xref: /linux/arch/x86/mm/init.c (revision a634dda26186cf9a51567020fcce52bcba5e1e59)
1 #include <linux/gfp.h>
2 #include <linux/initrd.h>
3 #include <linux/ioport.h>
4 #include <linux/swap.h>
5 #include <linux/memblock.h>
6 #include <linux/swapfile.h>
7 #include <linux/swapops.h>
8 #include <linux/kmemleak.h>
9 #include <linux/sched/task.h>
10 #include <linux/execmem.h>
11 
12 #include <asm/set_memory.h>
13 #include <asm/cpu_device_id.h>
14 #include <asm/e820/api.h>
15 #include <asm/init.h>
16 #include <asm/page.h>
17 #include <asm/page_types.h>
18 #include <asm/sections.h>
19 #include <asm/setup.h>
20 #include <asm/tlbflush.h>
21 #include <asm/tlb.h>
22 #include <asm/proto.h>
23 #include <asm/dma.h>		/* for MAX_DMA_PFN */
24 #include <asm/kaslr.h>
25 #include <asm/hypervisor.h>
26 #include <asm/cpufeature.h>
27 #include <asm/pti.h>
28 #include <asm/text-patching.h>
29 #include <asm/memtype.h>
30 #include <asm/paravirt.h>
31 
32 /*
33  * We need to define the tracepoints somewhere, and tlb.c
34  * is only compiled when SMP=y.
35  */
36 #include <trace/events/tlb.h>
37 
38 #include "mm_internal.h"
39 
40 /*
41  * Tables translating between page_cache_type_t and pte encoding.
42  *
43  * The default values are defined statically as minimal supported mode;
44  * WC and WT fall back to UC-.  pat_init() updates these values to support
45  * more cache modes, WC and WT, when it is safe to do so.  See pat_init()
46  * for the details.  Note, __early_ioremap() used during early boot-time
47  * takes pgprot_t (pte encoding) and does not use these tables.
48  *
49  *   Index into __cachemode2pte_tbl[] is the cachemode.
50  *
51  *   Index into __pte2cachemode_tbl[] are the caching attribute bits of the pte
52  *   (_PAGE_PWT, _PAGE_PCD, _PAGE_PAT) at index bit positions 0, 1, 2.
53  */
54 static uint16_t __cachemode2pte_tbl[_PAGE_CACHE_MODE_NUM] = {
55 	[_PAGE_CACHE_MODE_WB      ]	= 0         | 0        ,
56 	[_PAGE_CACHE_MODE_WC      ]	= 0         | _PAGE_PCD,
57 	[_PAGE_CACHE_MODE_UC_MINUS]	= 0         | _PAGE_PCD,
58 	[_PAGE_CACHE_MODE_UC      ]	= _PAGE_PWT | _PAGE_PCD,
59 	[_PAGE_CACHE_MODE_WT      ]	= 0         | _PAGE_PCD,
60 	[_PAGE_CACHE_MODE_WP      ]	= 0         | _PAGE_PCD,
61 };
62 
63 unsigned long cachemode2protval(enum page_cache_mode pcm)
64 {
65 	if (likely(pcm == 0))
66 		return 0;
67 	return __cachemode2pte_tbl[pcm];
68 }
69 EXPORT_SYMBOL(cachemode2protval);
70 
71 static uint8_t __pte2cachemode_tbl[8] = {
72 	[__pte2cm_idx( 0        | 0         | 0        )] = _PAGE_CACHE_MODE_WB,
73 	[__pte2cm_idx(_PAGE_PWT | 0         | 0        )] = _PAGE_CACHE_MODE_UC_MINUS,
74 	[__pte2cm_idx( 0        | _PAGE_PCD | 0        )] = _PAGE_CACHE_MODE_UC_MINUS,
75 	[__pte2cm_idx(_PAGE_PWT | _PAGE_PCD | 0        )] = _PAGE_CACHE_MODE_UC,
76 	[__pte2cm_idx( 0        | 0         | _PAGE_PAT)] = _PAGE_CACHE_MODE_WB,
77 	[__pte2cm_idx(_PAGE_PWT | 0         | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC_MINUS,
78 	[__pte2cm_idx(0         | _PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC_MINUS,
79 	[__pte2cm_idx(_PAGE_PWT | _PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC,
80 };
81 
82 /*
83  * Check that the write-protect PAT entry is set for write-protect.
84  * To do this without making assumptions how PAT has been set up (Xen has
85  * another layout than the kernel), translate the _PAGE_CACHE_MODE_WP cache
86  * mode via the __cachemode2pte_tbl[] into protection bits (those protection
87  * bits will select a cache mode of WP or better), and then translate the
88  * protection bits back into the cache mode using __pte2cm_idx() and the
89  * __pte2cachemode_tbl[] array. This will return the really used cache mode.
90  */
91 bool x86_has_pat_wp(void)
92 {
93 	uint16_t prot = __cachemode2pte_tbl[_PAGE_CACHE_MODE_WP];
94 
95 	return __pte2cachemode_tbl[__pte2cm_idx(prot)] == _PAGE_CACHE_MODE_WP;
96 }
97 
98 enum page_cache_mode pgprot2cachemode(pgprot_t pgprot)
99 {
100 	unsigned long masked;
101 
102 	masked = pgprot_val(pgprot) & _PAGE_CACHE_MASK;
103 	if (likely(masked == 0))
104 		return 0;
105 	return __pte2cachemode_tbl[__pte2cm_idx(masked)];
106 }
107 
108 static unsigned long __initdata pgt_buf_start;
109 static unsigned long __initdata pgt_buf_end;
110 static unsigned long __initdata pgt_buf_top;
111 
112 static unsigned long min_pfn_mapped;
113 
114 static bool __initdata can_use_brk_pgt = true;
115 
116 /*
117  * Pages returned are already directly mapped.
118  *
119  * Changing that is likely to break Xen, see commit:
120  *
121  *    279b706 x86,xen: introduce x86_init.mapping.pagetable_reserve
122  *
123  * for detailed information.
124  */
125 __ref void *alloc_low_pages(unsigned int num)
126 {
127 	unsigned long pfn;
128 	int i;
129 
130 	if (after_bootmem) {
131 		unsigned int order;
132 
133 		order = get_order((unsigned long)num << PAGE_SHIFT);
134 		return (void *)__get_free_pages(GFP_ATOMIC | __GFP_ZERO, order);
135 	}
136 
137 	if ((pgt_buf_end + num) > pgt_buf_top || !can_use_brk_pgt) {
138 		unsigned long ret = 0;
139 
140 		if (min_pfn_mapped < max_pfn_mapped) {
141 			ret = memblock_phys_alloc_range(
142 					PAGE_SIZE * num, PAGE_SIZE,
143 					min_pfn_mapped << PAGE_SHIFT,
144 					max_pfn_mapped << PAGE_SHIFT);
145 		}
146 		if (!ret && can_use_brk_pgt)
147 			ret = __pa(extend_brk(PAGE_SIZE * num, PAGE_SIZE));
148 
149 		if (!ret)
150 			panic("alloc_low_pages: can not alloc memory");
151 
152 		pfn = ret >> PAGE_SHIFT;
153 	} else {
154 		pfn = pgt_buf_end;
155 		pgt_buf_end += num;
156 	}
157 
158 	for (i = 0; i < num; i++) {
159 		void *adr;
160 
161 		adr = __va((pfn + i) << PAGE_SHIFT);
162 		clear_page(adr);
163 	}
164 
165 	return __va(pfn << PAGE_SHIFT);
166 }
167 
168 /*
169  * By default need to be able to allocate page tables below PGD firstly for
170  * the 0-ISA_END_ADDRESS range and secondly for the initial PMD_SIZE mapping.
171  * With KASLR memory randomization, depending on the machine e820 memory and the
172  * PUD alignment, twice that many pages may be needed when KASLR memory
173  * randomization is enabled.
174  */
175 
176 #ifndef CONFIG_X86_5LEVEL
177 #define INIT_PGD_PAGE_TABLES    3
178 #else
179 #define INIT_PGD_PAGE_TABLES    4
180 #endif
181 
182 #ifndef CONFIG_RANDOMIZE_MEMORY
183 #define INIT_PGD_PAGE_COUNT      (2 * INIT_PGD_PAGE_TABLES)
184 #else
185 #define INIT_PGD_PAGE_COUNT      (4 * INIT_PGD_PAGE_TABLES)
186 #endif
187 
188 #define INIT_PGT_BUF_SIZE	(INIT_PGD_PAGE_COUNT * PAGE_SIZE)
189 RESERVE_BRK(early_pgt_alloc, INIT_PGT_BUF_SIZE);
190 void  __init early_alloc_pgt_buf(void)
191 {
192 	unsigned long tables = INIT_PGT_BUF_SIZE;
193 	phys_addr_t base;
194 
195 	base = __pa(extend_brk(tables, PAGE_SIZE));
196 
197 	pgt_buf_start = base >> PAGE_SHIFT;
198 	pgt_buf_end = pgt_buf_start;
199 	pgt_buf_top = pgt_buf_start + (tables >> PAGE_SHIFT);
200 }
201 
202 int after_bootmem;
203 
204 early_param_on_off("gbpages", "nogbpages", direct_gbpages, CONFIG_X86_DIRECT_GBPAGES);
205 
206 struct map_range {
207 	unsigned long start;
208 	unsigned long end;
209 	unsigned page_size_mask;
210 };
211 
212 static int page_size_mask;
213 
214 /*
215  * Save some of cr4 feature set we're using (e.g.  Pentium 4MB
216  * enable and PPro Global page enable), so that any CPU's that boot
217  * up after us can get the correct flags. Invoked on the boot CPU.
218  */
219 static inline void cr4_set_bits_and_update_boot(unsigned long mask)
220 {
221 	mmu_cr4_features |= mask;
222 	if (trampoline_cr4_features)
223 		*trampoline_cr4_features = mmu_cr4_features;
224 	cr4_set_bits(mask);
225 }
226 
227 static void __init probe_page_size_mask(void)
228 {
229 	/*
230 	 * For pagealloc debugging, identity mapping will use small pages.
231 	 * This will simplify cpa(), which otherwise needs to support splitting
232 	 * large pages into small in interrupt context, etc.
233 	 */
234 	if (boot_cpu_has(X86_FEATURE_PSE) && !debug_pagealloc_enabled())
235 		page_size_mask |= 1 << PG_LEVEL_2M;
236 	else
237 		direct_gbpages = 0;
238 
239 	/* Enable PSE if available */
240 	if (boot_cpu_has(X86_FEATURE_PSE))
241 		cr4_set_bits_and_update_boot(X86_CR4_PSE);
242 
243 	/* Enable PGE if available */
244 	__supported_pte_mask &= ~_PAGE_GLOBAL;
245 	if (boot_cpu_has(X86_FEATURE_PGE)) {
246 		cr4_set_bits_and_update_boot(X86_CR4_PGE);
247 		__supported_pte_mask |= _PAGE_GLOBAL;
248 	}
249 
250 	/* By the default is everything supported: */
251 	__default_kernel_pte_mask = __supported_pte_mask;
252 	/* Except when with PTI where the kernel is mostly non-Global: */
253 	if (cpu_feature_enabled(X86_FEATURE_PTI))
254 		__default_kernel_pte_mask &= ~_PAGE_GLOBAL;
255 
256 	/* Enable 1 GB linear kernel mappings if available: */
257 	if (direct_gbpages && boot_cpu_has(X86_FEATURE_GBPAGES)) {
258 		printk(KERN_INFO "Using GB pages for direct mapping\n");
259 		page_size_mask |= 1 << PG_LEVEL_1G;
260 	} else {
261 		direct_gbpages = 0;
262 	}
263 }
264 
265 /*
266  * INVLPG may not properly flush Global entries on
267  * these CPUs.  New microcode fixes the issue.
268  */
269 static const struct x86_cpu_id invlpg_miss_ids[] = {
270 	X86_MATCH_VFM(INTEL_ALDERLAKE,	    0x2e),
271 	X86_MATCH_VFM(INTEL_ALDERLAKE_L,    0x42c),
272 	X86_MATCH_VFM(INTEL_ATOM_GRACEMONT, 0x11),
273 	X86_MATCH_VFM(INTEL_RAPTORLAKE,	    0x118),
274 	X86_MATCH_VFM(INTEL_RAPTORLAKE_P,   0x4117),
275 	X86_MATCH_VFM(INTEL_RAPTORLAKE_S,   0x2e),
276 	{}
277 };
278 
279 static void setup_pcid(void)
280 {
281 	const struct x86_cpu_id *invlpg_miss_match;
282 
283 	if (!IS_ENABLED(CONFIG_X86_64))
284 		return;
285 
286 	if (!boot_cpu_has(X86_FEATURE_PCID))
287 		return;
288 
289 	invlpg_miss_match = x86_match_cpu(invlpg_miss_ids);
290 
291 	if (invlpg_miss_match &&
292 	    boot_cpu_data.microcode < invlpg_miss_match->driver_data) {
293 		pr_info("Incomplete global flushes, disabling PCID");
294 		setup_clear_cpu_cap(X86_FEATURE_PCID);
295 		return;
296 	}
297 
298 	if (boot_cpu_has(X86_FEATURE_PGE)) {
299 		/*
300 		 * This can't be cr4_set_bits_and_update_boot() -- the
301 		 * trampoline code can't handle CR4.PCIDE and it wouldn't
302 		 * do any good anyway.  Despite the name,
303 		 * cr4_set_bits_and_update_boot() doesn't actually cause
304 		 * the bits in question to remain set all the way through
305 		 * the secondary boot asm.
306 		 *
307 		 * Instead, we brute-force it and set CR4.PCIDE manually in
308 		 * start_secondary().
309 		 */
310 		cr4_set_bits(X86_CR4_PCIDE);
311 	} else {
312 		/*
313 		 * flush_tlb_all(), as currently implemented, won't work if
314 		 * PCID is on but PGE is not.  Since that combination
315 		 * doesn't exist on real hardware, there's no reason to try
316 		 * to fully support it, but it's polite to avoid corrupting
317 		 * data if we're on an improperly configured VM.
318 		 */
319 		setup_clear_cpu_cap(X86_FEATURE_PCID);
320 	}
321 }
322 
323 #ifdef CONFIG_X86_32
324 #define NR_RANGE_MR 3
325 #else /* CONFIG_X86_64 */
326 #define NR_RANGE_MR 5
327 #endif
328 
329 static int __meminit save_mr(struct map_range *mr, int nr_range,
330 			     unsigned long start_pfn, unsigned long end_pfn,
331 			     unsigned long page_size_mask)
332 {
333 	if (start_pfn < end_pfn) {
334 		if (nr_range >= NR_RANGE_MR)
335 			panic("run out of range for init_memory_mapping\n");
336 		mr[nr_range].start = start_pfn<<PAGE_SHIFT;
337 		mr[nr_range].end   = end_pfn<<PAGE_SHIFT;
338 		mr[nr_range].page_size_mask = page_size_mask;
339 		nr_range++;
340 	}
341 
342 	return nr_range;
343 }
344 
345 /*
346  * adjust the page_size_mask for small range to go with
347  *	big page size instead small one if nearby are ram too.
348  */
349 static void __ref adjust_range_page_size_mask(struct map_range *mr,
350 							 int nr_range)
351 {
352 	int i;
353 
354 	for (i = 0; i < nr_range; i++) {
355 		if ((page_size_mask & (1<<PG_LEVEL_2M)) &&
356 		    !(mr[i].page_size_mask & (1<<PG_LEVEL_2M))) {
357 			unsigned long start = round_down(mr[i].start, PMD_SIZE);
358 			unsigned long end = round_up(mr[i].end, PMD_SIZE);
359 
360 #ifdef CONFIG_X86_32
361 			if ((end >> PAGE_SHIFT) > max_low_pfn)
362 				continue;
363 #endif
364 
365 			if (memblock_is_region_memory(start, end - start))
366 				mr[i].page_size_mask |= 1<<PG_LEVEL_2M;
367 		}
368 		if ((page_size_mask & (1<<PG_LEVEL_1G)) &&
369 		    !(mr[i].page_size_mask & (1<<PG_LEVEL_1G))) {
370 			unsigned long start = round_down(mr[i].start, PUD_SIZE);
371 			unsigned long end = round_up(mr[i].end, PUD_SIZE);
372 
373 			if (memblock_is_region_memory(start, end - start))
374 				mr[i].page_size_mask |= 1<<PG_LEVEL_1G;
375 		}
376 	}
377 }
378 
379 static const char *page_size_string(struct map_range *mr)
380 {
381 	static const char str_1g[] = "1G";
382 	static const char str_2m[] = "2M";
383 	static const char str_4m[] = "4M";
384 	static const char str_4k[] = "4k";
385 
386 	if (mr->page_size_mask & (1<<PG_LEVEL_1G))
387 		return str_1g;
388 	/*
389 	 * 32-bit without PAE has a 4M large page size.
390 	 * PG_LEVEL_2M is misnamed, but we can at least
391 	 * print out the right size in the string.
392 	 */
393 	if (IS_ENABLED(CONFIG_X86_32) &&
394 	    !IS_ENABLED(CONFIG_X86_PAE) &&
395 	    mr->page_size_mask & (1<<PG_LEVEL_2M))
396 		return str_4m;
397 
398 	if (mr->page_size_mask & (1<<PG_LEVEL_2M))
399 		return str_2m;
400 
401 	return str_4k;
402 }
403 
404 static int __meminit split_mem_range(struct map_range *mr, int nr_range,
405 				     unsigned long start,
406 				     unsigned long end)
407 {
408 	unsigned long start_pfn, end_pfn, limit_pfn;
409 	unsigned long pfn;
410 	int i;
411 
412 	limit_pfn = PFN_DOWN(end);
413 
414 	/* head if not big page alignment ? */
415 	pfn = start_pfn = PFN_DOWN(start);
416 #ifdef CONFIG_X86_32
417 	/*
418 	 * Don't use a large page for the first 2/4MB of memory
419 	 * because there are often fixed size MTRRs in there
420 	 * and overlapping MTRRs into large pages can cause
421 	 * slowdowns.
422 	 */
423 	if (pfn == 0)
424 		end_pfn = PFN_DOWN(PMD_SIZE);
425 	else
426 		end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
427 #else /* CONFIG_X86_64 */
428 	end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
429 #endif
430 	if (end_pfn > limit_pfn)
431 		end_pfn = limit_pfn;
432 	if (start_pfn < end_pfn) {
433 		nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
434 		pfn = end_pfn;
435 	}
436 
437 	/* big page (2M) range */
438 	start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
439 #ifdef CONFIG_X86_32
440 	end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
441 #else /* CONFIG_X86_64 */
442 	end_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
443 	if (end_pfn > round_down(limit_pfn, PFN_DOWN(PMD_SIZE)))
444 		end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
445 #endif
446 
447 	if (start_pfn < end_pfn) {
448 		nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
449 				page_size_mask & (1<<PG_LEVEL_2M));
450 		pfn = end_pfn;
451 	}
452 
453 #ifdef CONFIG_X86_64
454 	/* big page (1G) range */
455 	start_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
456 	end_pfn = round_down(limit_pfn, PFN_DOWN(PUD_SIZE));
457 	if (start_pfn < end_pfn) {
458 		nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
459 				page_size_mask &
460 				 ((1<<PG_LEVEL_2M)|(1<<PG_LEVEL_1G)));
461 		pfn = end_pfn;
462 	}
463 
464 	/* tail is not big page (1G) alignment */
465 	start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
466 	end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
467 	if (start_pfn < end_pfn) {
468 		nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
469 				page_size_mask & (1<<PG_LEVEL_2M));
470 		pfn = end_pfn;
471 	}
472 #endif
473 
474 	/* tail is not big page (2M) alignment */
475 	start_pfn = pfn;
476 	end_pfn = limit_pfn;
477 	nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
478 
479 	if (!after_bootmem)
480 		adjust_range_page_size_mask(mr, nr_range);
481 
482 	/* try to merge same page size and continuous */
483 	for (i = 0; nr_range > 1 && i < nr_range - 1; i++) {
484 		unsigned long old_start;
485 		if (mr[i].end != mr[i+1].start ||
486 		    mr[i].page_size_mask != mr[i+1].page_size_mask)
487 			continue;
488 		/* move it */
489 		old_start = mr[i].start;
490 		memmove(&mr[i], &mr[i+1],
491 			(nr_range - 1 - i) * sizeof(struct map_range));
492 		mr[i--].start = old_start;
493 		nr_range--;
494 	}
495 
496 	for (i = 0; i < nr_range; i++)
497 		pr_debug(" [mem %#010lx-%#010lx] page %s\n",
498 				mr[i].start, mr[i].end - 1,
499 				page_size_string(&mr[i]));
500 
501 	return nr_range;
502 }
503 
504 struct range pfn_mapped[E820_MAX_ENTRIES];
505 int nr_pfn_mapped;
506 
507 static void add_pfn_range_mapped(unsigned long start_pfn, unsigned long end_pfn)
508 {
509 	nr_pfn_mapped = add_range_with_merge(pfn_mapped, E820_MAX_ENTRIES,
510 					     nr_pfn_mapped, start_pfn, end_pfn);
511 	nr_pfn_mapped = clean_sort_range(pfn_mapped, E820_MAX_ENTRIES);
512 
513 	max_pfn_mapped = max(max_pfn_mapped, end_pfn);
514 
515 	if (start_pfn < (1UL<<(32-PAGE_SHIFT)))
516 		max_low_pfn_mapped = max(max_low_pfn_mapped,
517 					 min(end_pfn, 1UL<<(32-PAGE_SHIFT)));
518 }
519 
520 bool pfn_range_is_mapped(unsigned long start_pfn, unsigned long end_pfn)
521 {
522 	int i;
523 
524 	for (i = 0; i < nr_pfn_mapped; i++)
525 		if ((start_pfn >= pfn_mapped[i].start) &&
526 		    (end_pfn <= pfn_mapped[i].end))
527 			return true;
528 
529 	return false;
530 }
531 
532 /*
533  * Setup the direct mapping of the physical memory at PAGE_OFFSET.
534  * This runs before bootmem is initialized and gets pages directly from
535  * the physical memory. To access them they are temporarily mapped.
536  */
537 unsigned long __ref init_memory_mapping(unsigned long start,
538 					unsigned long end, pgprot_t prot)
539 {
540 	struct map_range mr[NR_RANGE_MR];
541 	unsigned long ret = 0;
542 	int nr_range, i;
543 
544 	pr_debug("init_memory_mapping: [mem %#010lx-%#010lx]\n",
545 	       start, end - 1);
546 
547 	memset(mr, 0, sizeof(mr));
548 	nr_range = split_mem_range(mr, 0, start, end);
549 
550 	for (i = 0; i < nr_range; i++)
551 		ret = kernel_physical_mapping_init(mr[i].start, mr[i].end,
552 						   mr[i].page_size_mask,
553 						   prot);
554 
555 	add_pfn_range_mapped(start >> PAGE_SHIFT, ret >> PAGE_SHIFT);
556 
557 	return ret >> PAGE_SHIFT;
558 }
559 
560 /*
561  * We need to iterate through the E820 memory map and create direct mappings
562  * for only E820_TYPE_RAM and E820_KERN_RESERVED regions. We cannot simply
563  * create direct mappings for all pfns from [0 to max_low_pfn) and
564  * [4GB to max_pfn) because of possible memory holes in high addresses
565  * that cannot be marked as UC by fixed/variable range MTRRs.
566  * Depending on the alignment of E820 ranges, this may possibly result
567  * in using smaller size (i.e. 4K instead of 2M or 1G) page tables.
568  *
569  * init_mem_mapping() calls init_range_memory_mapping() with big range.
570  * That range would have hole in the middle or ends, and only ram parts
571  * will be mapped in init_range_memory_mapping().
572  */
573 static unsigned long __init init_range_memory_mapping(
574 					   unsigned long r_start,
575 					   unsigned long r_end)
576 {
577 	unsigned long start_pfn, end_pfn;
578 	unsigned long mapped_ram_size = 0;
579 	int i;
580 
581 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) {
582 		u64 start = clamp_val(PFN_PHYS(start_pfn), r_start, r_end);
583 		u64 end = clamp_val(PFN_PHYS(end_pfn), r_start, r_end);
584 		if (start >= end)
585 			continue;
586 
587 		/*
588 		 * if it is overlapping with brk pgt, we need to
589 		 * alloc pgt buf from memblock instead.
590 		 */
591 		can_use_brk_pgt = max(start, (u64)pgt_buf_end<<PAGE_SHIFT) >=
592 				    min(end, (u64)pgt_buf_top<<PAGE_SHIFT);
593 		init_memory_mapping(start, end, PAGE_KERNEL);
594 		mapped_ram_size += end - start;
595 		can_use_brk_pgt = true;
596 	}
597 
598 	return mapped_ram_size;
599 }
600 
601 static unsigned long __init get_new_step_size(unsigned long step_size)
602 {
603 	/*
604 	 * Initial mapped size is PMD_SIZE (2M).
605 	 * We can not set step_size to be PUD_SIZE (1G) yet.
606 	 * In worse case, when we cross the 1G boundary, and
607 	 * PG_LEVEL_2M is not set, we will need 1+1+512 pages (2M + 8k)
608 	 * to map 1G range with PTE. Hence we use one less than the
609 	 * difference of page table level shifts.
610 	 *
611 	 * Don't need to worry about overflow in the top-down case, on 32bit,
612 	 * when step_size is 0, round_down() returns 0 for start, and that
613 	 * turns it into 0x100000000ULL.
614 	 * In the bottom-up case, round_up(x, 0) returns 0 though too, which
615 	 * needs to be taken into consideration by the code below.
616 	 */
617 	return step_size << (PMD_SHIFT - PAGE_SHIFT - 1);
618 }
619 
620 /**
621  * memory_map_top_down - Map [map_start, map_end) top down
622  * @map_start: start address of the target memory range
623  * @map_end: end address of the target memory range
624  *
625  * This function will setup direct mapping for memory range
626  * [map_start, map_end) in top-down. That said, the page tables
627  * will be allocated at the end of the memory, and we map the
628  * memory in top-down.
629  */
630 static void __init memory_map_top_down(unsigned long map_start,
631 				       unsigned long map_end)
632 {
633 	unsigned long real_end, last_start;
634 	unsigned long step_size;
635 	unsigned long addr;
636 	unsigned long mapped_ram_size = 0;
637 
638 	/*
639 	 * Systems that have many reserved areas near top of the memory,
640 	 * e.g. QEMU with less than 1G RAM and EFI enabled, or Xen, will
641 	 * require lots of 4K mappings which may exhaust pgt_buf.
642 	 * Start with top-most PMD_SIZE range aligned at PMD_SIZE to ensure
643 	 * there is enough mapped memory that can be allocated from
644 	 * memblock.
645 	 */
646 	addr = memblock_phys_alloc_range(PMD_SIZE, PMD_SIZE, map_start,
647 					 map_end);
648 	memblock_phys_free(addr, PMD_SIZE);
649 	real_end = addr + PMD_SIZE;
650 
651 	/* step_size need to be small so pgt_buf from BRK could cover it */
652 	step_size = PMD_SIZE;
653 	max_pfn_mapped = 0; /* will get exact value next */
654 	min_pfn_mapped = real_end >> PAGE_SHIFT;
655 	last_start = real_end;
656 
657 	/*
658 	 * We start from the top (end of memory) and go to the bottom.
659 	 * The memblock_find_in_range() gets us a block of RAM from the
660 	 * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
661 	 * for page table.
662 	 */
663 	while (last_start > map_start) {
664 		unsigned long start;
665 
666 		if (last_start > step_size) {
667 			start = round_down(last_start - 1, step_size);
668 			if (start < map_start)
669 				start = map_start;
670 		} else
671 			start = map_start;
672 		mapped_ram_size += init_range_memory_mapping(start,
673 							last_start);
674 		last_start = start;
675 		min_pfn_mapped = last_start >> PAGE_SHIFT;
676 		if (mapped_ram_size >= step_size)
677 			step_size = get_new_step_size(step_size);
678 	}
679 
680 	if (real_end < map_end)
681 		init_range_memory_mapping(real_end, map_end);
682 }
683 
684 /**
685  * memory_map_bottom_up - Map [map_start, map_end) bottom up
686  * @map_start: start address of the target memory range
687  * @map_end: end address of the target memory range
688  *
689  * This function will setup direct mapping for memory range
690  * [map_start, map_end) in bottom-up. Since we have limited the
691  * bottom-up allocation above the kernel, the page tables will
692  * be allocated just above the kernel and we map the memory
693  * in [map_start, map_end) in bottom-up.
694  */
695 static void __init memory_map_bottom_up(unsigned long map_start,
696 					unsigned long map_end)
697 {
698 	unsigned long next, start;
699 	unsigned long mapped_ram_size = 0;
700 	/* step_size need to be small so pgt_buf from BRK could cover it */
701 	unsigned long step_size = PMD_SIZE;
702 
703 	start = map_start;
704 	min_pfn_mapped = start >> PAGE_SHIFT;
705 
706 	/*
707 	 * We start from the bottom (@map_start) and go to the top (@map_end).
708 	 * The memblock_find_in_range() gets us a block of RAM from the
709 	 * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
710 	 * for page table.
711 	 */
712 	while (start < map_end) {
713 		if (step_size && map_end - start > step_size) {
714 			next = round_up(start + 1, step_size);
715 			if (next > map_end)
716 				next = map_end;
717 		} else {
718 			next = map_end;
719 		}
720 
721 		mapped_ram_size += init_range_memory_mapping(start, next);
722 		start = next;
723 
724 		if (mapped_ram_size >= step_size)
725 			step_size = get_new_step_size(step_size);
726 	}
727 }
728 
729 /*
730  * The real mode trampoline, which is required for bootstrapping CPUs
731  * occupies only a small area under the low 1MB.  See reserve_real_mode()
732  * for details.
733  *
734  * If KASLR is disabled the first PGD entry of the direct mapping is copied
735  * to map the real mode trampoline.
736  *
737  * If KASLR is enabled, copy only the PUD which covers the low 1MB
738  * area. This limits the randomization granularity to 1GB for both 4-level
739  * and 5-level paging.
740  */
741 static void __init init_trampoline(void)
742 {
743 #ifdef CONFIG_X86_64
744 	/*
745 	 * The code below will alias kernel page-tables in the user-range of the
746 	 * address space, including the Global bit. So global TLB entries will
747 	 * be created when using the trampoline page-table.
748 	 */
749 	if (!kaslr_memory_enabled())
750 		trampoline_pgd_entry = init_top_pgt[pgd_index(__PAGE_OFFSET)];
751 	else
752 		init_trampoline_kaslr();
753 #endif
754 }
755 
756 void __init init_mem_mapping(void)
757 {
758 	unsigned long end;
759 
760 	pti_check_boottime_disable();
761 	probe_page_size_mask();
762 	setup_pcid();
763 
764 #ifdef CONFIG_X86_64
765 	end = max_pfn << PAGE_SHIFT;
766 #else
767 	end = max_low_pfn << PAGE_SHIFT;
768 #endif
769 
770 	/* the ISA range is always mapped regardless of memory holes */
771 	init_memory_mapping(0, ISA_END_ADDRESS, PAGE_KERNEL);
772 
773 	/* Init the trampoline, possibly with KASLR memory offset */
774 	init_trampoline();
775 
776 	/*
777 	 * If the allocation is in bottom-up direction, we setup direct mapping
778 	 * in bottom-up, otherwise we setup direct mapping in top-down.
779 	 */
780 	if (memblock_bottom_up()) {
781 		unsigned long kernel_end = __pa_symbol(_end);
782 
783 		/*
784 		 * we need two separate calls here. This is because we want to
785 		 * allocate page tables above the kernel. So we first map
786 		 * [kernel_end, end) to make memory above the kernel be mapped
787 		 * as soon as possible. And then use page tables allocated above
788 		 * the kernel to map [ISA_END_ADDRESS, kernel_end).
789 		 */
790 		memory_map_bottom_up(kernel_end, end);
791 		memory_map_bottom_up(ISA_END_ADDRESS, kernel_end);
792 	} else {
793 		memory_map_top_down(ISA_END_ADDRESS, end);
794 	}
795 
796 #ifdef CONFIG_X86_64
797 	if (max_pfn > max_low_pfn) {
798 		/* can we preserve max_low_pfn ?*/
799 		max_low_pfn = max_pfn;
800 	}
801 #else
802 	early_ioremap_page_table_range_init();
803 #endif
804 
805 	load_cr3(swapper_pg_dir);
806 	__flush_tlb_all();
807 
808 	x86_init.hyper.init_mem_mapping();
809 
810 	early_memtest(0, max_pfn_mapped << PAGE_SHIFT);
811 }
812 
813 /*
814  * Initialize an mm_struct to be used during poking and a pointer to be used
815  * during patching.
816  */
817 void __init poking_init(void)
818 {
819 	spinlock_t *ptl;
820 	pte_t *ptep;
821 
822 	poking_mm = mm_alloc();
823 	BUG_ON(!poking_mm);
824 
825 	/* Xen PV guests need the PGD to be pinned. */
826 	paravirt_enter_mmap(poking_mm);
827 
828 	/*
829 	 * Randomize the poking address, but make sure that the following page
830 	 * will be mapped at the same PMD. We need 2 pages, so find space for 3,
831 	 * and adjust the address if the PMD ends after the first one.
832 	 */
833 	poking_addr = TASK_UNMAPPED_BASE;
834 	if (IS_ENABLED(CONFIG_RANDOMIZE_BASE))
835 		poking_addr += (kaslr_get_random_long("Poking") & PAGE_MASK) %
836 			(TASK_SIZE - TASK_UNMAPPED_BASE - 3 * PAGE_SIZE);
837 
838 	if (((poking_addr + PAGE_SIZE) & ~PMD_MASK) == 0)
839 		poking_addr += PAGE_SIZE;
840 
841 	/*
842 	 * We need to trigger the allocation of the page-tables that will be
843 	 * needed for poking now. Later, poking may be performed in an atomic
844 	 * section, which might cause allocation to fail.
845 	 */
846 	ptep = get_locked_pte(poking_mm, poking_addr, &ptl);
847 	BUG_ON(!ptep);
848 	pte_unmap_unlock(ptep, ptl);
849 }
850 
851 /*
852  * devmem_is_allowed() checks to see if /dev/mem access to a certain address
853  * is valid. The argument is a physical page number.
854  *
855  * On x86, access has to be given to the first megabyte of RAM because that
856  * area traditionally contains BIOS code and data regions used by X, dosemu,
857  * and similar apps. Since they map the entire memory range, the whole range
858  * must be allowed (for mapping), but any areas that would otherwise be
859  * disallowed are flagged as being "zero filled" instead of rejected.
860  * Access has to be given to non-kernel-ram areas as well, these contain the
861  * PCI mmio resources as well as potential bios/acpi data regions.
862  */
863 int devmem_is_allowed(unsigned long pagenr)
864 {
865 	if (region_intersects(PFN_PHYS(pagenr), PAGE_SIZE,
866 				IORESOURCE_SYSTEM_RAM, IORES_DESC_NONE)
867 			!= REGION_DISJOINT) {
868 		/*
869 		 * For disallowed memory regions in the low 1MB range,
870 		 * request that the page be shown as all zeros.
871 		 */
872 		if (pagenr < 256)
873 			return 2;
874 
875 		return 0;
876 	}
877 
878 	/*
879 	 * This must follow RAM test, since System RAM is considered a
880 	 * restricted resource under CONFIG_STRICT_DEVMEM.
881 	 */
882 	if (iomem_is_exclusive(pagenr << PAGE_SHIFT)) {
883 		/* Low 1MB bypasses iomem restrictions. */
884 		if (pagenr < 256)
885 			return 1;
886 
887 		return 0;
888 	}
889 
890 	return 1;
891 }
892 
893 void free_init_pages(const char *what, unsigned long begin, unsigned long end)
894 {
895 	unsigned long begin_aligned, end_aligned;
896 
897 	/* Make sure boundaries are page aligned */
898 	begin_aligned = PAGE_ALIGN(begin);
899 	end_aligned   = end & PAGE_MASK;
900 
901 	if (WARN_ON(begin_aligned != begin || end_aligned != end)) {
902 		begin = begin_aligned;
903 		end   = end_aligned;
904 	}
905 
906 	if (begin >= end)
907 		return;
908 
909 	/*
910 	 * If debugging page accesses then do not free this memory but
911 	 * mark them not present - any buggy init-section access will
912 	 * create a kernel page fault:
913 	 */
914 	if (debug_pagealloc_enabled()) {
915 		pr_info("debug: unmapping init [mem %#010lx-%#010lx]\n",
916 			begin, end - 1);
917 		/*
918 		 * Inform kmemleak about the hole in the memory since the
919 		 * corresponding pages will be unmapped.
920 		 */
921 		kmemleak_free_part((void *)begin, end - begin);
922 		set_memory_np(begin, (end - begin) >> PAGE_SHIFT);
923 	} else {
924 		/*
925 		 * We just marked the kernel text read only above, now that
926 		 * we are going to free part of that, we need to make that
927 		 * writeable and non-executable first.
928 		 */
929 		set_memory_nx(begin, (end - begin) >> PAGE_SHIFT);
930 		set_memory_rw(begin, (end - begin) >> PAGE_SHIFT);
931 
932 		free_reserved_area((void *)begin, (void *)end,
933 				   POISON_FREE_INITMEM, what);
934 	}
935 }
936 
937 /*
938  * begin/end can be in the direct map or the "high kernel mapping"
939  * used for the kernel image only.  free_init_pages() will do the
940  * right thing for either kind of address.
941  */
942 void free_kernel_image_pages(const char *what, void *begin, void *end)
943 {
944 	unsigned long begin_ul = (unsigned long)begin;
945 	unsigned long end_ul = (unsigned long)end;
946 	unsigned long len_pages = (end_ul - begin_ul) >> PAGE_SHIFT;
947 
948 	free_init_pages(what, begin_ul, end_ul);
949 
950 	/*
951 	 * PTI maps some of the kernel into userspace.  For performance,
952 	 * this includes some kernel areas that do not contain secrets.
953 	 * Those areas might be adjacent to the parts of the kernel image
954 	 * being freed, which may contain secrets.  Remove the "high kernel
955 	 * image mapping" for these freed areas, ensuring they are not even
956 	 * potentially vulnerable to Meltdown regardless of the specific
957 	 * optimizations PTI is currently using.
958 	 *
959 	 * The "noalias" prevents unmapping the direct map alias which is
960 	 * needed to access the freed pages.
961 	 *
962 	 * This is only valid for 64bit kernels. 32bit has only one mapping
963 	 * which can't be treated in this way for obvious reasons.
964 	 */
965 	if (IS_ENABLED(CONFIG_X86_64) && cpu_feature_enabled(X86_FEATURE_PTI))
966 		set_memory_np_noalias(begin_ul, len_pages);
967 }
968 
969 void __ref free_initmem(void)
970 {
971 	e820__reallocate_tables();
972 
973 	mem_encrypt_free_decrypted_mem();
974 
975 	free_kernel_image_pages("unused kernel image (initmem)",
976 				&__init_begin, &__init_end);
977 }
978 
979 #ifdef CONFIG_BLK_DEV_INITRD
980 void __init free_initrd_mem(unsigned long start, unsigned long end)
981 {
982 	/*
983 	 * end could be not aligned, and We can not align that,
984 	 * decompressor could be confused by aligned initrd_end
985 	 * We already reserve the end partial page before in
986 	 *   - i386_start_kernel()
987 	 *   - x86_64_start_kernel()
988 	 *   - relocate_initrd()
989 	 * So here We can do PAGE_ALIGN() safely to get partial page to be freed
990 	 */
991 	free_init_pages("initrd", start, PAGE_ALIGN(end));
992 }
993 #endif
994 
995 void __init zone_sizes_init(void)
996 {
997 	unsigned long max_zone_pfns[MAX_NR_ZONES];
998 
999 	memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
1000 
1001 #ifdef CONFIG_ZONE_DMA
1002 	max_zone_pfns[ZONE_DMA]		= min(MAX_DMA_PFN, max_low_pfn);
1003 #endif
1004 #ifdef CONFIG_ZONE_DMA32
1005 	max_zone_pfns[ZONE_DMA32]	= min(MAX_DMA32_PFN, max_low_pfn);
1006 #endif
1007 	max_zone_pfns[ZONE_NORMAL]	= max_low_pfn;
1008 #ifdef CONFIG_HIGHMEM
1009 	max_zone_pfns[ZONE_HIGHMEM]	= max_pfn;
1010 #endif
1011 
1012 	free_area_init(max_zone_pfns);
1013 }
1014 
1015 __visible DEFINE_PER_CPU_ALIGNED(struct tlb_state, cpu_tlbstate) = {
1016 	.loaded_mm = &init_mm,
1017 	.next_asid = 1,
1018 	.cr4 = ~0UL,	/* fail hard if we screw up cr4 shadow initialization */
1019 };
1020 
1021 #ifdef CONFIG_ADDRESS_MASKING
1022 DEFINE_PER_CPU(u64, tlbstate_untag_mask);
1023 EXPORT_PER_CPU_SYMBOL(tlbstate_untag_mask);
1024 #endif
1025 
1026 void update_cache_mode_entry(unsigned entry, enum page_cache_mode cache)
1027 {
1028 	/* entry 0 MUST be WB (hardwired to speed up translations) */
1029 	BUG_ON(!entry && cache != _PAGE_CACHE_MODE_WB);
1030 
1031 	__cachemode2pte_tbl[cache] = __cm_idx2pte(entry);
1032 	__pte2cachemode_tbl[entry] = cache;
1033 }
1034 
1035 #ifdef CONFIG_SWAP
1036 unsigned long arch_max_swapfile_size(void)
1037 {
1038 	unsigned long pages;
1039 
1040 	pages = generic_max_swapfile_size();
1041 
1042 	if (boot_cpu_has_bug(X86_BUG_L1TF) && l1tf_mitigation != L1TF_MITIGATION_OFF) {
1043 		/* Limit the swap file size to MAX_PA/2 for L1TF workaround */
1044 		unsigned long long l1tf_limit = l1tf_pfn_limit();
1045 		/*
1046 		 * We encode swap offsets also with 3 bits below those for pfn
1047 		 * which makes the usable limit higher.
1048 		 */
1049 #if CONFIG_PGTABLE_LEVELS > 2
1050 		l1tf_limit <<= PAGE_SHIFT - SWP_OFFSET_FIRST_BIT;
1051 #endif
1052 		pages = min_t(unsigned long long, l1tf_limit, pages);
1053 	}
1054 	return pages;
1055 }
1056 #endif
1057 
1058 #ifdef CONFIG_EXECMEM
1059 static struct execmem_info execmem_info __ro_after_init;
1060 
1061 #ifdef CONFIG_ARCH_HAS_EXECMEM_ROX
1062 void execmem_fill_trapping_insns(void *ptr, size_t size, bool writeable)
1063 {
1064 	/* fill memory with INT3 instructions */
1065 	if (writeable)
1066 		memset(ptr, INT3_INSN_OPCODE, size);
1067 	else
1068 		text_poke_set(ptr, INT3_INSN_OPCODE, size);
1069 }
1070 #endif
1071 
1072 struct execmem_info __init *execmem_arch_setup(void)
1073 {
1074 	unsigned long start, offset = 0;
1075 	enum execmem_range_flags flags;
1076 	pgprot_t pgprot;
1077 
1078 	if (kaslr_enabled())
1079 		offset = get_random_u32_inclusive(1, 1024) * PAGE_SIZE;
1080 
1081 	start = MODULES_VADDR + offset;
1082 
1083 	if (IS_ENABLED(CONFIG_ARCH_HAS_EXECMEM_ROX) &&
1084 	    cpu_feature_enabled(X86_FEATURE_PSE)) {
1085 		pgprot = PAGE_KERNEL_ROX;
1086 		flags = EXECMEM_KASAN_SHADOW | EXECMEM_ROX_CACHE;
1087 	} else {
1088 		pgprot = PAGE_KERNEL;
1089 		flags = EXECMEM_KASAN_SHADOW;
1090 	}
1091 
1092 	execmem_info = (struct execmem_info){
1093 		.ranges = {
1094 			[EXECMEM_MODULE_TEXT] = {
1095 				.flags	= flags,
1096 				.start	= start,
1097 				.end	= MODULES_END,
1098 				.pgprot	= pgprot,
1099 				.alignment = MODULE_ALIGN,
1100 			},
1101 			[EXECMEM_KPROBES ... EXECMEM_BPF] = {
1102 				.flags	= EXECMEM_KASAN_SHADOW,
1103 				.start	= start,
1104 				.end	= MODULES_END,
1105 				.pgprot	= PAGE_KERNEL,
1106 				.alignment = MODULE_ALIGN,
1107 			},
1108 			[EXECMEM_MODULE_DATA] = {
1109 				.flags	= EXECMEM_KASAN_SHADOW,
1110 				.start	= start,
1111 				.end	= MODULES_END,
1112 				.pgprot	= PAGE_KERNEL,
1113 				.alignment = MODULE_ALIGN,
1114 			},
1115 		},
1116 	};
1117 
1118 	return &execmem_info;
1119 }
1120 #endif /* CONFIG_EXECMEM */
1121