */
747 };
748 EXPORT_SYMBOL_GPL(cpu_tlbstate);
749 
750 void update_cache_mode_entry(unsigned entry, enum page_cache_mode cache)
751 {
752 	/* entry 0 MUST be WB (hardwired to speed up translations) */
753 	BUG_ON(!entry && cache != _PAGE_CACHE_MODE_WB);
754 
755 	__cachemode2pte_tbl[cache] = __cm_idx2pte(entry);
756 	__pte2cachemode_tbl[entry] = cache;
757 }
758