xref: /linux/arch/x86/mm/init.c (revision 60e13231561b3a4c5269bfa1ef6c0569ad6f28ec)
1 #include <linux/gfp.h>
2 #include <linux/initrd.h>
3 #include <linux/ioport.h>
4 #include <linux/swap.h>
5 #include <linux/memblock.h>
6 
7 #include <asm/cacheflush.h>
8 #include <asm/e820.h>
9 #include <asm/init.h>
10 #include <asm/page.h>
11 #include <asm/page_types.h>
12 #include <asm/sections.h>
13 #include <asm/setup.h>
14 #include <asm/system.h>
15 #include <asm/tlbflush.h>
16 #include <asm/tlb.h>
17 #include <asm/proto.h>
18 
19 unsigned long __initdata pgt_buf_start;
20 unsigned long __meminitdata pgt_buf_end;
21 unsigned long __meminitdata pgt_buf_top;
22 
23 int after_bootmem;
24 
25 int direct_gbpages
26 #ifdef CONFIG_DIRECT_GBPAGES
27 				= 1
28 #endif
29 ;
30 
31 static void __init find_early_table_space(unsigned long end, int use_pse,
32 					  int use_gbpages)
33 {
34 	unsigned long puds, pmds, ptes, tables, start = 0, good_end = end;
35 	phys_addr_t base;
36 
37 	puds = (end + PUD_SIZE - 1) >> PUD_SHIFT;
38 	tables = roundup(puds * sizeof(pud_t), PAGE_SIZE);
39 
40 	if (use_gbpages) {
41 		unsigned long extra;
42 
43 		extra = end - ((end>>PUD_SHIFT) << PUD_SHIFT);
44 		pmds = (extra + PMD_SIZE - 1) >> PMD_SHIFT;
45 	} else
46 		pmds = (end + PMD_SIZE - 1) >> PMD_SHIFT;
47 
48 	tables += roundup(pmds * sizeof(pmd_t), PAGE_SIZE);
49 
50 	if (use_pse) {
51 		unsigned long extra;
52 
53 		extra = end - ((end>>PMD_SHIFT) << PMD_SHIFT);
54 #ifdef CONFIG_X86_32
55 		extra += PMD_SIZE;
56 #endif
57 		ptes = (extra + PAGE_SIZE - 1) >> PAGE_SHIFT;
58 	} else
59 		ptes = (end + PAGE_SIZE - 1) >> PAGE_SHIFT;
60 
61 	tables += roundup(ptes * sizeof(pte_t), PAGE_SIZE);
62 
63 #ifdef CONFIG_X86_32
64 	/* for fixmap */
65 	tables += roundup(__end_of_fixed_addresses * sizeof(pte_t), PAGE_SIZE);
66 #endif
67 	good_end = max_pfn_mapped << PAGE_SHIFT;
68 
69 	base = memblock_find_in_range(start, good_end, tables, PAGE_SIZE);
70 	if (base == MEMBLOCK_ERROR)
71 		panic("Cannot find space for the kernel page tables");
72 
73 	pgt_buf_start = base >> PAGE_SHIFT;
74 	pgt_buf_end = pgt_buf_start;
75 	pgt_buf_top = pgt_buf_start + (tables >> PAGE_SHIFT);
76 
77 	printk(KERN_DEBUG "kernel direct mapping tables up to %lx @ %lx-%lx\n",
78 		end, pgt_buf_start << PAGE_SHIFT, pgt_buf_top << PAGE_SHIFT);
79 }
80 
81 void __init native_pagetable_reserve(u64 start, u64 end)
82 {
83 	memblock_x86_reserve_range(start, end, "PGTABLE");
84 }
85 
86 struct map_range {
87 	unsigned long start;
88 	unsigned long end;
89 	unsigned page_size_mask;
90 };
91 
92 #ifdef CONFIG_X86_32
93 #define NR_RANGE_MR 3
94 #else /* CONFIG_X86_64 */
95 #define NR_RANGE_MR 5
96 #endif
97 
98 static int __meminit save_mr(struct map_range *mr, int nr_range,
99 			     unsigned long start_pfn, unsigned long end_pfn,
100 			     unsigned long page_size_mask)
101 {
102 	if (start_pfn < end_pfn) {
103 		if (nr_range >= NR_RANGE_MR)
104 			panic("run out of range for init_memory_mapping\n");
105 		mr[nr_range].start = start_pfn<<PAGE_SHIFT;
106 		mr[nr_range].end   = end_pfn<<PAGE_SHIFT;
107 		mr[nr_range].page_size_mask = page_size_mask;
108 		nr_range++;
109 	}
110 
111 	return nr_range;
112 }
113 
114 /*
115  * Setup the direct mapping of the physical memory at PAGE_OFFSET.
116  * This runs before bootmem is initialized and gets pages directly from
117  * the physical memory. To access them they are temporarily mapped.
118  */
119 unsigned long __init_refok init_memory_mapping(unsigned long start,
120 					       unsigned long end)
121 {
122 	unsigned long page_size_mask = 0;
123 	unsigned long start_pfn, end_pfn;
124 	unsigned long ret = 0;
125 	unsigned long pos;
126 
127 	struct map_range mr[NR_RANGE_MR];
128 	int nr_range, i;
129 	int use_pse, use_gbpages;
130 
131 	printk(KERN_INFO "init_memory_mapping: %016lx-%016lx\n", start, end);
132 
133 #if defined(CONFIG_DEBUG_PAGEALLOC) || defined(CONFIG_KMEMCHECK)
134 	/*
135 	 * For CONFIG_DEBUG_PAGEALLOC, identity mapping will use small pages.
136 	 * This will simplify cpa(), which otherwise needs to support splitting
137 	 * large pages into small in interrupt context, etc.
138 	 */
139 	use_pse = use_gbpages = 0;
140 #else
141 	use_pse = cpu_has_pse;
142 	use_gbpages = direct_gbpages;
143 #endif
144 
145 	/* Enable PSE if available */
146 	if (cpu_has_pse)
147 		set_in_cr4(X86_CR4_PSE);
148 
149 	/* Enable PGE if available */
150 	if (cpu_has_pge) {
151 		set_in_cr4(X86_CR4_PGE);
152 		__supported_pte_mask |= _PAGE_GLOBAL;
153 	}
154 
155 	if (use_gbpages)
156 		page_size_mask |= 1 << PG_LEVEL_1G;
157 	if (use_pse)
158 		page_size_mask |= 1 << PG_LEVEL_2M;
159 
160 	memset(mr, 0, sizeof(mr));
161 	nr_range = 0;
162 
163 	/* head if not big page alignment ? */
164 	start_pfn = start >> PAGE_SHIFT;
165 	pos = start_pfn << PAGE_SHIFT;
166 #ifdef CONFIG_X86_32
167 	/*
168 	 * Don't use a large page for the first 2/4MB of memory
169 	 * because there are often fixed size MTRRs in there
170 	 * and overlapping MTRRs into large pages can cause
171 	 * slowdowns.
172 	 */
173 	if (pos == 0)
174 		end_pfn = 1<<(PMD_SHIFT - PAGE_SHIFT);
175 	else
176 		end_pfn = ((pos + (PMD_SIZE - 1))>>PMD_SHIFT)
177 				 << (PMD_SHIFT - PAGE_SHIFT);
178 #else /* CONFIG_X86_64 */
179 	end_pfn = ((pos + (PMD_SIZE - 1)) >> PMD_SHIFT)
180 			<< (PMD_SHIFT - PAGE_SHIFT);
181 #endif
182 	if (end_pfn > (end >> PAGE_SHIFT))
183 		end_pfn = end >> PAGE_SHIFT;
184 	if (start_pfn < end_pfn) {
185 		nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
186 		pos = end_pfn << PAGE_SHIFT;
187 	}
188 
189 	/* big page (2M) range */
190 	start_pfn = ((pos + (PMD_SIZE - 1))>>PMD_SHIFT)
191 			 << (PMD_SHIFT - PAGE_SHIFT);
192 #ifdef CONFIG_X86_32
193 	end_pfn = (end>>PMD_SHIFT) << (PMD_SHIFT - PAGE_SHIFT);
194 #else /* CONFIG_X86_64 */
195 	end_pfn = ((pos + (PUD_SIZE - 1))>>PUD_SHIFT)
196 			 << (PUD_SHIFT - PAGE_SHIFT);
197 	if (end_pfn > ((end>>PMD_SHIFT)<<(PMD_SHIFT - PAGE_SHIFT)))
198 		end_pfn = ((end>>PMD_SHIFT)<<(PMD_SHIFT - PAGE_SHIFT));
199 #endif
200 
201 	if (start_pfn < end_pfn) {
202 		nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
203 				page_size_mask & (1<<PG_LEVEL_2M));
204 		pos = end_pfn << PAGE_SHIFT;
205 	}
206 
207 #ifdef CONFIG_X86_64
208 	/* big page (1G) range */
209 	start_pfn = ((pos + (PUD_SIZE - 1))>>PUD_SHIFT)
210 			 << (PUD_SHIFT - PAGE_SHIFT);
211 	end_pfn = (end >> PUD_SHIFT) << (PUD_SHIFT - PAGE_SHIFT);
212 	if (start_pfn < end_pfn) {
213 		nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
214 				page_size_mask &
215 				 ((1<<PG_LEVEL_2M)|(1<<PG_LEVEL_1G)));
216 		pos = end_pfn << PAGE_SHIFT;
217 	}
218 
219 	/* tail is not big page (1G) alignment */
220 	start_pfn = ((pos + (PMD_SIZE - 1))>>PMD_SHIFT)
221 			 << (PMD_SHIFT - PAGE_SHIFT);
222 	end_pfn = (end >> PMD_SHIFT) << (PMD_SHIFT - PAGE_SHIFT);
223 	if (start_pfn < end_pfn) {
224 		nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
225 				page_size_mask & (1<<PG_LEVEL_2M));
226 		pos = end_pfn << PAGE_SHIFT;
227 	}
228 #endif
229 
230 	/* tail is not big page (2M) alignment */
231 	start_pfn = pos>>PAGE_SHIFT;
232 	end_pfn = end>>PAGE_SHIFT;
233 	nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
234 
235 	/* try to merge same page size and continuous */
236 	for (i = 0; nr_range > 1 && i < nr_range - 1; i++) {
237 		unsigned long old_start;
238 		if (mr[i].end != mr[i+1].start ||
239 		    mr[i].page_size_mask != mr[i+1].page_size_mask)
240 			continue;
241 		/* move it */
242 		old_start = mr[i].start;
243 		memmove(&mr[i], &mr[i+1],
244 			(nr_range - 1 - i) * sizeof(struct map_range));
245 		mr[i--].start = old_start;
246 		nr_range--;
247 	}
248 
249 	for (i = 0; i < nr_range; i++)
250 		printk(KERN_DEBUG " %010lx - %010lx page %s\n",
251 				mr[i].start, mr[i].end,
252 			(mr[i].page_size_mask & (1<<PG_LEVEL_1G))?"1G":(
253 			 (mr[i].page_size_mask & (1<<PG_LEVEL_2M))?"2M":"4k"));
254 
255 	/*
256 	 * Find space for the kernel direct mapping tables.
257 	 *
258 	 * Later we should allocate these tables in the local node of the
259 	 * memory mapped. Unfortunately this is done currently before the
260 	 * nodes are discovered.
261 	 */
262 	if (!after_bootmem)
263 		find_early_table_space(end, use_pse, use_gbpages);
264 
265 	for (i = 0; i < nr_range; i++)
266 		ret = kernel_physical_mapping_init(mr[i].start, mr[i].end,
267 						   mr[i].page_size_mask);
268 
269 #ifdef CONFIG_X86_32
270 	early_ioremap_page_table_range_init();
271 
272 	load_cr3(swapper_pg_dir);
273 #endif
274 
275 	__flush_tlb_all();
276 
277 	/*
278 	 * Reserve the kernel pagetable pages we used (pgt_buf_start -
279 	 * pgt_buf_end) and free the other ones (pgt_buf_end - pgt_buf_top)
280 	 * so that they can be reused for other purposes.
281 	 *
282 	 * On native it just means calling memblock_x86_reserve_range, on Xen it
283 	 * also means marking RW the pagetable pages that we allocated before
284 	 * but that haven't been used.
285 	 *
286 	 * In fact on xen we mark RO the whole range pgt_buf_start -
287 	 * pgt_buf_top, because we have to make sure that when
288 	 * init_memory_mapping reaches the pagetable pages area, it maps
289 	 * RO all the pagetable pages, including the ones that are beyond
290 	 * pgt_buf_end at that time.
291 	 */
292 	if (!after_bootmem && pgt_buf_end > pgt_buf_start)
293 		x86_init.mapping.pagetable_reserve(PFN_PHYS(pgt_buf_start),
294 				PFN_PHYS(pgt_buf_end));
295 
296 	if (!after_bootmem)
297 		early_memtest(start, end);
298 
299 	return ret >> PAGE_SHIFT;
300 }
301 
302 
303 /*
304  * devmem_is_allowed() checks to see if /dev/mem access to a certain address
305  * is valid. The argument is a physical page number.
306  *
307  *
308  * On x86, access has to be given to the first megabyte of ram because that area
309  * contains bios code and data regions used by X and dosemu and similar apps.
310  * Access has to be given to non-kernel-ram areas as well, these contain the PCI
311  * mmio resources as well as potential bios/acpi data regions.
312  */
313 int devmem_is_allowed(unsigned long pagenr)
314 {
315 	if (pagenr <= 256)
316 		return 1;
317 	if (iomem_is_exclusive(pagenr << PAGE_SHIFT))
318 		return 0;
319 	if (!page_is_ram(pagenr))
320 		return 1;
321 	return 0;
322 }
323 
324 void free_init_pages(char *what, unsigned long begin, unsigned long end)
325 {
326 	unsigned long addr;
327 	unsigned long begin_aligned, end_aligned;
328 
329 	/* Make sure boundaries are page aligned */
330 	begin_aligned = PAGE_ALIGN(begin);
331 	end_aligned   = end & PAGE_MASK;
332 
333 	if (WARN_ON(begin_aligned != begin || end_aligned != end)) {
334 		begin = begin_aligned;
335 		end   = end_aligned;
336 	}
337 
338 	if (begin >= end)
339 		return;
340 
341 	addr = begin;
342 
343 	/*
344 	 * If debugging page accesses then do not free this memory but
345 	 * mark them not present - any buggy init-section access will
346 	 * create a kernel page fault:
347 	 */
348 #ifdef CONFIG_DEBUG_PAGEALLOC
349 	printk(KERN_INFO "debug: unmapping init memory %08lx..%08lx\n",
350 		begin, end);
351 	set_memory_np(begin, (end - begin) >> PAGE_SHIFT);
352 #else
353 	/*
354 	 * We just marked the kernel text read only above, now that
355 	 * we are going to free part of that, we need to make that
356 	 * writeable and non-executable first.
357 	 */
358 	set_memory_nx(begin, (end - begin) >> PAGE_SHIFT);
359 	set_memory_rw(begin, (end - begin) >> PAGE_SHIFT);
360 
361 	printk(KERN_INFO "Freeing %s: %luk freed\n", what, (end - begin) >> 10);
362 
363 	for (; addr < end; addr += PAGE_SIZE) {
364 		ClearPageReserved(virt_to_page(addr));
365 		init_page_count(virt_to_page(addr));
366 		memset((void *)addr, POISON_FREE_INITMEM, PAGE_SIZE);
367 		free_page(addr);
368 		totalram_pages++;
369 	}
370 #endif
371 }
372 
373 void free_initmem(void)
374 {
375 	free_init_pages("unused kernel memory",
376 			(unsigned long)(&__init_begin),
377 			(unsigned long)(&__init_end));
378 }
379 
380 #ifdef CONFIG_BLK_DEV_INITRD
381 void free_initrd_mem(unsigned long start, unsigned long end)
382 {
383 	/*
384 	 * end could be not aligned, and We can not align that,
385 	 * decompresser could be confused by aligned initrd_end
386 	 * We already reserve the end partial page before in
387 	 *   - i386_start_kernel()
388 	 *   - x86_64_start_kernel()
389 	 *   - relocate_initrd()
390 	 * So here We can do PAGE_ALIGN() safely to get partial page to be freed
391 	 */
392 	free_init_pages("initrd memory", start, PAGE_ALIGN(end));
393 }
394 #endif
395