xref: /linux/arch/x86/mm/init.c (revision a1944676767e855869b6af8e1c7e185372feaf31)
1 #include <linux/gfp.h>
2 #include <linux/initrd.h>
3 #include <linux/ioport.h>
4 #include <linux/swap.h>
5 #include <linux/memblock.h>
6 #include <linux/swapfile.h>
7 #include <linux/swapops.h>
8 #include <linux/kmemleak.h>
9 #include <linux/sched/task.h>
10 #include <linux/execmem.h>
11 
12 #include <asm/set_memory.h>
13 #include <asm/cpu_device_id.h>
14 #include <asm/e820/api.h>
15 #include <asm/init.h>
16 #include <asm/page.h>
17 #include <asm/page_types.h>
18 #include <asm/sections.h>
19 #include <asm/setup.h>
20 #include <asm/tlbflush.h>
21 #include <asm/tlb.h>
22 #include <asm/proto.h>
23 #include <asm/dma.h>		/* for MAX_DMA_PFN */
24 #include <asm/kaslr.h>
25 #include <asm/hypervisor.h>
26 #include <asm/cpufeature.h>
27 #include <asm/pti.h>
28 #include <asm/text-patching.h>
29 #include <asm/memtype.h>
30 #include <asm/paravirt.h>
31 
32 /*
33  * We need to define the tracepoints somewhere, and tlb.c
34  * is only compiled when SMP=y.
35  */
36 #include <trace/events/tlb.h>
37 
38 #include "mm_internal.h"
39 
40 /*
41  * Tables translating between page_cache_type_t and pte encoding.
42  *
43  * The default values are defined statically as minimal supported mode;
44  * WC and WT fall back to UC-.  pat_init() updates these values to support
45  * more cache modes, WC and WT, when it is safe to do so.  See pat_init()
46  * for the details.  Note, __early_ioremap() used during early boot-time
47  * takes pgprot_t (pte encoding) and does not use these tables.
48  *
49  *   Index into __cachemode2pte_tbl[] is the cachemode.
50  *
51  *   Index into __pte2cachemode_tbl[] are the caching attribute bits of the pte
52  *   (_PAGE_PWT, _PAGE_PCD, _PAGE_PAT) at index bit positions 0, 1, 2.
53  */
54 static uint16_t __cachemode2pte_tbl[_PAGE_CACHE_MODE_NUM] = {
55 	[_PAGE_CACHE_MODE_WB      ]	= 0         | 0        ,
56 	[_PAGE_CACHE_MODE_WC      ]	= 0         | _PAGE_PCD,
57 	[_PAGE_CACHE_MODE_UC_MINUS]	= 0         | _PAGE_PCD,
58 	[_PAGE_CACHE_MODE_UC      ]	= _PAGE_PWT | _PAGE_PCD,
59 	[_PAGE_CACHE_MODE_WT      ]	= 0         | _PAGE_PCD,
60 	[_PAGE_CACHE_MODE_WP      ]	= 0         | _PAGE_PCD,
61 };
62 
63 unsigned long cachemode2protval(enum page_cache_mode pcm)
64 {
65 	if (likely(pcm == 0))
66 		return 0;
67 	return __cachemode2pte_tbl[pcm];
68 }
69 EXPORT_SYMBOL(cachemode2protval);
70 
71 static uint8_t __pte2cachemode_tbl[8] = {
72 	[__pte2cm_idx( 0        | 0         | 0        )] = _PAGE_CACHE_MODE_WB,
73 	[__pte2cm_idx(_PAGE_PWT | 0         | 0        )] = _PAGE_CACHE_MODE_UC_MINUS,
74 	[__pte2cm_idx( 0        | _PAGE_PCD | 0        )] = _PAGE_CACHE_MODE_UC_MINUS,
75 	[__pte2cm_idx(_PAGE_PWT | _PAGE_PCD | 0        )] = _PAGE_CACHE_MODE_UC,
76 	[__pte2cm_idx( 0        | 0         | _PAGE_PAT)] = _PAGE_CACHE_MODE_WB,
77 	[__pte2cm_idx(_PAGE_PWT | 0         | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC_MINUS,
78 	[__pte2cm_idx(0         | _PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC_MINUS,
79 	[__pte2cm_idx(_PAGE_PWT | _PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC,
80 };
81 
82 /*
83  * Check that the write-protect PAT entry is set for write-protect.
84  * To do this without making assumptions how PAT has been set up (Xen has
85  * another layout than the kernel), translate the _PAGE_CACHE_MODE_WP cache
86  * mode via the __cachemode2pte_tbl[] into protection bits (those protection
87  * bits will select a cache mode of WP or better), and then translate the
88  * protection bits back into the cache mode using __pte2cm_idx() and the
89  * __pte2cachemode_tbl[] array. This will return the really used cache mode.
90  */
91 bool x86_has_pat_wp(void)
92 {
93 	uint16_t prot = __cachemode2pte_tbl[_PAGE_CACHE_MODE_WP];
94 
95 	return __pte2cachemode_tbl[__pte2cm_idx(prot)] == _PAGE_CACHE_MODE_WP;
96 }
97 
98 enum page_cache_mode pgprot2cachemode(pgprot_t pgprot)
99 {
100 	unsigned long masked;
101 
102 	masked = pgprot_val(pgprot) & _PAGE_CACHE_MASK;
103 	if (likely(masked == 0))
104 		return 0;
105 	return __pte2cachemode_tbl[__pte2cm_idx(masked)];
106 }
107 
108 static unsigned long __initdata pgt_buf_start;
109 static unsigned long __initdata pgt_buf_end;
110 static unsigned long __initdata pgt_buf_top;
111 
112 static unsigned long min_pfn_mapped;
113 
114 static bool __initdata can_use_brk_pgt = true;
115 
116 /*
117  * Pages returned are already directly mapped.
118  *
119  * Changing that is likely to break Xen, see commit:
120  *
121  *    279b706 x86,xen: introduce x86_init.mapping.pagetable_reserve
122  *
123  * for detailed information.
124  */
125 __ref void *alloc_low_pages(unsigned int num)
126 {
127 	unsigned long pfn;
128 	int i;
129 
130 	if (after_bootmem) {
131 		unsigned int order;
132 
133 		order = get_order((unsigned long)num << PAGE_SHIFT);
134 		return (void *)__get_free_pages(GFP_ATOMIC | __GFP_ZERO, order);
135 	}
136 
137 	if ((pgt_buf_end + num) > pgt_buf_top || !can_use_brk_pgt) {
138 		unsigned long ret = 0;
139 
140 		if (min_pfn_mapped < max_pfn_mapped) {
141 			ret = memblock_phys_alloc_range(
142 					PAGE_SIZE * num, PAGE_SIZE,
143 					min_pfn_mapped << PAGE_SHIFT,
144 					max_pfn_mapped << PAGE_SHIFT);
145 		}
146 		if (!ret && can_use_brk_pgt)
147 			ret = __pa(extend_brk(PAGE_SIZE * num, PAGE_SIZE));
148 
149 		if (!ret)
150 			panic("alloc_low_pages: can not alloc memory");
151 
152 		pfn = ret >> PAGE_SHIFT;
153 	} else {
154 		pfn = pgt_buf_end;
155 		pgt_buf_end += num;
156 	}
157 
158 	for (i = 0; i < num; i++) {
159 		void *adr;
160 
161 		adr = __va((pfn + i) << PAGE_SHIFT);
162 		clear_page(adr);
163 	}
164 
165 	return __va(pfn << PAGE_SHIFT);
166 }
167 
168 /*
169  * By default need to be able to allocate page tables below PGD firstly for
170  * the 0-ISA_END_ADDRESS range and secondly for the initial PMD_SIZE mapping.
171  * With KASLR memory randomization, depending on the machine e820 memory and the
172  * PUD alignment, twice that many pages may be needed when KASLR memory
173  * randomization is enabled.
174  */
175 
176 #ifndef CONFIG_X86_5LEVEL
177 #define INIT_PGD_PAGE_TABLES    3
178 #else
179 #define INIT_PGD_PAGE_TABLES    4
180 #endif
181 
182 #ifndef CONFIG_RANDOMIZE_MEMORY
183 #define INIT_PGD_PAGE_COUNT      (2 * INIT_PGD_PAGE_TABLES)
184 #else
185 #define INIT_PGD_PAGE_COUNT      (4 * INIT_PGD_PAGE_TABLES)
186 #endif
187 
188 #define INIT_PGT_BUF_SIZE	(INIT_PGD_PAGE_COUNT * PAGE_SIZE)
189 RESERVE_BRK(early_pgt_alloc, INIT_PGT_BUF_SIZE);
190 void  __init early_alloc_pgt_buf(void)
191 {
192 	unsigned long tables = INIT_PGT_BUF_SIZE;
193 	phys_addr_t base;
194 
195 	base = __pa(extend_brk(tables, PAGE_SIZE));
196 
197 	pgt_buf_start = base >> PAGE_SHIFT;
198 	pgt_buf_end = pgt_buf_start;
199 	pgt_buf_top = pgt_buf_start + (tables >> PAGE_SHIFT);
200 }
201 
202 int after_bootmem;
203 
204 early_param_on_off("gbpages", "nogbpages", direct_gbpages, CONFIG_X86_DIRECT_GBPAGES);
205 
206 struct map_range {
207 	unsigned long start;
208 	unsigned long end;
209 	unsigned page_size_mask;
210 };
211 
212 static int page_size_mask;
213 
214 /*
215  * Save some of cr4 feature set we're using (e.g.  Pentium 4MB
216  * enable and PPro Global page enable), so that any CPU's that boot
217  * up after us can get the correct flags. Invoked on the boot CPU.
218  */
219 static inline void cr4_set_bits_and_update_boot(unsigned long mask)
220 {
221 	mmu_cr4_features |= mask;
222 	if (trampoline_cr4_features)
223 		*trampoline_cr4_features = mmu_cr4_features;
224 	cr4_set_bits(mask);
225 }
226 
227 static void __init probe_page_size_mask(void)
228 {
229 	/*
230 	 * For pagealloc debugging, identity mapping will use small pages.
231 	 * This will simplify cpa(), which otherwise needs to support splitting
232 	 * large pages into small in interrupt context, etc.
233 	 */
234 	if (boot_cpu_has(X86_FEATURE_PSE) && !debug_pagealloc_enabled())
235 		page_size_mask |= 1 << PG_LEVEL_2M;
236 	else
237 		direct_gbpages = 0;
238 
239 	/* Enable PSE if available */
240 	if (boot_cpu_has(X86_FEATURE_PSE))
241 		cr4_set_bits_and_update_boot(X86_CR4_PSE);
242 
243 	/* Enable PGE if available */
244 	__supported_pte_mask &= ~_PAGE_GLOBAL;
245 	if (boot_cpu_has(X86_FEATURE_PGE)) {
246 		cr4_set_bits_and_update_boot(X86_CR4_PGE);
247 		__supported_pte_mask |= _PAGE_GLOBAL;
248 	}
249 
250 	/* By the default is everything supported: */
251 	__default_kernel_pte_mask = __supported_pte_mask;
252 	/* Except when with PTI where the kernel is mostly non-Global: */
253 	if (cpu_feature_enabled(X86_FEATURE_PTI))
254 		__default_kernel_pte_mask &= ~_PAGE_GLOBAL;
255 
256 	/* Enable 1 GB linear kernel mappings if available: */
257 	if (direct_gbpages && boot_cpu_has(X86_FEATURE_GBPAGES)) {
258 		printk(KERN_INFO "Using GB pages for direct mapping\n");
259 		page_size_mask |= 1 << PG_LEVEL_1G;
260 	} else {
261 		direct_gbpages = 0;
262 	}
263 }
264 
265 /*
266  * INVLPG may not properly flush Global entries
267  * on these CPUs when PCIDs are enabled.
268  */
269 static const struct x86_cpu_id invlpg_miss_ids[] = {
270 	X86_MATCH_VFM(INTEL_ALDERLAKE,	    0),
271 	X86_MATCH_VFM(INTEL_ALDERLAKE_L,    0),
272 	X86_MATCH_VFM(INTEL_ATOM_GRACEMONT, 0),
273 	X86_MATCH_VFM(INTEL_RAPTORLAKE,	    0),
274 	X86_MATCH_VFM(INTEL_RAPTORLAKE_P,   0),
275 	X86_MATCH_VFM(INTEL_RAPTORLAKE_S,   0),
276 	{}
277 };
278 
279 static void setup_pcid(void)
280 {
281 	if (!IS_ENABLED(CONFIG_X86_64))
282 		return;
283 
284 	if (!boot_cpu_has(X86_FEATURE_PCID))
285 		return;
286 
287 	if (x86_match_cpu(invlpg_miss_ids)) {
288 		pr_info("Incomplete global flushes, disabling PCID");
289 		setup_clear_cpu_cap(X86_FEATURE_PCID);
290 		return;
291 	}
292 
293 	if (boot_cpu_has(X86_FEATURE_PGE)) {
294 		/*
295 		 * This can't be cr4_set_bits_and_update_boot() -- the
296 		 * trampoline code can't handle CR4.PCIDE and it wouldn't
297 		 * do any good anyway.  Despite the name,
298 		 * cr4_set_bits_and_update_boot() doesn't actually cause
299 		 * the bits in question to remain set all the way through
300 		 * the secondary boot asm.
301 		 *
302 		 * Instead, we brute-force it and set CR4.PCIDE manually in
303 		 * start_secondary().
304 		 */
305 		cr4_set_bits(X86_CR4_PCIDE);
306 	} else {
307 		/*
308 		 * flush_tlb_all(), as currently implemented, won't work if
309 		 * PCID is on but PGE is not.  Since that combination
310 		 * doesn't exist on real hardware, there's no reason to try
311 		 * to fully support it, but it's polite to avoid corrupting
312 		 * data if we're on an improperly configured VM.
313 		 */
314 		setup_clear_cpu_cap(X86_FEATURE_PCID);
315 	}
316 }
317 
318 #ifdef CONFIG_X86_32
319 #define NR_RANGE_MR 3
320 #else /* CONFIG_X86_64 */
321 #define NR_RANGE_MR 5
322 #endif
323 
324 static int __meminit save_mr(struct map_range *mr, int nr_range,
325 			     unsigned long start_pfn, unsigned long end_pfn,
326 			     unsigned long page_size_mask)
327 {
328 	if (start_pfn < end_pfn) {
329 		if (nr_range >= NR_RANGE_MR)
330 			panic("run out of range for init_memory_mapping\n");
331 		mr[nr_range].start = start_pfn<<PAGE_SHIFT;
332 		mr[nr_range].end   = end_pfn<<PAGE_SHIFT;
333 		mr[nr_range].page_size_mask = page_size_mask;
334 		nr_range++;
335 	}
336 
337 	return nr_range;
338 }
339 
340 /*
341  * adjust the page_size_mask for small range to go with
342  *	big page size instead small one if nearby are ram too.
343  */
344 static void __ref adjust_range_page_size_mask(struct map_range *mr,
345 							 int nr_range)
346 {
347 	int i;
348 
349 	for (i = 0; i < nr_range; i++) {
350 		if ((page_size_mask & (1<<PG_LEVEL_2M)) &&
351 		    !(mr[i].page_size_mask & (1<<PG_LEVEL_2M))) {
352 			unsigned long start = round_down(mr[i].start, PMD_SIZE);
353 			unsigned long end = round_up(mr[i].end, PMD_SIZE);
354 
355 #ifdef CONFIG_X86_32
356 			if ((end >> PAGE_SHIFT) > max_low_pfn)
357 				continue;
358 #endif
359 
360 			if (memblock_is_region_memory(start, end - start))
361 				mr[i].page_size_mask |= 1<<PG_LEVEL_2M;
362 		}
363 		if ((page_size_mask & (1<<PG_LEVEL_1G)) &&
364 		    !(mr[i].page_size_mask & (1<<PG_LEVEL_1G))) {
365 			unsigned long start = round_down(mr[i].start, PUD_SIZE);
366 			unsigned long end = round_up(mr[i].end, PUD_SIZE);
367 
368 			if (memblock_is_region_memory(start, end - start))
369 				mr[i].page_size_mask |= 1<<PG_LEVEL_1G;
370 		}
371 	}
372 }
373 
374 static const char *page_size_string(struct map_range *mr)
375 {
376 	static const char str_1g[] = "1G";
377 	static const char str_2m[] = "2M";
378 	static const char str_4m[] = "4M";
379 	static const char str_4k[] = "4k";
380 
381 	if (mr->page_size_mask & (1<<PG_LEVEL_1G))
382 		return str_1g;
383 	/*
384 	 * 32-bit without PAE has a 4M large page size.
385 	 * PG_LEVEL_2M is misnamed, but we can at least
386 	 * print out the right size in the string.
387 	 */
388 	if (IS_ENABLED(CONFIG_X86_32) &&
389 	    !IS_ENABLED(CONFIG_X86_PAE) &&
390 	    mr->page_size_mask & (1<<PG_LEVEL_2M))
391 		return str_4m;
392 
393 	if (mr->page_size_mask & (1<<PG_LEVEL_2M))
394 		return str_2m;
395 
396 	return str_4k;
397 }
398 
399 static int __meminit split_mem_range(struct map_range *mr, int nr_range,
400 				     unsigned long start,
401 				     unsigned long end)
402 {
403 	unsigned long start_pfn, end_pfn, limit_pfn;
404 	unsigned long pfn;
405 	int i;
406 
407 	limit_pfn = PFN_DOWN(end);
408 
409 	/* head if not big page alignment ? */
410 	pfn = start_pfn = PFN_DOWN(start);
411 #ifdef CONFIG_X86_32
412 	/*
413 	 * Don't use a large page for the first 2/4MB of memory
414 	 * because there are often fixed size MTRRs in there
415 	 * and overlapping MTRRs into large pages can cause
416 	 * slowdowns.
417 	 */
418 	if (pfn == 0)
419 		end_pfn = PFN_DOWN(PMD_SIZE);
420 	else
421 		end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
422 #else /* CONFIG_X86_64 */
423 	end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
424 #endif
425 	if (end_pfn > limit_pfn)
426 		end_pfn = limit_pfn;
427 	if (start_pfn < end_pfn) {
428 		nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
429 		pfn = end_pfn;
430 	}
431 
432 	/* big page (2M) range */
433 	start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
434 #ifdef CONFIG_X86_32
435 	end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
436 #else /* CONFIG_X86_64 */
437 	end_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
438 	if (end_pfn > round_down(limit_pfn, PFN_DOWN(PMD_SIZE)))
439 		end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
440 #endif
441 
442 	if (start_pfn < end_pfn) {
443 		nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
444 				page_size_mask & (1<<PG_LEVEL_2M));
445 		pfn = end_pfn;
446 	}
447 
448 #ifdef CONFIG_X86_64
449 	/* big page (1G) range */
450 	start_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
451 	end_pfn = round_down(limit_pfn, PFN_DOWN(PUD_SIZE));
452 	if (start_pfn < end_pfn) {
453 		nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
454 				page_size_mask &
455 				 ((1<<PG_LEVEL_2M)|(1<<PG_LEVEL_1G)));
456 		pfn = end_pfn;
457 	}
458 
459 	/* tail is not big page (1G) alignment */
460 	start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
461 	end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
462 	if (start_pfn < end_pfn) {
463 		nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
464 				page_size_mask & (1<<PG_LEVEL_2M));
465 		pfn = end_pfn;
466 	}
467 #endif
468 
469 	/* tail is not big page (2M) alignment */
470 	start_pfn = pfn;
471 	end_pfn = limit_pfn;
472 	nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
473 
474 	if (!after_bootmem)
475 		adjust_range_page_size_mask(mr, nr_range);
476 
477 	/* try to merge same page size and continuous */
478 	for (i = 0; nr_range > 1 && i < nr_range - 1; i++) {
479 		unsigned long old_start;
480 		if (mr[i].end != mr[i+1].start ||
481 		    mr[i].page_size_mask != mr[i+1].page_size_mask)
482 			continue;
483 		/* move it */
484 		old_start = mr[i].start;
485 		memmove(&mr[i], &mr[i+1],
486 			(nr_range - 1 - i) * sizeof(struct map_range));
487 		mr[i--].start = old_start;
488 		nr_range--;
489 	}
490 
491 	for (i = 0; i < nr_range; i++)
492 		pr_debug(" [mem %#010lx-%#010lx] page %s\n",
493 				mr[i].start, mr[i].end - 1,
494 				page_size_string(&mr[i]));
495 
496 	return nr_range;
497 }
498 
499 struct range pfn_mapped[E820_MAX_ENTRIES];
500 int nr_pfn_mapped;
501 
502 static void add_pfn_range_mapped(unsigned long start_pfn, unsigned long end_pfn)
503 {
504 	nr_pfn_mapped = add_range_with_merge(pfn_mapped, E820_MAX_ENTRIES,
505 					     nr_pfn_mapped, start_pfn, end_pfn);
506 	nr_pfn_mapped = clean_sort_range(pfn_mapped, E820_MAX_ENTRIES);
507 
508 	max_pfn_mapped = max(max_pfn_mapped, end_pfn);
509 
510 	if (start_pfn < (1UL<<(32-PAGE_SHIFT)))
511 		max_low_pfn_mapped = max(max_low_pfn_mapped,
512 					 min(end_pfn, 1UL<<(32-PAGE_SHIFT)));
513 }
514 
515 bool pfn_range_is_mapped(unsigned long start_pfn, unsigned long end_pfn)
516 {
517 	int i;
518 
519 	for (i = 0; i < nr_pfn_mapped; i++)
520 		if ((start_pfn >= pfn_mapped[i].start) &&
521 		    (end_pfn <= pfn_mapped[i].end))
522 			return true;
523 
524 	return false;
525 }
526 
527 /*
528  * Setup the direct mapping of the physical memory at PAGE_OFFSET.
529  * This runs before bootmem is initialized and gets pages directly from
530  * the physical memory. To access them they are temporarily mapped.
531  */
532 unsigned long __ref init_memory_mapping(unsigned long start,
533 					unsigned long end, pgprot_t prot)
534 {
535 	struct map_range mr[NR_RANGE_MR];
536 	unsigned long ret = 0;
537 	int nr_range, i;
538 
539 	pr_debug("init_memory_mapping: [mem %#010lx-%#010lx]\n",
540 	       start, end - 1);
541 
542 	memset(mr, 0, sizeof(mr));
543 	nr_range = split_mem_range(mr, 0, start, end);
544 
545 	for (i = 0; i < nr_range; i++)
546 		ret = kernel_physical_mapping_init(mr[i].start, mr[i].end,
547 						   mr[i].page_size_mask,
548 						   prot);
549 
550 	add_pfn_range_mapped(start >> PAGE_SHIFT, ret >> PAGE_SHIFT);
551 
552 	return ret >> PAGE_SHIFT;
553 }
554 
555 /*
556  * We need to iterate through the E820 memory map and create direct mappings
557  * for only E820_TYPE_RAM and E820_KERN_RESERVED regions. We cannot simply
558  * create direct mappings for all pfns from [0 to max_low_pfn) and
559  * [4GB to max_pfn) because of possible memory holes in high addresses
560  * that cannot be marked as UC by fixed/variable range MTRRs.
561  * Depending on the alignment of E820 ranges, this may possibly result
562  * in using smaller size (i.e. 4K instead of 2M or 1G) page tables.
563  *
564  * init_mem_mapping() calls init_range_memory_mapping() with big range.
565  * That range would have hole in the middle or ends, and only ram parts
566  * will be mapped in init_range_memory_mapping().
567  */
568 static unsigned long __init init_range_memory_mapping(
569 					   unsigned long r_start,
570 					   unsigned long r_end)
571 {
572 	unsigned long start_pfn, end_pfn;
573 	unsigned long mapped_ram_size = 0;
574 	int i;
575 
576 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) {
577 		u64 start = clamp_val(PFN_PHYS(start_pfn), r_start, r_end);
578 		u64 end = clamp_val(PFN_PHYS(end_pfn), r_start, r_end);
579 		if (start >= end)
580 			continue;
581 
582 		/*
583 		 * if it is overlapping with brk pgt, we need to
584 		 * alloc pgt buf from memblock instead.
585 		 */
586 		can_use_brk_pgt = max(start, (u64)pgt_buf_end<<PAGE_SHIFT) >=
587 				    min(end, (u64)pgt_buf_top<<PAGE_SHIFT);
588 		init_memory_mapping(start, end, PAGE_KERNEL);
589 		mapped_ram_size += end - start;
590 		can_use_brk_pgt = true;
591 	}
592 
593 	return mapped_ram_size;
594 }
595 
596 static unsigned long __init get_new_step_size(unsigned long step_size)
597 {
598 	/*
599 	 * Initial mapped size is PMD_SIZE (2M).
600 	 * We can not set step_size to be PUD_SIZE (1G) yet.
601 	 * In worse case, when we cross the 1G boundary, and
602 	 * PG_LEVEL_2M is not set, we will need 1+1+512 pages (2M + 8k)
603 	 * to map 1G range with PTE. Hence we use one less than the
604 	 * difference of page table level shifts.
605 	 *
606 	 * Don't need to worry about overflow in the top-down case, on 32bit,
607 	 * when step_size is 0, round_down() returns 0 for start, and that
608 	 * turns it into 0x100000000ULL.
609 	 * In the bottom-up case, round_up(x, 0) returns 0 though too, which
610 	 * needs to be taken into consideration by the code below.
611 	 */
612 	return step_size << (PMD_SHIFT - PAGE_SHIFT - 1);
613 }
614 
615 /**
616  * memory_map_top_down - Map [map_start, map_end) top down
617  * @map_start: start address of the target memory range
618  * @map_end: end address of the target memory range
619  *
620  * This function will setup direct mapping for memory range
621  * [map_start, map_end) in top-down. That said, the page tables
622  * will be allocated at the end of the memory, and we map the
623  * memory in top-down.
624  */
625 static void __init memory_map_top_down(unsigned long map_start,
626 				       unsigned long map_end)
627 {
628 	unsigned long real_end, last_start;
629 	unsigned long step_size;
630 	unsigned long addr;
631 	unsigned long mapped_ram_size = 0;
632 
633 	/*
634 	 * Systems that have many reserved areas near top of the memory,
635 	 * e.g. QEMU with less than 1G RAM and EFI enabled, or Xen, will
636 	 * require lots of 4K mappings which may exhaust pgt_buf.
637 	 * Start with top-most PMD_SIZE range aligned at PMD_SIZE to ensure
638 	 * there is enough mapped memory that can be allocated from
639 	 * memblock.
640 	 */
641 	addr = memblock_phys_alloc_range(PMD_SIZE, PMD_SIZE, map_start,
642 					 map_end);
643 	memblock_phys_free(addr, PMD_SIZE);
644 	real_end = addr + PMD_SIZE;
645 
646 	/* step_size need to be small so pgt_buf from BRK could cover it */
647 	step_size = PMD_SIZE;
648 	max_pfn_mapped = 0; /* will get exact value next */
649 	min_pfn_mapped = real_end >> PAGE_SHIFT;
650 	last_start = real_end;
651 
652 	/*
653 	 * We start from the top (end of memory) and go to the bottom.
654 	 * The memblock_find_in_range() gets us a block of RAM from the
655 	 * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
656 	 * for page table.
657 	 */
658 	while (last_start > map_start) {
659 		unsigned long start;
660 
661 		if (last_start > step_size) {
662 			start = round_down(last_start - 1, step_size);
663 			if (start < map_start)
664 				start = map_start;
665 		} else
666 			start = map_start;
667 		mapped_ram_size += init_range_memory_mapping(start,
668 							last_start);
669 		last_start = start;
670 		min_pfn_mapped = last_start >> PAGE_SHIFT;
671 		if (mapped_ram_size >= step_size)
672 			step_size = get_new_step_size(step_size);
673 	}
674 
675 	if (real_end < map_end)
676 		init_range_memory_mapping(real_end, map_end);
677 }
678 
679 /**
680  * memory_map_bottom_up - Map [map_start, map_end) bottom up
681  * @map_start: start address of the target memory range
682  * @map_end: end address of the target memory range
683  *
684  * This function will setup direct mapping for memory range
685  * [map_start, map_end) in bottom-up. Since we have limited the
686  * bottom-up allocation above the kernel, the page tables will
687  * be allocated just above the kernel and we map the memory
688  * in [map_start, map_end) in bottom-up.
689  */
690 static void __init memory_map_bottom_up(unsigned long map_start,
691 					unsigned long map_end)
692 {
693 	unsigned long next, start;
694 	unsigned long mapped_ram_size = 0;
695 	/* step_size need to be small so pgt_buf from BRK could cover it */
696 	unsigned long step_size = PMD_SIZE;
697 
698 	start = map_start;
699 	min_pfn_mapped = start >> PAGE_SHIFT;
700 
701 	/*
702 	 * We start from the bottom (@map_start) and go to the top (@map_end).
703 	 * The memblock_find_in_range() gets us a block of RAM from the
704 	 * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
705 	 * for page table.
706 	 */
707 	while (start < map_end) {
708 		if (step_size && map_end - start > step_size) {
709 			next = round_up(start + 1, step_size);
710 			if (next > map_end)
711 				next = map_end;
712 		} else {
713 			next = map_end;
714 		}
715 
716 		mapped_ram_size += init_range_memory_mapping(start, next);
717 		start = next;
718 
719 		if (mapped_ram_size >= step_size)
720 			step_size = get_new_step_size(step_size);
721 	}
722 }
723 
724 /*
725  * The real mode trampoline, which is required for bootstrapping CPUs
726  * occupies only a small area under the low 1MB.  See reserve_real_mode()
727  * for details.
728  *
729  * If KASLR is disabled the first PGD entry of the direct mapping is copied
730  * to map the real mode trampoline.
731  *
732  * If KASLR is enabled, copy only the PUD which covers the low 1MB
733  * area. This limits the randomization granularity to 1GB for both 4-level
734  * and 5-level paging.
735  */
736 static void __init init_trampoline(void)
737 {
738 #ifdef CONFIG_X86_64
739 	/*
740 	 * The code below will alias kernel page-tables in the user-range of the
741 	 * address space, including the Global bit. So global TLB entries will
742 	 * be created when using the trampoline page-table.
743 	 */
744 	if (!kaslr_memory_enabled())
745 		trampoline_pgd_entry = init_top_pgt[pgd_index(__PAGE_OFFSET)];
746 	else
747 		init_trampoline_kaslr();
748 #endif
749 }
750 
751 void __init init_mem_mapping(void)
752 {
753 	unsigned long end;
754 
755 	pti_check_boottime_disable();
756 	probe_page_size_mask();
757 	setup_pcid();
758 
759 #ifdef CONFIG_X86_64
760 	end = max_pfn << PAGE_SHIFT;
761 #else
762 	end = max_low_pfn << PAGE_SHIFT;
763 #endif
764 
765 	/* the ISA range is always mapped regardless of memory holes */
766 	init_memory_mapping(0, ISA_END_ADDRESS, PAGE_KERNEL);
767 
768 	/* Init the trampoline, possibly with KASLR memory offset */
769 	init_trampoline();
770 
771 	/*
772 	 * If the allocation is in bottom-up direction, we setup direct mapping
773 	 * in bottom-up, otherwise we setup direct mapping in top-down.
774 	 */
775 	if (memblock_bottom_up()) {
776 		unsigned long kernel_end = __pa_symbol(_end);
777 
778 		/*
779 		 * we need two separate calls here. This is because we want to
780 		 * allocate page tables above the kernel. So we first map
781 		 * [kernel_end, end) to make memory above the kernel be mapped
782 		 * as soon as possible. And then use page tables allocated above
783 		 * the kernel to map [ISA_END_ADDRESS, kernel_end).
784 		 */
785 		memory_map_bottom_up(kernel_end, end);
786 		memory_map_bottom_up(ISA_END_ADDRESS, kernel_end);
787 	} else {
788 		memory_map_top_down(ISA_END_ADDRESS, end);
789 	}
790 
791 #ifdef CONFIG_X86_64
792 	if (max_pfn > max_low_pfn) {
793 		/* can we preserve max_low_pfn ?*/
794 		max_low_pfn = max_pfn;
795 	}
796 #else
797 	early_ioremap_page_table_range_init();
798 #endif
799 
800 	load_cr3(swapper_pg_dir);
801 	__flush_tlb_all();
802 
803 	x86_init.hyper.init_mem_mapping();
804 
805 	early_memtest(0, max_pfn_mapped << PAGE_SHIFT);
806 }
807 
808 /*
809  * Initialize an mm_struct to be used during poking and a pointer to be used
810  * during patching.
811  */
812 void __init poking_init(void)
813 {
814 	spinlock_t *ptl;
815 	pte_t *ptep;
816 
817 	poking_mm = mm_alloc();
818 	BUG_ON(!poking_mm);
819 
820 	/* Xen PV guests need the PGD to be pinned. */
821 	paravirt_enter_mmap(poking_mm);
822 
823 	/*
824 	 * Randomize the poking address, but make sure that the following page
825 	 * will be mapped at the same PMD. We need 2 pages, so find space for 3,
826 	 * and adjust the address if the PMD ends after the first one.
827 	 */
828 	poking_addr = TASK_UNMAPPED_BASE;
829 	if (IS_ENABLED(CONFIG_RANDOMIZE_BASE))
830 		poking_addr += (kaslr_get_random_long("Poking") & PAGE_MASK) %
831 			(TASK_SIZE - TASK_UNMAPPED_BASE - 3 * PAGE_SIZE);
832 
833 	if (((poking_addr + PAGE_SIZE) & ~PMD_MASK) == 0)
834 		poking_addr += PAGE_SIZE;
835 
836 	/*
837 	 * We need to trigger the allocation of the page-tables that will be
838 	 * needed for poking now. Later, poking may be performed in an atomic
839 	 * section, which might cause allocation to fail.
840 	 */
841 	ptep = get_locked_pte(poking_mm, poking_addr, &ptl);
842 	BUG_ON(!ptep);
843 	pte_unmap_unlock(ptep, ptl);
844 }
845 
846 /*
847  * devmem_is_allowed() checks to see if /dev/mem access to a certain address
848  * is valid. The argument is a physical page number.
849  *
850  * On x86, access has to be given to the first megabyte of RAM because that
851  * area traditionally contains BIOS code and data regions used by X, dosemu,
852  * and similar apps. Since they map the entire memory range, the whole range
853  * must be allowed (for mapping), but any areas that would otherwise be
854  * disallowed are flagged as being "zero filled" instead of rejected.
855  * Access has to be given to non-kernel-ram areas as well, these contain the
856  * PCI mmio resources as well as potential bios/acpi data regions.
857  */
858 int devmem_is_allowed(unsigned long pagenr)
859 {
860 	if (region_intersects(PFN_PHYS(pagenr), PAGE_SIZE,
861 				IORESOURCE_SYSTEM_RAM, IORES_DESC_NONE)
862 			!= REGION_DISJOINT) {
863 		/*
864 		 * For disallowed memory regions in the low 1MB range,
865 		 * request that the page be shown as all zeros.
866 		 */
867 		if (pagenr < 256)
868 			return 2;
869 
870 		return 0;
871 	}
872 
873 	/*
874 	 * This must follow RAM test, since System RAM is considered a
875 	 * restricted resource under CONFIG_STRICT_DEVMEM.
876 	 */
877 	if (iomem_is_exclusive(pagenr << PAGE_SHIFT)) {
878 		/* Low 1MB bypasses iomem restrictions. */
879 		if (pagenr < 256)
880 			return 1;
881 
882 		return 0;
883 	}
884 
885 	return 1;
886 }
887 
888 void free_init_pages(const char *what, unsigned long begin, unsigned long end)
889 {
890 	unsigned long begin_aligned, end_aligned;
891 
892 	/* Make sure boundaries are page aligned */
893 	begin_aligned = PAGE_ALIGN(begin);
894 	end_aligned   = end & PAGE_MASK;
895 
896 	if (WARN_ON(begin_aligned != begin || end_aligned != end)) {
897 		begin = begin_aligned;
898 		end   = end_aligned;
899 	}
900 
901 	if (begin >= end)
902 		return;
903 
904 	/*
905 	 * If debugging page accesses then do not free this memory but
906 	 * mark them not present - any buggy init-section access will
907 	 * create a kernel page fault:
908 	 */
909 	if (debug_pagealloc_enabled()) {
910 		pr_info("debug: unmapping init [mem %#010lx-%#010lx]\n",
911 			begin, end - 1);
912 		/*
913 		 * Inform kmemleak about the hole in the memory since the
914 		 * corresponding pages will be unmapped.
915 		 */
916 		kmemleak_free_part((void *)begin, end - begin);
917 		set_memory_np(begin, (end - begin) >> PAGE_SHIFT);
918 	} else {
919 		/*
920 		 * We just marked the kernel text read only above, now that
921 		 * we are going to free part of that, we need to make that
922 		 * writeable and non-executable first.
923 		 */
924 		set_memory_nx(begin, (end - begin) >> PAGE_SHIFT);
925 		set_memory_rw(begin, (end - begin) >> PAGE_SHIFT);
926 
927 		free_reserved_area((void *)begin, (void *)end,
928 				   POISON_FREE_INITMEM, what);
929 	}
930 }
931 
932 /*
933  * begin/end can be in the direct map or the "high kernel mapping"
934  * used for the kernel image only.  free_init_pages() will do the
935  * right thing for either kind of address.
936  */
937 void free_kernel_image_pages(const char *what, void *begin, void *end)
938 {
939 	unsigned long begin_ul = (unsigned long)begin;
940 	unsigned long end_ul = (unsigned long)end;
941 	unsigned long len_pages = (end_ul - begin_ul) >> PAGE_SHIFT;
942 
943 	free_init_pages(what, begin_ul, end_ul);
944 
945 	/*
946 	 * PTI maps some of the kernel into userspace.  For performance,
947 	 * this includes some kernel areas that do not contain secrets.
948 	 * Those areas might be adjacent to the parts of the kernel image
949 	 * being freed, which may contain secrets.  Remove the "high kernel
950 	 * image mapping" for these freed areas, ensuring they are not even
951 	 * potentially vulnerable to Meltdown regardless of the specific
952 	 * optimizations PTI is currently using.
953 	 *
954 	 * The "noalias" prevents unmapping the direct map alias which is
955 	 * needed to access the freed pages.
956 	 *
957 	 * This is only valid for 64bit kernels. 32bit has only one mapping
958 	 * which can't be treated in this way for obvious reasons.
959 	 */
960 	if (IS_ENABLED(CONFIG_X86_64) && cpu_feature_enabled(X86_FEATURE_PTI))
961 		set_memory_np_noalias(begin_ul, len_pages);
962 }
963 
964 void __ref free_initmem(void)
965 {
966 	e820__reallocate_tables();
967 
968 	mem_encrypt_free_decrypted_mem();
969 
970 	free_kernel_image_pages("unused kernel image (initmem)",
971 				&__init_begin, &__init_end);
972 }
973 
974 #ifdef CONFIG_BLK_DEV_INITRD
975 void __init free_initrd_mem(unsigned long start, unsigned long end)
976 {
977 	/*
978 	 * end could be not aligned, and We can not align that,
979 	 * decompressor could be confused by aligned initrd_end
980 	 * We already reserve the end partial page before in
981 	 *   - i386_start_kernel()
982 	 *   - x86_64_start_kernel()
983 	 *   - relocate_initrd()
984 	 * So here We can do PAGE_ALIGN() safely to get partial page to be freed
985 	 */
986 	free_init_pages("initrd", start, PAGE_ALIGN(end));
987 }
988 #endif
989 
990 void __init zone_sizes_init(void)
991 {
992 	unsigned long max_zone_pfns[MAX_NR_ZONES];
993 
994 	memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
995 
996 #ifdef CONFIG_ZONE_DMA
997 	max_zone_pfns[ZONE_DMA]		= min(MAX_DMA_PFN, max_low_pfn);
998 #endif
999 #ifdef CONFIG_ZONE_DMA32
1000 	max_zone_pfns[ZONE_DMA32]	= min(MAX_DMA32_PFN, max_low_pfn);
1001 #endif
1002 	max_zone_pfns[ZONE_NORMAL]	= max_low_pfn;
1003 #ifdef CONFIG_HIGHMEM
1004 	max_zone_pfns[ZONE_HIGHMEM]	= max_pfn;
1005 #endif
1006 
1007 	free_area_init(max_zone_pfns);
1008 }
1009 
1010 __visible DEFINE_PER_CPU_ALIGNED(struct tlb_state, cpu_tlbstate) = {
1011 	.loaded_mm = &init_mm,
1012 	.next_asid = 1,
1013 	.cr4 = ~0UL,	/* fail hard if we screw up cr4 shadow initialization */
1014 };
1015 
1016 #ifdef CONFIG_ADDRESS_MASKING
1017 DEFINE_PER_CPU(u64, tlbstate_untag_mask);
1018 EXPORT_PER_CPU_SYMBOL(tlbstate_untag_mask);
1019 #endif
1020 
1021 void update_cache_mode_entry(unsigned entry, enum page_cache_mode cache)
1022 {
1023 	/* entry 0 MUST be WB (hardwired to speed up translations) */
1024 	BUG_ON(!entry && cache != _PAGE_CACHE_MODE_WB);
1025 
1026 	__cachemode2pte_tbl[cache] = __cm_idx2pte(entry);
1027 	__pte2cachemode_tbl[entry] = cache;
1028 }
1029 
1030 #ifdef CONFIG_SWAP
1031 unsigned long arch_max_swapfile_size(void)
1032 {
1033 	unsigned long pages;
1034 
1035 	pages = generic_max_swapfile_size();
1036 
1037 	if (boot_cpu_has_bug(X86_BUG_L1TF) && l1tf_mitigation != L1TF_MITIGATION_OFF) {
1038 		/* Limit the swap file size to MAX_PA/2 for L1TF workaround */
1039 		unsigned long long l1tf_limit = l1tf_pfn_limit();
1040 		/*
1041 		 * We encode swap offsets also with 3 bits below those for pfn
1042 		 * which makes the usable limit higher.
1043 		 */
1044 #if CONFIG_PGTABLE_LEVELS > 2
1045 		l1tf_limit <<= PAGE_SHIFT - SWP_OFFSET_FIRST_BIT;
1046 #endif
1047 		pages = min_t(unsigned long long, l1tf_limit, pages);
1048 	}
1049 	return pages;
1050 }
1051 #endif
1052 
1053 #ifdef CONFIG_EXECMEM
1054 static struct execmem_info execmem_info __ro_after_init;
1055 
1056 struct execmem_info __init *execmem_arch_setup(void)
1057 {
1058 	unsigned long start, offset = 0;
1059 
1060 	if (kaslr_enabled())
1061 		offset = get_random_u32_inclusive(1, 1024) * PAGE_SIZE;
1062 
1063 	start = MODULES_VADDR + offset;
1064 
1065 	execmem_info = (struct execmem_info){
1066 		.ranges = {
1067 			[EXECMEM_DEFAULT] = {
1068 				.flags	= EXECMEM_KASAN_SHADOW,
1069 				.start	= start,
1070 				.end	= MODULES_END,
1071 				.pgprot	= PAGE_KERNEL,
1072 				.alignment = MODULE_ALIGN,
1073 			},
1074 		},
1075 	};
1076 
1077 	return &execmem_info;
1078 }
1079 #endif /* CONFIG_EXECMEM */
1080