xref: /linux/arch/x86/mm/init.c (revision 827634added7f38b7d724cab1dccdb2b004c13c3)
1 #include <linux/gfp.h>
2 #include <linux/initrd.h>
3 #include <linux/ioport.h>
4 #include <linux/swap.h>
5 #include <linux/memblock.h>
6 #include <linux/bootmem.h>	/* for max_low_pfn */
7 
8 #include <asm/cacheflush.h>
9 #include <asm/e820.h>
10 #include <asm/init.h>
11 #include <asm/page.h>
12 #include <asm/page_types.h>
13 #include <asm/sections.h>
14 #include <asm/setup.h>
15 #include <asm/tlbflush.h>
16 #include <asm/tlb.h>
17 #include <asm/proto.h>
18 #include <asm/dma.h>		/* for MAX_DMA_PFN */
19 #include <asm/microcode.h>
20 
21 /*
22  * We need to define the tracepoints somewhere, and tlb.c
23  * is only compied when SMP=y.
24  */
25 #define CREATE_TRACE_POINTS
26 #include <trace/events/tlb.h>
27 
28 #include "mm_internal.h"
29 
30 /*
31  * Tables translating between page_cache_type_t and pte encoding.
32  *
33  * Minimal supported modes are defined statically, they are modified
34  * during bootup if more supported cache modes are available.
35  *
36  *   Index into __cachemode2pte_tbl[] is the cachemode.
37  *
38  *   Index into __pte2cachemode_tbl[] are the caching attribute bits of the pte
39  *   (_PAGE_PWT, _PAGE_PCD, _PAGE_PAT) at index bit positions 0, 1, 2.
40  */
41 uint16_t __cachemode2pte_tbl[_PAGE_CACHE_MODE_NUM] = {
42 	[_PAGE_CACHE_MODE_WB      ]	= 0         | 0        ,
43 	[_PAGE_CACHE_MODE_WC      ]	= _PAGE_PWT | 0        ,
44 	[_PAGE_CACHE_MODE_UC_MINUS]	= 0         | _PAGE_PCD,
45 	[_PAGE_CACHE_MODE_UC      ]	= _PAGE_PWT | _PAGE_PCD,
46 	[_PAGE_CACHE_MODE_WT      ]	= 0         | _PAGE_PCD,
47 	[_PAGE_CACHE_MODE_WP      ]	= 0         | _PAGE_PCD,
48 };
49 EXPORT_SYMBOL(__cachemode2pte_tbl);
50 
51 uint8_t __pte2cachemode_tbl[8] = {
52 	[__pte2cm_idx( 0        | 0         | 0        )] = _PAGE_CACHE_MODE_WB,
53 	[__pte2cm_idx(_PAGE_PWT | 0         | 0        )] = _PAGE_CACHE_MODE_WC,
54 	[__pte2cm_idx( 0        | _PAGE_PCD | 0        )] = _PAGE_CACHE_MODE_UC_MINUS,
55 	[__pte2cm_idx(_PAGE_PWT | _PAGE_PCD | 0        )] = _PAGE_CACHE_MODE_UC,
56 	[__pte2cm_idx( 0        | 0         | _PAGE_PAT)] = _PAGE_CACHE_MODE_WB,
57 	[__pte2cm_idx(_PAGE_PWT | 0         | _PAGE_PAT)] = _PAGE_CACHE_MODE_WC,
58 	[__pte2cm_idx(0         | _PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC_MINUS,
59 	[__pte2cm_idx(_PAGE_PWT | _PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC,
60 };
61 EXPORT_SYMBOL(__pte2cachemode_tbl);
62 
63 static unsigned long __initdata pgt_buf_start;
64 static unsigned long __initdata pgt_buf_end;
65 static unsigned long __initdata pgt_buf_top;
66 
67 static unsigned long min_pfn_mapped;
68 
69 static bool __initdata can_use_brk_pgt = true;
70 
71 /*
72  * Pages returned are already directly mapped.
73  *
74  * Changing that is likely to break Xen, see commit:
75  *
76  *    279b706 x86,xen: introduce x86_init.mapping.pagetable_reserve
77  *
78  * for detailed information.
79  */
80 __ref void *alloc_low_pages(unsigned int num)
81 {
82 	unsigned long pfn;
83 	int i;
84 
85 	if (after_bootmem) {
86 		unsigned int order;
87 
88 		order = get_order((unsigned long)num << PAGE_SHIFT);
89 		return (void *)__get_free_pages(GFP_ATOMIC | __GFP_NOTRACK |
90 						__GFP_ZERO, order);
91 	}
92 
93 	if ((pgt_buf_end + num) > pgt_buf_top || !can_use_brk_pgt) {
94 		unsigned long ret;
95 		if (min_pfn_mapped >= max_pfn_mapped)
96 			panic("alloc_low_pages: ran out of memory");
97 		ret = memblock_find_in_range(min_pfn_mapped << PAGE_SHIFT,
98 					max_pfn_mapped << PAGE_SHIFT,
99 					PAGE_SIZE * num , PAGE_SIZE);
100 		if (!ret)
101 			panic("alloc_low_pages: can not alloc memory");
102 		memblock_reserve(ret, PAGE_SIZE * num);
103 		pfn = ret >> PAGE_SHIFT;
104 	} else {
105 		pfn = pgt_buf_end;
106 		pgt_buf_end += num;
107 		printk(KERN_DEBUG "BRK [%#010lx, %#010lx] PGTABLE\n",
108 			pfn << PAGE_SHIFT, (pgt_buf_end << PAGE_SHIFT) - 1);
109 	}
110 
111 	for (i = 0; i < num; i++) {
112 		void *adr;
113 
114 		adr = __va((pfn + i) << PAGE_SHIFT);
115 		clear_page(adr);
116 	}
117 
118 	return __va(pfn << PAGE_SHIFT);
119 }
120 
121 /* need 3 4k for initial PMD_SIZE,  3 4k for 0-ISA_END_ADDRESS */
122 #define INIT_PGT_BUF_SIZE	(6 * PAGE_SIZE)
123 RESERVE_BRK(early_pgt_alloc, INIT_PGT_BUF_SIZE);
124 void  __init early_alloc_pgt_buf(void)
125 {
126 	unsigned long tables = INIT_PGT_BUF_SIZE;
127 	phys_addr_t base;
128 
129 	base = __pa(extend_brk(tables, PAGE_SIZE));
130 
131 	pgt_buf_start = base >> PAGE_SHIFT;
132 	pgt_buf_end = pgt_buf_start;
133 	pgt_buf_top = pgt_buf_start + (tables >> PAGE_SHIFT);
134 }
135 
136 int after_bootmem;
137 
138 early_param_on_off("gbpages", "nogbpages", direct_gbpages, CONFIG_X86_DIRECT_GBPAGES);
139 
140 struct map_range {
141 	unsigned long start;
142 	unsigned long end;
143 	unsigned page_size_mask;
144 };
145 
146 static int page_size_mask;
147 
148 static void __init probe_page_size_mask(void)
149 {
150 #if !defined(CONFIG_DEBUG_PAGEALLOC) && !defined(CONFIG_KMEMCHECK)
151 	/*
152 	 * For CONFIG_DEBUG_PAGEALLOC, identity mapping will use small pages.
153 	 * This will simplify cpa(), which otherwise needs to support splitting
154 	 * large pages into small in interrupt context, etc.
155 	 */
156 	if (cpu_has_pse)
157 		page_size_mask |= 1 << PG_LEVEL_2M;
158 #endif
159 
160 	/* Enable PSE if available */
161 	if (cpu_has_pse)
162 		cr4_set_bits_and_update_boot(X86_CR4_PSE);
163 
164 	/* Enable PGE if available */
165 	if (cpu_has_pge) {
166 		cr4_set_bits_and_update_boot(X86_CR4_PGE);
167 		__supported_pte_mask |= _PAGE_GLOBAL;
168 	} else
169 		__supported_pte_mask &= ~_PAGE_GLOBAL;
170 
171 	/* Enable 1 GB linear kernel mappings if available: */
172 	if (direct_gbpages && cpu_has_gbpages) {
173 		printk(KERN_INFO "Using GB pages for direct mapping\n");
174 		page_size_mask |= 1 << PG_LEVEL_1G;
175 	} else {
176 		direct_gbpages = 0;
177 	}
178 }
179 
180 #ifdef CONFIG_X86_32
181 #define NR_RANGE_MR 3
182 #else /* CONFIG_X86_64 */
183 #define NR_RANGE_MR 5
184 #endif
185 
186 static int __meminit save_mr(struct map_range *mr, int nr_range,
187 			     unsigned long start_pfn, unsigned long end_pfn,
188 			     unsigned long page_size_mask)
189 {
190 	if (start_pfn < end_pfn) {
191 		if (nr_range >= NR_RANGE_MR)
192 			panic("run out of range for init_memory_mapping\n");
193 		mr[nr_range].start = start_pfn<<PAGE_SHIFT;
194 		mr[nr_range].end   = end_pfn<<PAGE_SHIFT;
195 		mr[nr_range].page_size_mask = page_size_mask;
196 		nr_range++;
197 	}
198 
199 	return nr_range;
200 }
201 
202 /*
203  * adjust the page_size_mask for small range to go with
204  *	big page size instead small one if nearby are ram too.
205  */
206 static void __init_refok adjust_range_page_size_mask(struct map_range *mr,
207 							 int nr_range)
208 {
209 	int i;
210 
211 	for (i = 0; i < nr_range; i++) {
212 		if ((page_size_mask & (1<<PG_LEVEL_2M)) &&
213 		    !(mr[i].page_size_mask & (1<<PG_LEVEL_2M))) {
214 			unsigned long start = round_down(mr[i].start, PMD_SIZE);
215 			unsigned long end = round_up(mr[i].end, PMD_SIZE);
216 
217 #ifdef CONFIG_X86_32
218 			if ((end >> PAGE_SHIFT) > max_low_pfn)
219 				continue;
220 #endif
221 
222 			if (memblock_is_region_memory(start, end - start))
223 				mr[i].page_size_mask |= 1<<PG_LEVEL_2M;
224 		}
225 		if ((page_size_mask & (1<<PG_LEVEL_1G)) &&
226 		    !(mr[i].page_size_mask & (1<<PG_LEVEL_1G))) {
227 			unsigned long start = round_down(mr[i].start, PUD_SIZE);
228 			unsigned long end = round_up(mr[i].end, PUD_SIZE);
229 
230 			if (memblock_is_region_memory(start, end - start))
231 				mr[i].page_size_mask |= 1<<PG_LEVEL_1G;
232 		}
233 	}
234 }
235 
236 static const char *page_size_string(struct map_range *mr)
237 {
238 	static const char str_1g[] = "1G";
239 	static const char str_2m[] = "2M";
240 	static const char str_4m[] = "4M";
241 	static const char str_4k[] = "4k";
242 
243 	if (mr->page_size_mask & (1<<PG_LEVEL_1G))
244 		return str_1g;
245 	/*
246 	 * 32-bit without PAE has a 4M large page size.
247 	 * PG_LEVEL_2M is misnamed, but we can at least
248 	 * print out the right size in the string.
249 	 */
250 	if (IS_ENABLED(CONFIG_X86_32) &&
251 	    !IS_ENABLED(CONFIG_X86_PAE) &&
252 	    mr->page_size_mask & (1<<PG_LEVEL_2M))
253 		return str_4m;
254 
255 	if (mr->page_size_mask & (1<<PG_LEVEL_2M))
256 		return str_2m;
257 
258 	return str_4k;
259 }
260 
261 static int __meminit split_mem_range(struct map_range *mr, int nr_range,
262 				     unsigned long start,
263 				     unsigned long end)
264 {
265 	unsigned long start_pfn, end_pfn, limit_pfn;
266 	unsigned long pfn;
267 	int i;
268 
269 	limit_pfn = PFN_DOWN(end);
270 
271 	/* head if not big page alignment ? */
272 	pfn = start_pfn = PFN_DOWN(start);
273 #ifdef CONFIG_X86_32
274 	/*
275 	 * Don't use a large page for the first 2/4MB of memory
276 	 * because there are often fixed size MTRRs in there
277 	 * and overlapping MTRRs into large pages can cause
278 	 * slowdowns.
279 	 */
280 	if (pfn == 0)
281 		end_pfn = PFN_DOWN(PMD_SIZE);
282 	else
283 		end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
284 #else /* CONFIG_X86_64 */
285 	end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
286 #endif
287 	if (end_pfn > limit_pfn)
288 		end_pfn = limit_pfn;
289 	if (start_pfn < end_pfn) {
290 		nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
291 		pfn = end_pfn;
292 	}
293 
294 	/* big page (2M) range */
295 	start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
296 #ifdef CONFIG_X86_32
297 	end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
298 #else /* CONFIG_X86_64 */
299 	end_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
300 	if (end_pfn > round_down(limit_pfn, PFN_DOWN(PMD_SIZE)))
301 		end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
302 #endif
303 
304 	if (start_pfn < end_pfn) {
305 		nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
306 				page_size_mask & (1<<PG_LEVEL_2M));
307 		pfn = end_pfn;
308 	}
309 
310 #ifdef CONFIG_X86_64
311 	/* big page (1G) range */
312 	start_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
313 	end_pfn = round_down(limit_pfn, PFN_DOWN(PUD_SIZE));
314 	if (start_pfn < end_pfn) {
315 		nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
316 				page_size_mask &
317 				 ((1<<PG_LEVEL_2M)|(1<<PG_LEVEL_1G)));
318 		pfn = end_pfn;
319 	}
320 
321 	/* tail is not big page (1G) alignment */
322 	start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
323 	end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
324 	if (start_pfn < end_pfn) {
325 		nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
326 				page_size_mask & (1<<PG_LEVEL_2M));
327 		pfn = end_pfn;
328 	}
329 #endif
330 
331 	/* tail is not big page (2M) alignment */
332 	start_pfn = pfn;
333 	end_pfn = limit_pfn;
334 	nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
335 
336 	if (!after_bootmem)
337 		adjust_range_page_size_mask(mr, nr_range);
338 
339 	/* try to merge same page size and continuous */
340 	for (i = 0; nr_range > 1 && i < nr_range - 1; i++) {
341 		unsigned long old_start;
342 		if (mr[i].end != mr[i+1].start ||
343 		    mr[i].page_size_mask != mr[i+1].page_size_mask)
344 			continue;
345 		/* move it */
346 		old_start = mr[i].start;
347 		memmove(&mr[i], &mr[i+1],
348 			(nr_range - 1 - i) * sizeof(struct map_range));
349 		mr[i--].start = old_start;
350 		nr_range--;
351 	}
352 
353 	for (i = 0; i < nr_range; i++)
354 		printk(KERN_DEBUG " [mem %#010lx-%#010lx] page %s\n",
355 				mr[i].start, mr[i].end - 1,
356 				page_size_string(&mr[i]));
357 
358 	return nr_range;
359 }
360 
361 struct range pfn_mapped[E820_X_MAX];
362 int nr_pfn_mapped;
363 
364 static void add_pfn_range_mapped(unsigned long start_pfn, unsigned long end_pfn)
365 {
366 	nr_pfn_mapped = add_range_with_merge(pfn_mapped, E820_X_MAX,
367 					     nr_pfn_mapped, start_pfn, end_pfn);
368 	nr_pfn_mapped = clean_sort_range(pfn_mapped, E820_X_MAX);
369 
370 	max_pfn_mapped = max(max_pfn_mapped, end_pfn);
371 
372 	if (start_pfn < (1UL<<(32-PAGE_SHIFT)))
373 		max_low_pfn_mapped = max(max_low_pfn_mapped,
374 					 min(end_pfn, 1UL<<(32-PAGE_SHIFT)));
375 }
376 
377 bool pfn_range_is_mapped(unsigned long start_pfn, unsigned long end_pfn)
378 {
379 	int i;
380 
381 	for (i = 0; i < nr_pfn_mapped; i++)
382 		if ((start_pfn >= pfn_mapped[i].start) &&
383 		    (end_pfn <= pfn_mapped[i].end))
384 			return true;
385 
386 	return false;
387 }
388 
389 /*
390  * Setup the direct mapping of the physical memory at PAGE_OFFSET.
391  * This runs before bootmem is initialized and gets pages directly from
392  * the physical memory. To access them they are temporarily mapped.
393  */
394 unsigned long __init_refok init_memory_mapping(unsigned long start,
395 					       unsigned long end)
396 {
397 	struct map_range mr[NR_RANGE_MR];
398 	unsigned long ret = 0;
399 	int nr_range, i;
400 
401 	pr_info("init_memory_mapping: [mem %#010lx-%#010lx]\n",
402 	       start, end - 1);
403 
404 	memset(mr, 0, sizeof(mr));
405 	nr_range = split_mem_range(mr, 0, start, end);
406 
407 	for (i = 0; i < nr_range; i++)
408 		ret = kernel_physical_mapping_init(mr[i].start, mr[i].end,
409 						   mr[i].page_size_mask);
410 
411 	add_pfn_range_mapped(start >> PAGE_SHIFT, ret >> PAGE_SHIFT);
412 
413 	return ret >> PAGE_SHIFT;
414 }
415 
416 /*
417  * We need to iterate through the E820 memory map and create direct mappings
418  * for only E820_RAM and E820_KERN_RESERVED regions. We cannot simply
419  * create direct mappings for all pfns from [0 to max_low_pfn) and
420  * [4GB to max_pfn) because of possible memory holes in high addresses
421  * that cannot be marked as UC by fixed/variable range MTRRs.
422  * Depending on the alignment of E820 ranges, this may possibly result
423  * in using smaller size (i.e. 4K instead of 2M or 1G) page tables.
424  *
425  * init_mem_mapping() calls init_range_memory_mapping() with big range.
426  * That range would have hole in the middle or ends, and only ram parts
427  * will be mapped in init_range_memory_mapping().
428  */
429 static unsigned long __init init_range_memory_mapping(
430 					   unsigned long r_start,
431 					   unsigned long r_end)
432 {
433 	unsigned long start_pfn, end_pfn;
434 	unsigned long mapped_ram_size = 0;
435 	int i;
436 
437 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) {
438 		u64 start = clamp_val(PFN_PHYS(start_pfn), r_start, r_end);
439 		u64 end = clamp_val(PFN_PHYS(end_pfn), r_start, r_end);
440 		if (start >= end)
441 			continue;
442 
443 		/*
444 		 * if it is overlapping with brk pgt, we need to
445 		 * alloc pgt buf from memblock instead.
446 		 */
447 		can_use_brk_pgt = max(start, (u64)pgt_buf_end<<PAGE_SHIFT) >=
448 				    min(end, (u64)pgt_buf_top<<PAGE_SHIFT);
449 		init_memory_mapping(start, end);
450 		mapped_ram_size += end - start;
451 		can_use_brk_pgt = true;
452 	}
453 
454 	return mapped_ram_size;
455 }
456 
457 static unsigned long __init get_new_step_size(unsigned long step_size)
458 {
459 	/*
460 	 * Initial mapped size is PMD_SIZE (2M).
461 	 * We can not set step_size to be PUD_SIZE (1G) yet.
462 	 * In worse case, when we cross the 1G boundary, and
463 	 * PG_LEVEL_2M is not set, we will need 1+1+512 pages (2M + 8k)
464 	 * to map 1G range with PTE. Hence we use one less than the
465 	 * difference of page table level shifts.
466 	 *
467 	 * Don't need to worry about overflow in the top-down case, on 32bit,
468 	 * when step_size is 0, round_down() returns 0 for start, and that
469 	 * turns it into 0x100000000ULL.
470 	 * In the bottom-up case, round_up(x, 0) returns 0 though too, which
471 	 * needs to be taken into consideration by the code below.
472 	 */
473 	return step_size << (PMD_SHIFT - PAGE_SHIFT - 1);
474 }
475 
476 /**
477  * memory_map_top_down - Map [map_start, map_end) top down
478  * @map_start: start address of the target memory range
479  * @map_end: end address of the target memory range
480  *
481  * This function will setup direct mapping for memory range
482  * [map_start, map_end) in top-down. That said, the page tables
483  * will be allocated at the end of the memory, and we map the
484  * memory in top-down.
485  */
486 static void __init memory_map_top_down(unsigned long map_start,
487 				       unsigned long map_end)
488 {
489 	unsigned long real_end, start, last_start;
490 	unsigned long step_size;
491 	unsigned long addr;
492 	unsigned long mapped_ram_size = 0;
493 
494 	/* xen has big range in reserved near end of ram, skip it at first.*/
495 	addr = memblock_find_in_range(map_start, map_end, PMD_SIZE, PMD_SIZE);
496 	real_end = addr + PMD_SIZE;
497 
498 	/* step_size need to be small so pgt_buf from BRK could cover it */
499 	step_size = PMD_SIZE;
500 	max_pfn_mapped = 0; /* will get exact value next */
501 	min_pfn_mapped = real_end >> PAGE_SHIFT;
502 	last_start = start = real_end;
503 
504 	/*
505 	 * We start from the top (end of memory) and go to the bottom.
506 	 * The memblock_find_in_range() gets us a block of RAM from the
507 	 * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
508 	 * for page table.
509 	 */
510 	while (last_start > map_start) {
511 		if (last_start > step_size) {
512 			start = round_down(last_start - 1, step_size);
513 			if (start < map_start)
514 				start = map_start;
515 		} else
516 			start = map_start;
517 		mapped_ram_size += init_range_memory_mapping(start,
518 							last_start);
519 		last_start = start;
520 		min_pfn_mapped = last_start >> PAGE_SHIFT;
521 		if (mapped_ram_size >= step_size)
522 			step_size = get_new_step_size(step_size);
523 	}
524 
525 	if (real_end < map_end)
526 		init_range_memory_mapping(real_end, map_end);
527 }
528 
529 /**
530  * memory_map_bottom_up - Map [map_start, map_end) bottom up
531  * @map_start: start address of the target memory range
532  * @map_end: end address of the target memory range
533  *
534  * This function will setup direct mapping for memory range
535  * [map_start, map_end) in bottom-up. Since we have limited the
536  * bottom-up allocation above the kernel, the page tables will
537  * be allocated just above the kernel and we map the memory
538  * in [map_start, map_end) in bottom-up.
539  */
540 static void __init memory_map_bottom_up(unsigned long map_start,
541 					unsigned long map_end)
542 {
543 	unsigned long next, start;
544 	unsigned long mapped_ram_size = 0;
545 	/* step_size need to be small so pgt_buf from BRK could cover it */
546 	unsigned long step_size = PMD_SIZE;
547 
548 	start = map_start;
549 	min_pfn_mapped = start >> PAGE_SHIFT;
550 
551 	/*
552 	 * We start from the bottom (@map_start) and go to the top (@map_end).
553 	 * The memblock_find_in_range() gets us a block of RAM from the
554 	 * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
555 	 * for page table.
556 	 */
557 	while (start < map_end) {
558 		if (step_size && map_end - start > step_size) {
559 			next = round_up(start + 1, step_size);
560 			if (next > map_end)
561 				next = map_end;
562 		} else {
563 			next = map_end;
564 		}
565 
566 		mapped_ram_size += init_range_memory_mapping(start, next);
567 		start = next;
568 
569 		if (mapped_ram_size >= step_size)
570 			step_size = get_new_step_size(step_size);
571 	}
572 }
573 
574 void __init init_mem_mapping(void)
575 {
576 	unsigned long end;
577 
578 	probe_page_size_mask();
579 
580 #ifdef CONFIG_X86_64
581 	end = max_pfn << PAGE_SHIFT;
582 #else
583 	end = max_low_pfn << PAGE_SHIFT;
584 #endif
585 
586 	/* the ISA range is always mapped regardless of memory holes */
587 	init_memory_mapping(0, ISA_END_ADDRESS);
588 
589 	/*
590 	 * If the allocation is in bottom-up direction, we setup direct mapping
591 	 * in bottom-up, otherwise we setup direct mapping in top-down.
592 	 */
593 	if (memblock_bottom_up()) {
594 		unsigned long kernel_end = __pa_symbol(_end);
595 
596 		/*
597 		 * we need two separate calls here. This is because we want to
598 		 * allocate page tables above the kernel. So we first map
599 		 * [kernel_end, end) to make memory above the kernel be mapped
600 		 * as soon as possible. And then use page tables allocated above
601 		 * the kernel to map [ISA_END_ADDRESS, kernel_end).
602 		 */
603 		memory_map_bottom_up(kernel_end, end);
604 		memory_map_bottom_up(ISA_END_ADDRESS, kernel_end);
605 	} else {
606 		memory_map_top_down(ISA_END_ADDRESS, end);
607 	}
608 
609 #ifdef CONFIG_X86_64
610 	if (max_pfn > max_low_pfn) {
611 		/* can we preseve max_low_pfn ?*/
612 		max_low_pfn = max_pfn;
613 	}
614 #else
615 	early_ioremap_page_table_range_init();
616 #endif
617 
618 	load_cr3(swapper_pg_dir);
619 	__flush_tlb_all();
620 
621 	early_memtest(0, max_pfn_mapped << PAGE_SHIFT);
622 }
623 
624 /*
625  * devmem_is_allowed() checks to see if /dev/mem access to a certain address
626  * is valid. The argument is a physical page number.
627  *
628  *
629  * On x86, access has to be given to the first megabyte of ram because that area
630  * contains BIOS code and data regions used by X and dosemu and similar apps.
631  * Access has to be given to non-kernel-ram areas as well, these contain the PCI
632  * mmio resources as well as potential bios/acpi data regions.
633  */
634 int devmem_is_allowed(unsigned long pagenr)
635 {
636 	if (pagenr < 256)
637 		return 1;
638 	if (iomem_is_exclusive(pagenr << PAGE_SHIFT))
639 		return 0;
640 	if (!page_is_ram(pagenr))
641 		return 1;
642 	return 0;
643 }
644 
645 void free_init_pages(char *what, unsigned long begin, unsigned long end)
646 {
647 	unsigned long begin_aligned, end_aligned;
648 
649 	/* Make sure boundaries are page aligned */
650 	begin_aligned = PAGE_ALIGN(begin);
651 	end_aligned   = end & PAGE_MASK;
652 
653 	if (WARN_ON(begin_aligned != begin || end_aligned != end)) {
654 		begin = begin_aligned;
655 		end   = end_aligned;
656 	}
657 
658 	if (begin >= end)
659 		return;
660 
661 	/*
662 	 * If debugging page accesses then do not free this memory but
663 	 * mark them not present - any buggy init-section access will
664 	 * create a kernel page fault:
665 	 */
666 #ifdef CONFIG_DEBUG_PAGEALLOC
667 	printk(KERN_INFO "debug: unmapping init [mem %#010lx-%#010lx]\n",
668 		begin, end - 1);
669 	set_memory_np(begin, (end - begin) >> PAGE_SHIFT);
670 #else
671 	/*
672 	 * We just marked the kernel text read only above, now that
673 	 * we are going to free part of that, we need to make that
674 	 * writeable and non-executable first.
675 	 */
676 	set_memory_nx(begin, (end - begin) >> PAGE_SHIFT);
677 	set_memory_rw(begin, (end - begin) >> PAGE_SHIFT);
678 
679 	free_reserved_area((void *)begin, (void *)end, POISON_FREE_INITMEM, what);
680 #endif
681 }
682 
683 void free_initmem(void)
684 {
685 	free_init_pages("unused kernel",
686 			(unsigned long)(&__init_begin),
687 			(unsigned long)(&__init_end));
688 }
689 
690 #ifdef CONFIG_BLK_DEV_INITRD
691 void __init free_initrd_mem(unsigned long start, unsigned long end)
692 {
693 #ifdef CONFIG_MICROCODE_EARLY
694 	/*
695 	 * Remember, initrd memory may contain microcode or other useful things.
696 	 * Before we lose initrd mem, we need to find a place to hold them
697 	 * now that normal virtual memory is enabled.
698 	 */
699 	save_microcode_in_initrd();
700 #endif
701 
702 	/*
703 	 * end could be not aligned, and We can not align that,
704 	 * decompresser could be confused by aligned initrd_end
705 	 * We already reserve the end partial page before in
706 	 *   - i386_start_kernel()
707 	 *   - x86_64_start_kernel()
708 	 *   - relocate_initrd()
709 	 * So here We can do PAGE_ALIGN() safely to get partial page to be freed
710 	 */
711 	free_init_pages("initrd", start, PAGE_ALIGN(end));
712 }
713 #endif
714 
715 void __init zone_sizes_init(void)
716 {
717 	unsigned long max_zone_pfns[MAX_NR_ZONES];
718 
719 	memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
720 
721 #ifdef CONFIG_ZONE_DMA
722 	max_zone_pfns[ZONE_DMA]		= min(MAX_DMA_PFN, max_low_pfn);
723 #endif
724 #ifdef CONFIG_ZONE_DMA32
725 	max_zone_pfns[ZONE_DMA32]	= min(MAX_DMA32_PFN, max_low_pfn);
726 #endif
727 	max_zone_pfns[ZONE_NORMAL]	= max_low_pfn;
728 #ifdef CONFIG_HIGHMEM
729 	max_zone_pfns[ZONE_HIGHMEM]	= max_pfn;
730 #endif
731 
732 	free_area_init_nodes(max_zone_pfns);
733 }
734 
735 DEFINE_PER_CPU_SHARED_ALIGNED(struct tlb_state, cpu_tlbstate) = {
736 #ifdef CONFIG_SMP
737 	.active_mm = &init_mm,
738 	.state = 0,
739 #endif
740 	.cr4 = ~0UL,	/* fail hard if we screw up cr4 shadow initialization */
741 };
742 EXPORT_SYMBOL_GPL(cpu_tlbstate);
743 
744 void update_cache_mode_entry(unsigned entry, enum page_cache_mode cache)
745 {
746 	/* entry 0 MUST be WB (hardwired to speed up translations) */
747 	BUG_ON(!entry && cache != _PAGE_CACHE_MODE_WB);
748 
749 	__cachemode2pte_tbl[cache] = __cm_idx2pte(entry);
750 	__pte2cachemode_tbl[entry] = cache;
751 }
752