1 #include <linux/gfp.h> 2 #include <linux/initrd.h> 3 #include <linux/ioport.h> 4 #include <linux/swap.h> 5 #include <linux/memblock.h> 6 #include <linux/bootmem.h> /* for max_low_pfn */ 7 8 #include <asm/cacheflush.h> 9 #include <asm/e820.h> 10 #include <asm/init.h> 11 #include <asm/page.h> 12 #include <asm/page_types.h> 13 #include <asm/sections.h> 14 #include <asm/setup.h> 15 #include <asm/tlbflush.h> 16 #include <asm/tlb.h> 17 #include <asm/proto.h> 18 #include <asm/dma.h> /* for MAX_DMA_PFN */ 19 #include <asm/microcode.h> 20 21 /* 22 * We need to define the tracepoints somewhere, and tlb.c 23 * is only compied when SMP=y. 24 */ 25 #define CREATE_TRACE_POINTS 26 #include <trace/events/tlb.h> 27 28 #include "mm_internal.h" 29 30 /* 31 * Tables translating between page_cache_type_t and pte encoding. 32 * 33 * The default values are defined statically as minimal supported mode; 34 * WC and WT fall back to UC-. pat_init() updates these values to support 35 * more cache modes, WC and WT, when it is safe to do so. See pat_init() 36 * for the details. Note, __early_ioremap() used during early boot-time 37 * takes pgprot_t (pte encoding) and does not use these tables. 38 * 39 * Index into __cachemode2pte_tbl[] is the cachemode. 40 * 41 * Index into __pte2cachemode_tbl[] are the caching attribute bits of the pte 42 * (_PAGE_PWT, _PAGE_PCD, _PAGE_PAT) at index bit positions 0, 1, 2. 43 */ 44 uint16_t __cachemode2pte_tbl[_PAGE_CACHE_MODE_NUM] = { 45 [_PAGE_CACHE_MODE_WB ] = 0 | 0 , 46 [_PAGE_CACHE_MODE_WC ] = 0 | _PAGE_PCD, 47 [_PAGE_CACHE_MODE_UC_MINUS] = 0 | _PAGE_PCD, 48 [_PAGE_CACHE_MODE_UC ] = _PAGE_PWT | _PAGE_PCD, 49 [_PAGE_CACHE_MODE_WT ] = 0 | _PAGE_PCD, 50 [_PAGE_CACHE_MODE_WP ] = 0 | _PAGE_PCD, 51 }; 52 EXPORT_SYMBOL(__cachemode2pte_tbl); 53 54 uint8_t __pte2cachemode_tbl[8] = { 55 [__pte2cm_idx( 0 | 0 | 0 )] = _PAGE_CACHE_MODE_WB, 56 [__pte2cm_idx(_PAGE_PWT | 0 | 0 )] = _PAGE_CACHE_MODE_UC_MINUS, 57 [__pte2cm_idx( 0 | _PAGE_PCD | 0 )] = _PAGE_CACHE_MODE_UC_MINUS, 58 [__pte2cm_idx(_PAGE_PWT | _PAGE_PCD | 0 )] = _PAGE_CACHE_MODE_UC, 59 [__pte2cm_idx( 0 | 0 | _PAGE_PAT)] = _PAGE_CACHE_MODE_WB, 60 [__pte2cm_idx(_PAGE_PWT | 0 | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC_MINUS, 61 [__pte2cm_idx(0 | _PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC_MINUS, 62 [__pte2cm_idx(_PAGE_PWT | _PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC, 63 }; 64 EXPORT_SYMBOL(__pte2cachemode_tbl); 65 66 static unsigned long __initdata pgt_buf_start; 67 static unsigned long __initdata pgt_buf_end; 68 static unsigned long __initdata pgt_buf_top; 69 70 static unsigned long min_pfn_mapped; 71 72 static bool __initdata can_use_brk_pgt = true; 73 74 /* 75 * Pages returned are already directly mapped. 76 * 77 * Changing that is likely to break Xen, see commit: 78 * 79 * 279b706 x86,xen: introduce x86_init.mapping.pagetable_reserve 80 * 81 * for detailed information. 82 */ 83 __ref void *alloc_low_pages(unsigned int num) 84 { 85 unsigned long pfn; 86 int i; 87 88 if (after_bootmem) { 89 unsigned int order; 90 91 order = get_order((unsigned long)num << PAGE_SHIFT); 92 return (void *)__get_free_pages(GFP_ATOMIC | __GFP_NOTRACK | 93 __GFP_ZERO, order); 94 } 95 96 if ((pgt_buf_end + num) > pgt_buf_top || !can_use_brk_pgt) { 97 unsigned long ret; 98 if (min_pfn_mapped >= max_pfn_mapped) 99 panic("alloc_low_pages: ran out of memory"); 100 ret = memblock_find_in_range(min_pfn_mapped << PAGE_SHIFT, 101 max_pfn_mapped << PAGE_SHIFT, 102 PAGE_SIZE * num , PAGE_SIZE); 103 if (!ret) 104 panic("alloc_low_pages: can not alloc memory"); 105 memblock_reserve(ret, PAGE_SIZE * num); 106 pfn = ret >> PAGE_SHIFT; 107 } else { 108 pfn = pgt_buf_end; 109 pgt_buf_end += num; 110 printk(KERN_DEBUG "BRK [%#010lx, %#010lx] PGTABLE\n", 111 pfn << PAGE_SHIFT, (pgt_buf_end << PAGE_SHIFT) - 1); 112 } 113 114 for (i = 0; i < num; i++) { 115 void *adr; 116 117 adr = __va((pfn + i) << PAGE_SHIFT); 118 clear_page(adr); 119 } 120 121 return __va(pfn << PAGE_SHIFT); 122 } 123 124 /* need 3 4k for initial PMD_SIZE, 3 4k for 0-ISA_END_ADDRESS */ 125 #define INIT_PGT_BUF_SIZE (6 * PAGE_SIZE) 126 RESERVE_BRK(early_pgt_alloc, INIT_PGT_BUF_SIZE); 127 void __init early_alloc_pgt_buf(void) 128 { 129 unsigned long tables = INIT_PGT_BUF_SIZE; 130 phys_addr_t base; 131 132 base = __pa(extend_brk(tables, PAGE_SIZE)); 133 134 pgt_buf_start = base >> PAGE_SHIFT; 135 pgt_buf_end = pgt_buf_start; 136 pgt_buf_top = pgt_buf_start + (tables >> PAGE_SHIFT); 137 } 138 139 int after_bootmem; 140 141 early_param_on_off("gbpages", "nogbpages", direct_gbpages, CONFIG_X86_DIRECT_GBPAGES); 142 143 struct map_range { 144 unsigned long start; 145 unsigned long end; 146 unsigned page_size_mask; 147 }; 148 149 static int page_size_mask; 150 151 static void __init probe_page_size_mask(void) 152 { 153 #if !defined(CONFIG_KMEMCHECK) 154 /* 155 * For CONFIG_KMEMCHECK or pagealloc debugging, identity mapping will 156 * use small pages. 157 * This will simplify cpa(), which otherwise needs to support splitting 158 * large pages into small in interrupt context, etc. 159 */ 160 if (boot_cpu_has(X86_FEATURE_PSE) && !debug_pagealloc_enabled()) 161 page_size_mask |= 1 << PG_LEVEL_2M; 162 #endif 163 164 /* Enable PSE if available */ 165 if (boot_cpu_has(X86_FEATURE_PSE)) 166 cr4_set_bits_and_update_boot(X86_CR4_PSE); 167 168 /* Enable PGE if available */ 169 if (boot_cpu_has(X86_FEATURE_PGE)) { 170 cr4_set_bits_and_update_boot(X86_CR4_PGE); 171 __supported_pte_mask |= _PAGE_GLOBAL; 172 } else 173 __supported_pte_mask &= ~_PAGE_GLOBAL; 174 175 /* Enable 1 GB linear kernel mappings if available: */ 176 if (direct_gbpages && boot_cpu_has(X86_FEATURE_GBPAGES)) { 177 printk(KERN_INFO "Using GB pages for direct mapping\n"); 178 page_size_mask |= 1 << PG_LEVEL_1G; 179 } else { 180 direct_gbpages = 0; 181 } 182 } 183 184 #ifdef CONFIG_X86_32 185 #define NR_RANGE_MR 3 186 #else /* CONFIG_X86_64 */ 187 #define NR_RANGE_MR 5 188 #endif 189 190 static int __meminit save_mr(struct map_range *mr, int nr_range, 191 unsigned long start_pfn, unsigned long end_pfn, 192 unsigned long page_size_mask) 193 { 194 if (start_pfn < end_pfn) { 195 if (nr_range >= NR_RANGE_MR) 196 panic("run out of range for init_memory_mapping\n"); 197 mr[nr_range].start = start_pfn<<PAGE_SHIFT; 198 mr[nr_range].end = end_pfn<<PAGE_SHIFT; 199 mr[nr_range].page_size_mask = page_size_mask; 200 nr_range++; 201 } 202 203 return nr_range; 204 } 205 206 /* 207 * adjust the page_size_mask for small range to go with 208 * big page size instead small one if nearby are ram too. 209 */ 210 static void __init_refok adjust_range_page_size_mask(struct map_range *mr, 211 int nr_range) 212 { 213 int i; 214 215 for (i = 0; i < nr_range; i++) { 216 if ((page_size_mask & (1<<PG_LEVEL_2M)) && 217 !(mr[i].page_size_mask & (1<<PG_LEVEL_2M))) { 218 unsigned long start = round_down(mr[i].start, PMD_SIZE); 219 unsigned long end = round_up(mr[i].end, PMD_SIZE); 220 221 #ifdef CONFIG_X86_32 222 if ((end >> PAGE_SHIFT) > max_low_pfn) 223 continue; 224 #endif 225 226 if (memblock_is_region_memory(start, end - start)) 227 mr[i].page_size_mask |= 1<<PG_LEVEL_2M; 228 } 229 if ((page_size_mask & (1<<PG_LEVEL_1G)) && 230 !(mr[i].page_size_mask & (1<<PG_LEVEL_1G))) { 231 unsigned long start = round_down(mr[i].start, PUD_SIZE); 232 unsigned long end = round_up(mr[i].end, PUD_SIZE); 233 234 if (memblock_is_region_memory(start, end - start)) 235 mr[i].page_size_mask |= 1<<PG_LEVEL_1G; 236 } 237 } 238 } 239 240 static const char *page_size_string(struct map_range *mr) 241 { 242 static const char str_1g[] = "1G"; 243 static const char str_2m[] = "2M"; 244 static const char str_4m[] = "4M"; 245 static const char str_4k[] = "4k"; 246 247 if (mr->page_size_mask & (1<<PG_LEVEL_1G)) 248 return str_1g; 249 /* 250 * 32-bit without PAE has a 4M large page size. 251 * PG_LEVEL_2M is misnamed, but we can at least 252 * print out the right size in the string. 253 */ 254 if (IS_ENABLED(CONFIG_X86_32) && 255 !IS_ENABLED(CONFIG_X86_PAE) && 256 mr->page_size_mask & (1<<PG_LEVEL_2M)) 257 return str_4m; 258 259 if (mr->page_size_mask & (1<<PG_LEVEL_2M)) 260 return str_2m; 261 262 return str_4k; 263 } 264 265 static int __meminit split_mem_range(struct map_range *mr, int nr_range, 266 unsigned long start, 267 unsigned long end) 268 { 269 unsigned long start_pfn, end_pfn, limit_pfn; 270 unsigned long pfn; 271 int i; 272 273 limit_pfn = PFN_DOWN(end); 274 275 /* head if not big page alignment ? */ 276 pfn = start_pfn = PFN_DOWN(start); 277 #ifdef CONFIG_X86_32 278 /* 279 * Don't use a large page for the first 2/4MB of memory 280 * because there are often fixed size MTRRs in there 281 * and overlapping MTRRs into large pages can cause 282 * slowdowns. 283 */ 284 if (pfn == 0) 285 end_pfn = PFN_DOWN(PMD_SIZE); 286 else 287 end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE)); 288 #else /* CONFIG_X86_64 */ 289 end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE)); 290 #endif 291 if (end_pfn > limit_pfn) 292 end_pfn = limit_pfn; 293 if (start_pfn < end_pfn) { 294 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0); 295 pfn = end_pfn; 296 } 297 298 /* big page (2M) range */ 299 start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE)); 300 #ifdef CONFIG_X86_32 301 end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE)); 302 #else /* CONFIG_X86_64 */ 303 end_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE)); 304 if (end_pfn > round_down(limit_pfn, PFN_DOWN(PMD_SIZE))) 305 end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE)); 306 #endif 307 308 if (start_pfn < end_pfn) { 309 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 310 page_size_mask & (1<<PG_LEVEL_2M)); 311 pfn = end_pfn; 312 } 313 314 #ifdef CONFIG_X86_64 315 /* big page (1G) range */ 316 start_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE)); 317 end_pfn = round_down(limit_pfn, PFN_DOWN(PUD_SIZE)); 318 if (start_pfn < end_pfn) { 319 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 320 page_size_mask & 321 ((1<<PG_LEVEL_2M)|(1<<PG_LEVEL_1G))); 322 pfn = end_pfn; 323 } 324 325 /* tail is not big page (1G) alignment */ 326 start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE)); 327 end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE)); 328 if (start_pfn < end_pfn) { 329 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 330 page_size_mask & (1<<PG_LEVEL_2M)); 331 pfn = end_pfn; 332 } 333 #endif 334 335 /* tail is not big page (2M) alignment */ 336 start_pfn = pfn; 337 end_pfn = limit_pfn; 338 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0); 339 340 if (!after_bootmem) 341 adjust_range_page_size_mask(mr, nr_range); 342 343 /* try to merge same page size and continuous */ 344 for (i = 0; nr_range > 1 && i < nr_range - 1; i++) { 345 unsigned long old_start; 346 if (mr[i].end != mr[i+1].start || 347 mr[i].page_size_mask != mr[i+1].page_size_mask) 348 continue; 349 /* move it */ 350 old_start = mr[i].start; 351 memmove(&mr[i], &mr[i+1], 352 (nr_range - 1 - i) * sizeof(struct map_range)); 353 mr[i--].start = old_start; 354 nr_range--; 355 } 356 357 for (i = 0; i < nr_range; i++) 358 pr_debug(" [mem %#010lx-%#010lx] page %s\n", 359 mr[i].start, mr[i].end - 1, 360 page_size_string(&mr[i])); 361 362 return nr_range; 363 } 364 365 struct range pfn_mapped[E820_X_MAX]; 366 int nr_pfn_mapped; 367 368 static void add_pfn_range_mapped(unsigned long start_pfn, unsigned long end_pfn) 369 { 370 nr_pfn_mapped = add_range_with_merge(pfn_mapped, E820_X_MAX, 371 nr_pfn_mapped, start_pfn, end_pfn); 372 nr_pfn_mapped = clean_sort_range(pfn_mapped, E820_X_MAX); 373 374 max_pfn_mapped = max(max_pfn_mapped, end_pfn); 375 376 if (start_pfn < (1UL<<(32-PAGE_SHIFT))) 377 max_low_pfn_mapped = max(max_low_pfn_mapped, 378 min(end_pfn, 1UL<<(32-PAGE_SHIFT))); 379 } 380 381 bool pfn_range_is_mapped(unsigned long start_pfn, unsigned long end_pfn) 382 { 383 int i; 384 385 for (i = 0; i < nr_pfn_mapped; i++) 386 if ((start_pfn >= pfn_mapped[i].start) && 387 (end_pfn <= pfn_mapped[i].end)) 388 return true; 389 390 return false; 391 } 392 393 /* 394 * Setup the direct mapping of the physical memory at PAGE_OFFSET. 395 * This runs before bootmem is initialized and gets pages directly from 396 * the physical memory. To access them they are temporarily mapped. 397 */ 398 unsigned long __init_refok init_memory_mapping(unsigned long start, 399 unsigned long end) 400 { 401 struct map_range mr[NR_RANGE_MR]; 402 unsigned long ret = 0; 403 int nr_range, i; 404 405 pr_debug("init_memory_mapping: [mem %#010lx-%#010lx]\n", 406 start, end - 1); 407 408 memset(mr, 0, sizeof(mr)); 409 nr_range = split_mem_range(mr, 0, start, end); 410 411 for (i = 0; i < nr_range; i++) 412 ret = kernel_physical_mapping_init(mr[i].start, mr[i].end, 413 mr[i].page_size_mask); 414 415 add_pfn_range_mapped(start >> PAGE_SHIFT, ret >> PAGE_SHIFT); 416 417 return ret >> PAGE_SHIFT; 418 } 419 420 /* 421 * We need to iterate through the E820 memory map and create direct mappings 422 * for only E820_RAM and E820_KERN_RESERVED regions. We cannot simply 423 * create direct mappings for all pfns from [0 to max_low_pfn) and 424 * [4GB to max_pfn) because of possible memory holes in high addresses 425 * that cannot be marked as UC by fixed/variable range MTRRs. 426 * Depending on the alignment of E820 ranges, this may possibly result 427 * in using smaller size (i.e. 4K instead of 2M or 1G) page tables. 428 * 429 * init_mem_mapping() calls init_range_memory_mapping() with big range. 430 * That range would have hole in the middle or ends, and only ram parts 431 * will be mapped in init_range_memory_mapping(). 432 */ 433 static unsigned long __init init_range_memory_mapping( 434 unsigned long r_start, 435 unsigned long r_end) 436 { 437 unsigned long start_pfn, end_pfn; 438 unsigned long mapped_ram_size = 0; 439 int i; 440 441 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) { 442 u64 start = clamp_val(PFN_PHYS(start_pfn), r_start, r_end); 443 u64 end = clamp_val(PFN_PHYS(end_pfn), r_start, r_end); 444 if (start >= end) 445 continue; 446 447 /* 448 * if it is overlapping with brk pgt, we need to 449 * alloc pgt buf from memblock instead. 450 */ 451 can_use_brk_pgt = max(start, (u64)pgt_buf_end<<PAGE_SHIFT) >= 452 min(end, (u64)pgt_buf_top<<PAGE_SHIFT); 453 init_memory_mapping(start, end); 454 mapped_ram_size += end - start; 455 can_use_brk_pgt = true; 456 } 457 458 return mapped_ram_size; 459 } 460 461 static unsigned long __init get_new_step_size(unsigned long step_size) 462 { 463 /* 464 * Initial mapped size is PMD_SIZE (2M). 465 * We can not set step_size to be PUD_SIZE (1G) yet. 466 * In worse case, when we cross the 1G boundary, and 467 * PG_LEVEL_2M is not set, we will need 1+1+512 pages (2M + 8k) 468 * to map 1G range with PTE. Hence we use one less than the 469 * difference of page table level shifts. 470 * 471 * Don't need to worry about overflow in the top-down case, on 32bit, 472 * when step_size is 0, round_down() returns 0 for start, and that 473 * turns it into 0x100000000ULL. 474 * In the bottom-up case, round_up(x, 0) returns 0 though too, which 475 * needs to be taken into consideration by the code below. 476 */ 477 return step_size << (PMD_SHIFT - PAGE_SHIFT - 1); 478 } 479 480 /** 481 * memory_map_top_down - Map [map_start, map_end) top down 482 * @map_start: start address of the target memory range 483 * @map_end: end address of the target memory range 484 * 485 * This function will setup direct mapping for memory range 486 * [map_start, map_end) in top-down. That said, the page tables 487 * will be allocated at the end of the memory, and we map the 488 * memory in top-down. 489 */ 490 static void __init memory_map_top_down(unsigned long map_start, 491 unsigned long map_end) 492 { 493 unsigned long real_end, start, last_start; 494 unsigned long step_size; 495 unsigned long addr; 496 unsigned long mapped_ram_size = 0; 497 498 /* xen has big range in reserved near end of ram, skip it at first.*/ 499 addr = memblock_find_in_range(map_start, map_end, PMD_SIZE, PMD_SIZE); 500 real_end = addr + PMD_SIZE; 501 502 /* step_size need to be small so pgt_buf from BRK could cover it */ 503 step_size = PMD_SIZE; 504 max_pfn_mapped = 0; /* will get exact value next */ 505 min_pfn_mapped = real_end >> PAGE_SHIFT; 506 last_start = start = real_end; 507 508 /* 509 * We start from the top (end of memory) and go to the bottom. 510 * The memblock_find_in_range() gets us a block of RAM from the 511 * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages 512 * for page table. 513 */ 514 while (last_start > map_start) { 515 if (last_start > step_size) { 516 start = round_down(last_start - 1, step_size); 517 if (start < map_start) 518 start = map_start; 519 } else 520 start = map_start; 521 mapped_ram_size += init_range_memory_mapping(start, 522 last_start); 523 last_start = start; 524 min_pfn_mapped = last_start >> PAGE_SHIFT; 525 if (mapped_ram_size >= step_size) 526 step_size = get_new_step_size(step_size); 527 } 528 529 if (real_end < map_end) 530 init_range_memory_mapping(real_end, map_end); 531 } 532 533 /** 534 * memory_map_bottom_up - Map [map_start, map_end) bottom up 535 * @map_start: start address of the target memory range 536 * @map_end: end address of the target memory range 537 * 538 * This function will setup direct mapping for memory range 539 * [map_start, map_end) in bottom-up. Since we have limited the 540 * bottom-up allocation above the kernel, the page tables will 541 * be allocated just above the kernel and we map the memory 542 * in [map_start, map_end) in bottom-up. 543 */ 544 static void __init memory_map_bottom_up(unsigned long map_start, 545 unsigned long map_end) 546 { 547 unsigned long next, start; 548 unsigned long mapped_ram_size = 0; 549 /* step_size need to be small so pgt_buf from BRK could cover it */ 550 unsigned long step_size = PMD_SIZE; 551 552 start = map_start; 553 min_pfn_mapped = start >> PAGE_SHIFT; 554 555 /* 556 * We start from the bottom (@map_start) and go to the top (@map_end). 557 * The memblock_find_in_range() gets us a block of RAM from the 558 * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages 559 * for page table. 560 */ 561 while (start < map_end) { 562 if (step_size && map_end - start > step_size) { 563 next = round_up(start + 1, step_size); 564 if (next > map_end) 565 next = map_end; 566 } else { 567 next = map_end; 568 } 569 570 mapped_ram_size += init_range_memory_mapping(start, next); 571 start = next; 572 573 if (mapped_ram_size >= step_size) 574 step_size = get_new_step_size(step_size); 575 } 576 } 577 578 void __init init_mem_mapping(void) 579 { 580 unsigned long end; 581 582 probe_page_size_mask(); 583 584 #ifdef CONFIG_X86_64 585 end = max_pfn << PAGE_SHIFT; 586 #else 587 end = max_low_pfn << PAGE_SHIFT; 588 #endif 589 590 /* the ISA range is always mapped regardless of memory holes */ 591 init_memory_mapping(0, ISA_END_ADDRESS); 592 593 /* Init the trampoline, possibly with KASLR memory offset */ 594 init_trampoline(); 595 596 /* 597 * If the allocation is in bottom-up direction, we setup direct mapping 598 * in bottom-up, otherwise we setup direct mapping in top-down. 599 */ 600 if (memblock_bottom_up()) { 601 unsigned long kernel_end = __pa_symbol(_end); 602 603 /* 604 * we need two separate calls here. This is because we want to 605 * allocate page tables above the kernel. So we first map 606 * [kernel_end, end) to make memory above the kernel be mapped 607 * as soon as possible. And then use page tables allocated above 608 * the kernel to map [ISA_END_ADDRESS, kernel_end). 609 */ 610 memory_map_bottom_up(kernel_end, end); 611 memory_map_bottom_up(ISA_END_ADDRESS, kernel_end); 612 } else { 613 memory_map_top_down(ISA_END_ADDRESS, end); 614 } 615 616 #ifdef CONFIG_X86_64 617 if (max_pfn > max_low_pfn) { 618 /* can we preseve max_low_pfn ?*/ 619 max_low_pfn = max_pfn; 620 } 621 #else 622 early_ioremap_page_table_range_init(); 623 #endif 624 625 load_cr3(swapper_pg_dir); 626 __flush_tlb_all(); 627 628 early_memtest(0, max_pfn_mapped << PAGE_SHIFT); 629 } 630 631 /* 632 * devmem_is_allowed() checks to see if /dev/mem access to a certain address 633 * is valid. The argument is a physical page number. 634 * 635 * 636 * On x86, access has to be given to the first megabyte of ram because that area 637 * contains BIOS code and data regions used by X and dosemu and similar apps. 638 * Access has to be given to non-kernel-ram areas as well, these contain the PCI 639 * mmio resources as well as potential bios/acpi data regions. 640 */ 641 int devmem_is_allowed(unsigned long pagenr) 642 { 643 if (pagenr < 256) 644 return 1; 645 if (iomem_is_exclusive(pagenr << PAGE_SHIFT)) 646 return 0; 647 if (!page_is_ram(pagenr)) 648 return 1; 649 return 0; 650 } 651 652 void free_init_pages(char *what, unsigned long begin, unsigned long end) 653 { 654 unsigned long begin_aligned, end_aligned; 655 656 /* Make sure boundaries are page aligned */ 657 begin_aligned = PAGE_ALIGN(begin); 658 end_aligned = end & PAGE_MASK; 659 660 if (WARN_ON(begin_aligned != begin || end_aligned != end)) { 661 begin = begin_aligned; 662 end = end_aligned; 663 } 664 665 if (begin >= end) 666 return; 667 668 /* 669 * If debugging page accesses then do not free this memory but 670 * mark them not present - any buggy init-section access will 671 * create a kernel page fault: 672 */ 673 if (debug_pagealloc_enabled()) { 674 pr_info("debug: unmapping init [mem %#010lx-%#010lx]\n", 675 begin, end - 1); 676 set_memory_np(begin, (end - begin) >> PAGE_SHIFT); 677 } else { 678 /* 679 * We just marked the kernel text read only above, now that 680 * we are going to free part of that, we need to make that 681 * writeable and non-executable first. 682 */ 683 set_memory_nx(begin, (end - begin) >> PAGE_SHIFT); 684 set_memory_rw(begin, (end - begin) >> PAGE_SHIFT); 685 686 free_reserved_area((void *)begin, (void *)end, 687 POISON_FREE_INITMEM, what); 688 } 689 } 690 691 void free_initmem(void) 692 { 693 free_init_pages("unused kernel", 694 (unsigned long)(&__init_begin), 695 (unsigned long)(&__init_end)); 696 } 697 698 #ifdef CONFIG_BLK_DEV_INITRD 699 void __init free_initrd_mem(unsigned long start, unsigned long end) 700 { 701 /* 702 * Remember, initrd memory may contain microcode or other useful things. 703 * Before we lose initrd mem, we need to find a place to hold them 704 * now that normal virtual memory is enabled. 705 */ 706 save_microcode_in_initrd(); 707 708 /* 709 * end could be not aligned, and We can not align that, 710 * decompresser could be confused by aligned initrd_end 711 * We already reserve the end partial page before in 712 * - i386_start_kernel() 713 * - x86_64_start_kernel() 714 * - relocate_initrd() 715 * So here We can do PAGE_ALIGN() safely to get partial page to be freed 716 */ 717 free_init_pages("initrd", start, PAGE_ALIGN(end)); 718 } 719 #endif 720 721 void __init zone_sizes_init(void) 722 { 723 unsigned long max_zone_pfns[MAX_NR_ZONES]; 724 725 memset(max_zone_pfns, 0, sizeof(max_zone_pfns)); 726 727 #ifdef CONFIG_ZONE_DMA 728 max_zone_pfns[ZONE_DMA] = min(MAX_DMA_PFN, max_low_pfn); 729 #endif 730 #ifdef CONFIG_ZONE_DMA32 731 max_zone_pfns[ZONE_DMA32] = min(MAX_DMA32_PFN, max_low_pfn); 732 #endif 733 max_zone_pfns[ZONE_NORMAL] = max_low_pfn; 734 #ifdef CONFIG_HIGHMEM 735 max_zone_pfns[ZONE_HIGHMEM] = max_pfn; 736 #endif 737 738 free_area_init_nodes(max_zone_pfns); 739 } 740 741 DEFINE_PER_CPU_SHARED_ALIGNED(struct tlb_state, cpu_tlbstate) = { 742 #ifdef CONFIG_SMP 743 .active_mm = &init_mm, 744 .state = 0, 745 #endif 746 .cr4 = ~0UL, /* fail hard if we screw up cr4 shadow initialization */ 747 }; 748 EXPORT_SYMBOL_GPL(cpu_tlbstate); 749 750 void update_cache_mode_entry(unsigned entry, enum page_cache_mode cache) 751 { 752 /* entry 0 MUST be WB (hardwired to speed up translations) */ 753 BUG_ON(!entry && cache != _PAGE_CACHE_MODE_WB); 754 755 __cachemode2pte_tbl[cache] = __cm_idx2pte(entry); 756 __pte2cachemode_tbl[entry] = cache; 757 } 758