xref: /linux/arch/x86/mm/init.c (revision a8fe58cec351c25e09c393bf46117c0c47b5a17c)
1 #include <linux/gfp.h>
2 #include <linux/initrd.h>
3 #include <linux/ioport.h>
4 #include <linux/swap.h>
5 #include <linux/memblock.h>
6 #include <linux/bootmem.h>	/* for max_low_pfn */
7 
8 #include <asm/cacheflush.h>
9 #include <asm/e820.h>
10 #include <asm/init.h>
11 #include <asm/page.h>
12 #include <asm/page_types.h>
13 #include <asm/sections.h>
14 #include <asm/setup.h>
15 #include <asm/tlbflush.h>
16 #include <asm/tlb.h>
17 #include <asm/proto.h>
18 #include <asm/dma.h>		/* for MAX_DMA_PFN */
19 #include <asm/microcode.h>
20 
21 /*
22  * We need to define the tracepoints somewhere, and tlb.c
23  * is only compied when SMP=y.
24  */
25 #define CREATE_TRACE_POINTS
26 #include <trace/events/tlb.h>
27 
28 #include "mm_internal.h"
29 
30 /*
31  * Tables translating between page_cache_type_t and pte encoding.
32  *
33  * The default values are defined statically as minimal supported mode;
34  * WC and WT fall back to UC-.  pat_init() updates these values to support
35  * more cache modes, WC and WT, when it is safe to do so.  See pat_init()
36  * for the details.  Note, __early_ioremap() used during early boot-time
37  * takes pgprot_t (pte encoding) and does not use these tables.
38  *
39  *   Index into __cachemode2pte_tbl[] is the cachemode.
40  *
41  *   Index into __pte2cachemode_tbl[] are the caching attribute bits of the pte
42  *   (_PAGE_PWT, _PAGE_PCD, _PAGE_PAT) at index bit positions 0, 1, 2.
43  */
44 uint16_t __cachemode2pte_tbl[_PAGE_CACHE_MODE_NUM] = {
45 	[_PAGE_CACHE_MODE_WB      ]	= 0         | 0        ,
46 	[_PAGE_CACHE_MODE_WC      ]	= 0         | _PAGE_PCD,
47 	[_PAGE_CACHE_MODE_UC_MINUS]	= 0         | _PAGE_PCD,
48 	[_PAGE_CACHE_MODE_UC      ]	= _PAGE_PWT | _PAGE_PCD,
49 	[_PAGE_CACHE_MODE_WT      ]	= 0         | _PAGE_PCD,
50 	[_PAGE_CACHE_MODE_WP      ]	= 0         | _PAGE_PCD,
51 };
52 EXPORT_SYMBOL(__cachemode2pte_tbl);
53 
54 uint8_t __pte2cachemode_tbl[8] = {
55 	[__pte2cm_idx( 0        | 0         | 0        )] = _PAGE_CACHE_MODE_WB,
56 	[__pte2cm_idx(_PAGE_PWT | 0         | 0        )] = _PAGE_CACHE_MODE_UC_MINUS,
57 	[__pte2cm_idx( 0        | _PAGE_PCD | 0        )] = _PAGE_CACHE_MODE_UC_MINUS,
58 	[__pte2cm_idx(_PAGE_PWT | _PAGE_PCD | 0        )] = _PAGE_CACHE_MODE_UC,
59 	[__pte2cm_idx( 0        | 0         | _PAGE_PAT)] = _PAGE_CACHE_MODE_WB,
60 	[__pte2cm_idx(_PAGE_PWT | 0         | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC_MINUS,
61 	[__pte2cm_idx(0         | _PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC_MINUS,
62 	[__pte2cm_idx(_PAGE_PWT | _PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC,
63 };
64 EXPORT_SYMBOL(__pte2cachemode_tbl);
65 
66 static unsigned long __initdata pgt_buf_start;
67 static unsigned long __initdata pgt_buf_end;
68 static unsigned long __initdata pgt_buf_top;
69 
70 static unsigned long min_pfn_mapped;
71 
72 static bool __initdata can_use_brk_pgt = true;
73 
74 /*
75  * Pages returned are already directly mapped.
76  *
77  * Changing that is likely to break Xen, see commit:
78  *
79  *    279b706 x86,xen: introduce x86_init.mapping.pagetable_reserve
80  *
81  * for detailed information.
82  */
83 __ref void *alloc_low_pages(unsigned int num)
84 {
85 	unsigned long pfn;
86 	int i;
87 
88 	if (after_bootmem) {
89 		unsigned int order;
90 
91 		order = get_order((unsigned long)num << PAGE_SHIFT);
92 		return (void *)__get_free_pages(GFP_ATOMIC | __GFP_NOTRACK |
93 						__GFP_ZERO, order);
94 	}
95 
96 	if ((pgt_buf_end + num) > pgt_buf_top || !can_use_brk_pgt) {
97 		unsigned long ret;
98 		if (min_pfn_mapped >= max_pfn_mapped)
99 			panic("alloc_low_pages: ran out of memory");
100 		ret = memblock_find_in_range(min_pfn_mapped << PAGE_SHIFT,
101 					max_pfn_mapped << PAGE_SHIFT,
102 					PAGE_SIZE * num , PAGE_SIZE);
103 		if (!ret)
104 			panic("alloc_low_pages: can not alloc memory");
105 		memblock_reserve(ret, PAGE_SIZE * num);
106 		pfn = ret >> PAGE_SHIFT;
107 	} else {
108 		pfn = pgt_buf_end;
109 		pgt_buf_end += num;
110 		printk(KERN_DEBUG "BRK [%#010lx, %#010lx] PGTABLE\n",
111 			pfn << PAGE_SHIFT, (pgt_buf_end << PAGE_SHIFT) - 1);
112 	}
113 
114 	for (i = 0; i < num; i++) {
115 		void *adr;
116 
117 		adr = __va((pfn + i) << PAGE_SHIFT);
118 		clear_page(adr);
119 	}
120 
121 	return __va(pfn << PAGE_SHIFT);
122 }
123 
124 /* need 3 4k for initial PMD_SIZE,  3 4k for 0-ISA_END_ADDRESS */
125 #define INIT_PGT_BUF_SIZE	(6 * PAGE_SIZE)
126 RESERVE_BRK(early_pgt_alloc, INIT_PGT_BUF_SIZE);
127 void  __init early_alloc_pgt_buf(void)
128 {
129 	unsigned long tables = INIT_PGT_BUF_SIZE;
130 	phys_addr_t base;
131 
132 	base = __pa(extend_brk(tables, PAGE_SIZE));
133 
134 	pgt_buf_start = base >> PAGE_SHIFT;
135 	pgt_buf_end = pgt_buf_start;
136 	pgt_buf_top = pgt_buf_start + (tables >> PAGE_SHIFT);
137 }
138 
139 int after_bootmem;
140 
141 early_param_on_off("gbpages", "nogbpages", direct_gbpages, CONFIG_X86_DIRECT_GBPAGES);
142 
143 struct map_range {
144 	unsigned long start;
145 	unsigned long end;
146 	unsigned page_size_mask;
147 };
148 
149 static int page_size_mask;
150 
151 static void __init probe_page_size_mask(void)
152 {
153 #if !defined(CONFIG_DEBUG_PAGEALLOC) && !defined(CONFIG_KMEMCHECK)
154 	/*
155 	 * For CONFIG_DEBUG_PAGEALLOC, identity mapping will use small pages.
156 	 * This will simplify cpa(), which otherwise needs to support splitting
157 	 * large pages into small in interrupt context, etc.
158 	 */
159 	if (cpu_has_pse)
160 		page_size_mask |= 1 << PG_LEVEL_2M;
161 #endif
162 
163 	/* Enable PSE if available */
164 	if (cpu_has_pse)
165 		cr4_set_bits_and_update_boot(X86_CR4_PSE);
166 
167 	/* Enable PGE if available */
168 	if (cpu_has_pge) {
169 		cr4_set_bits_and_update_boot(X86_CR4_PGE);
170 		__supported_pte_mask |= _PAGE_GLOBAL;
171 	} else
172 		__supported_pte_mask &= ~_PAGE_GLOBAL;
173 
174 	/* Enable 1 GB linear kernel mappings if available: */
175 	if (direct_gbpages && cpu_has_gbpages) {
176 		printk(KERN_INFO "Using GB pages for direct mapping\n");
177 		page_size_mask |= 1 << PG_LEVEL_1G;
178 	} else {
179 		direct_gbpages = 0;
180 	}
181 }
182 
183 #ifdef CONFIG_X86_32
184 #define NR_RANGE_MR 3
185 #else /* CONFIG_X86_64 */
186 #define NR_RANGE_MR 5
187 #endif
188 
189 static int __meminit save_mr(struct map_range *mr, int nr_range,
190 			     unsigned long start_pfn, unsigned long end_pfn,
191 			     unsigned long page_size_mask)
192 {
193 	if (start_pfn < end_pfn) {
194 		if (nr_range >= NR_RANGE_MR)
195 			panic("run out of range for init_memory_mapping\n");
196 		mr[nr_range].start = start_pfn<<PAGE_SHIFT;
197 		mr[nr_range].end   = end_pfn<<PAGE_SHIFT;
198 		mr[nr_range].page_size_mask = page_size_mask;
199 		nr_range++;
200 	}
201 
202 	return nr_range;
203 }
204 
205 /*
206  * adjust the page_size_mask for small range to go with
207  *	big page size instead small one if nearby are ram too.
208  */
209 static void __init_refok adjust_range_page_size_mask(struct map_range *mr,
210 							 int nr_range)
211 {
212 	int i;
213 
214 	for (i = 0; i < nr_range; i++) {
215 		if ((page_size_mask & (1<<PG_LEVEL_2M)) &&
216 		    !(mr[i].page_size_mask & (1<<PG_LEVEL_2M))) {
217 			unsigned long start = round_down(mr[i].start, PMD_SIZE);
218 			unsigned long end = round_up(mr[i].end, PMD_SIZE);
219 
220 #ifdef CONFIG_X86_32
221 			if ((end >> PAGE_SHIFT) > max_low_pfn)
222 				continue;
223 #endif
224 
225 			if (memblock_is_region_memory(start, end - start))
226 				mr[i].page_size_mask |= 1<<PG_LEVEL_2M;
227 		}
228 		if ((page_size_mask & (1<<PG_LEVEL_1G)) &&
229 		    !(mr[i].page_size_mask & (1<<PG_LEVEL_1G))) {
230 			unsigned long start = round_down(mr[i].start, PUD_SIZE);
231 			unsigned long end = round_up(mr[i].end, PUD_SIZE);
232 
233 			if (memblock_is_region_memory(start, end - start))
234 				mr[i].page_size_mask |= 1<<PG_LEVEL_1G;
235 		}
236 	}
237 }
238 
239 static const char *page_size_string(struct map_range *mr)
240 {
241 	static const char str_1g[] = "1G";
242 	static const char str_2m[] = "2M";
243 	static const char str_4m[] = "4M";
244 	static const char str_4k[] = "4k";
245 
246 	if (mr->page_size_mask & (1<<PG_LEVEL_1G))
247 		return str_1g;
248 	/*
249 	 * 32-bit without PAE has a 4M large page size.
250 	 * PG_LEVEL_2M is misnamed, but we can at least
251 	 * print out the right size in the string.
252 	 */
253 	if (IS_ENABLED(CONFIG_X86_32) &&
254 	    !IS_ENABLED(CONFIG_X86_PAE) &&
255 	    mr->page_size_mask & (1<<PG_LEVEL_2M))
256 		return str_4m;
257 
258 	if (mr->page_size_mask & (1<<PG_LEVEL_2M))
259 		return str_2m;
260 
261 	return str_4k;
262 }
263 
264 static int __meminit split_mem_range(struct map_range *mr, int nr_range,
265 				     unsigned long start,
266 				     unsigned long end)
267 {
268 	unsigned long start_pfn, end_pfn, limit_pfn;
269 	unsigned long pfn;
270 	int i;
271 
272 	limit_pfn = PFN_DOWN(end);
273 
274 	/* head if not big page alignment ? */
275 	pfn = start_pfn = PFN_DOWN(start);
276 #ifdef CONFIG_X86_32
277 	/*
278 	 * Don't use a large page for the first 2/4MB of memory
279 	 * because there are often fixed size MTRRs in there
280 	 * and overlapping MTRRs into large pages can cause
281 	 * slowdowns.
282 	 */
283 	if (pfn == 0)
284 		end_pfn = PFN_DOWN(PMD_SIZE);
285 	else
286 		end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
287 #else /* CONFIG_X86_64 */
288 	end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
289 #endif
290 	if (end_pfn > limit_pfn)
291 		end_pfn = limit_pfn;
292 	if (start_pfn < end_pfn) {
293 		nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
294 		pfn = end_pfn;
295 	}
296 
297 	/* big page (2M) range */
298 	start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
299 #ifdef CONFIG_X86_32
300 	end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
301 #else /* CONFIG_X86_64 */
302 	end_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
303 	if (end_pfn > round_down(limit_pfn, PFN_DOWN(PMD_SIZE)))
304 		end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
305 #endif
306 
307 	if (start_pfn < end_pfn) {
308 		nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
309 				page_size_mask & (1<<PG_LEVEL_2M));
310 		pfn = end_pfn;
311 	}
312 
313 #ifdef CONFIG_X86_64
314 	/* big page (1G) range */
315 	start_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
316 	end_pfn = round_down(limit_pfn, PFN_DOWN(PUD_SIZE));
317 	if (start_pfn < end_pfn) {
318 		nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
319 				page_size_mask &
320 				 ((1<<PG_LEVEL_2M)|(1<<PG_LEVEL_1G)));
321 		pfn = end_pfn;
322 	}
323 
324 	/* tail is not big page (1G) alignment */
325 	start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
326 	end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
327 	if (start_pfn < end_pfn) {
328 		nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
329 				page_size_mask & (1<<PG_LEVEL_2M));
330 		pfn = end_pfn;
331 	}
332 #endif
333 
334 	/* tail is not big page (2M) alignment */
335 	start_pfn = pfn;
336 	end_pfn = limit_pfn;
337 	nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
338 
339 	if (!after_bootmem)
340 		adjust_range_page_size_mask(mr, nr_range);
341 
342 	/* try to merge same page size and continuous */
343 	for (i = 0; nr_range > 1 && i < nr_range - 1; i++) {
344 		unsigned long old_start;
345 		if (mr[i].end != mr[i+1].start ||
346 		    mr[i].page_size_mask != mr[i+1].page_size_mask)
347 			continue;
348 		/* move it */
349 		old_start = mr[i].start;
350 		memmove(&mr[i], &mr[i+1],
351 			(nr_range - 1 - i) * sizeof(struct map_range));
352 		mr[i--].start = old_start;
353 		nr_range--;
354 	}
355 
356 	for (i = 0; i < nr_range; i++)
357 		pr_debug(" [mem %#010lx-%#010lx] page %s\n",
358 				mr[i].start, mr[i].end - 1,
359 				page_size_string(&mr[i]));
360 
361 	return nr_range;
362 }
363 
364 struct range pfn_mapped[E820_X_MAX];
365 int nr_pfn_mapped;
366 
367 static void add_pfn_range_mapped(unsigned long start_pfn, unsigned long end_pfn)
368 {
369 	nr_pfn_mapped = add_range_with_merge(pfn_mapped, E820_X_MAX,
370 					     nr_pfn_mapped, start_pfn, end_pfn);
371 	nr_pfn_mapped = clean_sort_range(pfn_mapped, E820_X_MAX);
372 
373 	max_pfn_mapped = max(max_pfn_mapped, end_pfn);
374 
375 	if (start_pfn < (1UL<<(32-PAGE_SHIFT)))
376 		max_low_pfn_mapped = max(max_low_pfn_mapped,
377 					 min(end_pfn, 1UL<<(32-PAGE_SHIFT)));
378 }
379 
380 bool pfn_range_is_mapped(unsigned long start_pfn, unsigned long end_pfn)
381 {
382 	int i;
383 
384 	for (i = 0; i < nr_pfn_mapped; i++)
385 		if ((start_pfn >= pfn_mapped[i].start) &&
386 		    (end_pfn <= pfn_mapped[i].end))
387 			return true;
388 
389 	return false;
390 }
391 
392 /*
393  * Setup the direct mapping of the physical memory at PAGE_OFFSET.
394  * This runs before bootmem is initialized and gets pages directly from
395  * the physical memory. To access them they are temporarily mapped.
396  */
397 unsigned long __init_refok init_memory_mapping(unsigned long start,
398 					       unsigned long end)
399 {
400 	struct map_range mr[NR_RANGE_MR];
401 	unsigned long ret = 0;
402 	int nr_range, i;
403 
404 	pr_debug("init_memory_mapping: [mem %#010lx-%#010lx]\n",
405 	       start, end - 1);
406 
407 	memset(mr, 0, sizeof(mr));
408 	nr_range = split_mem_range(mr, 0, start, end);
409 
410 	for (i = 0; i < nr_range; i++)
411 		ret = kernel_physical_mapping_init(mr[i].start, mr[i].end,
412 						   mr[i].page_size_mask);
413 
414 	add_pfn_range_mapped(start >> PAGE_SHIFT, ret >> PAGE_SHIFT);
415 
416 	return ret >> PAGE_SHIFT;
417 }
418 
419 /*
420  * We need to iterate through the E820 memory map and create direct mappings
421  * for only E820_RAM and E820_KERN_RESERVED regions. We cannot simply
422  * create direct mappings for all pfns from [0 to max_low_pfn) and
423  * [4GB to max_pfn) because of possible memory holes in high addresses
424  * that cannot be marked as UC by fixed/variable range MTRRs.
425  * Depending on the alignment of E820 ranges, this may possibly result
426  * in using smaller size (i.e. 4K instead of 2M or 1G) page tables.
427  *
428  * init_mem_mapping() calls init_range_memory_mapping() with big range.
429  * That range would have hole in the middle or ends, and only ram parts
430  * will be mapped in init_range_memory_mapping().
431  */
432 static unsigned long __init init_range_memory_mapping(
433 					   unsigned long r_start,
434 					   unsigned long r_end)
435 {
436 	unsigned long start_pfn, end_pfn;
437 	unsigned long mapped_ram_size = 0;
438 	int i;
439 
440 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) {
441 		u64 start = clamp_val(PFN_PHYS(start_pfn), r_start, r_end);
442 		u64 end = clamp_val(PFN_PHYS(end_pfn), r_start, r_end);
443 		if (start >= end)
444 			continue;
445 
446 		/*
447 		 * if it is overlapping with brk pgt, we need to
448 		 * alloc pgt buf from memblock instead.
449 		 */
450 		can_use_brk_pgt = max(start, (u64)pgt_buf_end<<PAGE_SHIFT) >=
451 				    min(end, (u64)pgt_buf_top<<PAGE_SHIFT);
452 		init_memory_mapping(start, end);
453 		mapped_ram_size += end - start;
454 		can_use_brk_pgt = true;
455 	}
456 
457 	return mapped_ram_size;
458 }
459 
460 static unsigned long __init get_new_step_size(unsigned long step_size)
461 {
462 	/*
463 	 * Initial mapped size is PMD_SIZE (2M).
464 	 * We can not set step_size to be PUD_SIZE (1G) yet.
465 	 * In worse case, when we cross the 1G boundary, and
466 	 * PG_LEVEL_2M is not set, we will need 1+1+512 pages (2M + 8k)
467 	 * to map 1G range with PTE. Hence we use one less than the
468 	 * difference of page table level shifts.
469 	 *
470 	 * Don't need to worry about overflow in the top-down case, on 32bit,
471 	 * when step_size is 0, round_down() returns 0 for start, and that
472 	 * turns it into 0x100000000ULL.
473 	 * In the bottom-up case, round_up(x, 0) returns 0 though too, which
474 	 * needs to be taken into consideration by the code below.
475 	 */
476 	return step_size << (PMD_SHIFT - PAGE_SHIFT - 1);
477 }
478 
479 /**
480  * memory_map_top_down - Map [map_start, map_end) top down
481  * @map_start: start address of the target memory range
482  * @map_end: end address of the target memory range
483  *
484  * This function will setup direct mapping for memory range
485  * [map_start, map_end) in top-down. That said, the page tables
486  * will be allocated at the end of the memory, and we map the
487  * memory in top-down.
488  */
489 static void __init memory_map_top_down(unsigned long map_start,
490 				       unsigned long map_end)
491 {
492 	unsigned long real_end, start, last_start;
493 	unsigned long step_size;
494 	unsigned long addr;
495 	unsigned long mapped_ram_size = 0;
496 
497 	/* xen has big range in reserved near end of ram, skip it at first.*/
498 	addr = memblock_find_in_range(map_start, map_end, PMD_SIZE, PMD_SIZE);
499 	real_end = addr + PMD_SIZE;
500 
501 	/* step_size need to be small so pgt_buf from BRK could cover it */
502 	step_size = PMD_SIZE;
503 	max_pfn_mapped = 0; /* will get exact value next */
504 	min_pfn_mapped = real_end >> PAGE_SHIFT;
505 	last_start = start = real_end;
506 
507 	/*
508 	 * We start from the top (end of memory) and go to the bottom.
509 	 * The memblock_find_in_range() gets us a block of RAM from the
510 	 * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
511 	 * for page table.
512 	 */
513 	while (last_start > map_start) {
514 		if (last_start > step_size) {
515 			start = round_down(last_start - 1, step_size);
516 			if (start < map_start)
517 				start = map_start;
518 		} else
519 			start = map_start;
520 		mapped_ram_size += init_range_memory_mapping(start,
521 							last_start);
522 		last_start = start;
523 		min_pfn_mapped = last_start >> PAGE_SHIFT;
524 		if (mapped_ram_size >= step_size)
525 			step_size = get_new_step_size(step_size);
526 	}
527 
528 	if (real_end < map_end)
529 		init_range_memory_mapping(real_end, map_end);
530 }
531 
532 /**
533  * memory_map_bottom_up - Map [map_start, map_end) bottom up
534  * @map_start: start address of the target memory range
535  * @map_end: end address of the target memory range
536  *
537  * This function will setup direct mapping for memory range
538  * [map_start, map_end) in bottom-up. Since we have limited the
539  * bottom-up allocation above the kernel, the page tables will
540  * be allocated just above the kernel and we map the memory
541  * in [map_start, map_end) in bottom-up.
542  */
543 static void __init memory_map_bottom_up(unsigned long map_start,
544 					unsigned long map_end)
545 {
546 	unsigned long next, start;
547 	unsigned long mapped_ram_size = 0;
548 	/* step_size need to be small so pgt_buf from BRK could cover it */
549 	unsigned long step_size = PMD_SIZE;
550 
551 	start = map_start;
552 	min_pfn_mapped = start >> PAGE_SHIFT;
553 
554 	/*
555 	 * We start from the bottom (@map_start) and go to the top (@map_end).
556 	 * The memblock_find_in_range() gets us a block of RAM from the
557 	 * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
558 	 * for page table.
559 	 */
560 	while (start < map_end) {
561 		if (step_size && map_end - start > step_size) {
562 			next = round_up(start + 1, step_size);
563 			if (next > map_end)
564 				next = map_end;
565 		} else {
566 			next = map_end;
567 		}
568 
569 		mapped_ram_size += init_range_memory_mapping(start, next);
570 		start = next;
571 
572 		if (mapped_ram_size >= step_size)
573 			step_size = get_new_step_size(step_size);
574 	}
575 }
576 
577 void __init init_mem_mapping(void)
578 {
579 	unsigned long end;
580 
581 	probe_page_size_mask();
582 
583 #ifdef CONFIG_X86_64
584 	end = max_pfn << PAGE_SHIFT;
585 #else
586 	end = max_low_pfn << PAGE_SHIFT;
587 #endif
588 
589 	/* the ISA range is always mapped regardless of memory holes */
590 	init_memory_mapping(0, ISA_END_ADDRESS);
591 
592 	/*
593 	 * If the allocation is in bottom-up direction, we setup direct mapping
594 	 * in bottom-up, otherwise we setup direct mapping in top-down.
595 	 */
596 	if (memblock_bottom_up()) {
597 		unsigned long kernel_end = __pa_symbol(_end);
598 
599 		/*
600 		 * we need two separate calls here. This is because we want to
601 		 * allocate page tables above the kernel. So we first map
602 		 * [kernel_end, end) to make memory above the kernel be mapped
603 		 * as soon as possible. And then use page tables allocated above
604 		 * the kernel to map [ISA_END_ADDRESS, kernel_end).
605 		 */
606 		memory_map_bottom_up(kernel_end, end);
607 		memory_map_bottom_up(ISA_END_ADDRESS, kernel_end);
608 	} else {
609 		memory_map_top_down(ISA_END_ADDRESS, end);
610 	}
611 
612 #ifdef CONFIG_X86_64
613 	if (max_pfn > max_low_pfn) {
614 		/* can we preseve max_low_pfn ?*/
615 		max_low_pfn = max_pfn;
616 	}
617 #else
618 	early_ioremap_page_table_range_init();
619 #endif
620 
621 	load_cr3(swapper_pg_dir);
622 	__flush_tlb_all();
623 
624 	early_memtest(0, max_pfn_mapped << PAGE_SHIFT);
625 }
626 
627 /*
628  * devmem_is_allowed() checks to see if /dev/mem access to a certain address
629  * is valid. The argument is a physical page number.
630  *
631  *
632  * On x86, access has to be given to the first megabyte of ram because that area
633  * contains BIOS code and data regions used by X and dosemu and similar apps.
634  * Access has to be given to non-kernel-ram areas as well, these contain the PCI
635  * mmio resources as well as potential bios/acpi data regions.
636  */
637 int devmem_is_allowed(unsigned long pagenr)
638 {
639 	if (pagenr < 256)
640 		return 1;
641 	if (iomem_is_exclusive(pagenr << PAGE_SHIFT))
642 		return 0;
643 	if (!page_is_ram(pagenr))
644 		return 1;
645 	return 0;
646 }
647 
648 void free_init_pages(char *what, unsigned long begin, unsigned long end)
649 {
650 	unsigned long begin_aligned, end_aligned;
651 
652 	/* Make sure boundaries are page aligned */
653 	begin_aligned = PAGE_ALIGN(begin);
654 	end_aligned   = end & PAGE_MASK;
655 
656 	if (WARN_ON(begin_aligned != begin || end_aligned != end)) {
657 		begin = begin_aligned;
658 		end   = end_aligned;
659 	}
660 
661 	if (begin >= end)
662 		return;
663 
664 	/*
665 	 * If debugging page accesses then do not free this memory but
666 	 * mark them not present - any buggy init-section access will
667 	 * create a kernel page fault:
668 	 */
669 #ifdef CONFIG_DEBUG_PAGEALLOC
670 	printk(KERN_INFO "debug: unmapping init [mem %#010lx-%#010lx]\n",
671 		begin, end - 1);
672 	set_memory_np(begin, (end - begin) >> PAGE_SHIFT);
673 #else
674 	/*
675 	 * We just marked the kernel text read only above, now that
676 	 * we are going to free part of that, we need to make that
677 	 * writeable and non-executable first.
678 	 */
679 	set_memory_nx(begin, (end - begin) >> PAGE_SHIFT);
680 	set_memory_rw(begin, (end - begin) >> PAGE_SHIFT);
681 
682 	free_reserved_area((void *)begin, (void *)end, POISON_FREE_INITMEM, what);
683 #endif
684 }
685 
686 void free_initmem(void)
687 {
688 	free_init_pages("unused kernel",
689 			(unsigned long)(&__init_begin),
690 			(unsigned long)(&__init_end));
691 }
692 
693 #ifdef CONFIG_BLK_DEV_INITRD
694 void __init free_initrd_mem(unsigned long start, unsigned long end)
695 {
696 	/*
697 	 * Remember, initrd memory may contain microcode or other useful things.
698 	 * Before we lose initrd mem, we need to find a place to hold them
699 	 * now that normal virtual memory is enabled.
700 	 */
701 	save_microcode_in_initrd();
702 
703 	/*
704 	 * end could be not aligned, and We can not align that,
705 	 * decompresser could be confused by aligned initrd_end
706 	 * We already reserve the end partial page before in
707 	 *   - i386_start_kernel()
708 	 *   - x86_64_start_kernel()
709 	 *   - relocate_initrd()
710 	 * So here We can do PAGE_ALIGN() safely to get partial page to be freed
711 	 */
712 	free_init_pages("initrd", start, PAGE_ALIGN(end));
713 }
714 #endif
715 
716 void __init zone_sizes_init(void)
717 {
718 	unsigned long max_zone_pfns[MAX_NR_ZONES];
719 
720 	memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
721 
722 #ifdef CONFIG_ZONE_DMA
723 	max_zone_pfns[ZONE_DMA]		= min(MAX_DMA_PFN, max_low_pfn);
724 #endif
725 #ifdef CONFIG_ZONE_DMA32
726 	max_zone_pfns[ZONE_DMA32]	= min(MAX_DMA32_PFN, max_low_pfn);
727 #endif
728 	max_zone_pfns[ZONE_NORMAL]	= max_low_pfn;
729 #ifdef CONFIG_HIGHMEM
730 	max_zone_pfns[ZONE_HIGHMEM]	= max_pfn;
731 #endif
732 
733 	free_area_init_nodes(max_zone_pfns);
734 }
735 
736 DEFINE_PER_CPU_SHARED_ALIGNED(struct tlb_state, cpu_tlbstate) = {
737 #ifdef CONFIG_SMP
738 	.active_mm = &init_mm,
739 	.state = 0,
740 #endif
741 	.cr4 = ~0UL,	/* fail hard if we screw up cr4 shadow initialization */
742 };
743 EXPORT_SYMBOL_GPL(cpu_tlbstate);
744 
745 void update_cache_mode_entry(unsigned entry, enum page_cache_mode cache)
746 {
747 	/* entry 0 MUST be WB (hardwired to speed up translations) */
748 	BUG_ON(!entry && cache != _PAGE_CACHE_MODE_WB);
749 
750 	__cachemode2pte_tbl[cache] = __cm_idx2pte(entry);
751 	__pte2cachemode_tbl[entry] = cache;
752 }
753