xref: /linux/arch/x86/mm/init.c (revision 6084a6e23c971ef703229ee1aec68d01688578d6)
1 #include <linux/gfp.h>
2 #include <linux/initrd.h>
3 #include <linux/ioport.h>
4 #include <linux/swap.h>
5 #include <linux/memblock.h>
6 #include <linux/bootmem.h>	/* for max_low_pfn */
7 
8 #include <asm/cacheflush.h>
9 #include <asm/e820.h>
10 #include <asm/init.h>
11 #include <asm/page.h>
12 #include <asm/page_types.h>
13 #include <asm/sections.h>
14 #include <asm/setup.h>
15 #include <asm/tlbflush.h>
16 #include <asm/tlb.h>
17 #include <asm/proto.h>
18 #include <asm/dma.h>		/* for MAX_DMA_PFN */
19 #include <asm/microcode.h>
20 
21 #include "mm_internal.h"
22 
23 static unsigned long __initdata pgt_buf_start;
24 static unsigned long __initdata pgt_buf_end;
25 static unsigned long __initdata pgt_buf_top;
26 
27 static unsigned long min_pfn_mapped;
28 
29 static bool __initdata can_use_brk_pgt = true;
30 
31 /*
32  * Pages returned are already directly mapped.
33  *
34  * Changing that is likely to break Xen, see commit:
35  *
36  *    279b706 x86,xen: introduce x86_init.mapping.pagetable_reserve
37  *
38  * for detailed information.
39  */
40 __ref void *alloc_low_pages(unsigned int num)
41 {
42 	unsigned long pfn;
43 	int i;
44 
45 	if (after_bootmem) {
46 		unsigned int order;
47 
48 		order = get_order((unsigned long)num << PAGE_SHIFT);
49 		return (void *)__get_free_pages(GFP_ATOMIC | __GFP_NOTRACK |
50 						__GFP_ZERO, order);
51 	}
52 
53 	if ((pgt_buf_end + num) > pgt_buf_top || !can_use_brk_pgt) {
54 		unsigned long ret;
55 		if (min_pfn_mapped >= max_pfn_mapped)
56 			panic("alloc_low_pages: ran out of memory");
57 		ret = memblock_find_in_range(min_pfn_mapped << PAGE_SHIFT,
58 					max_pfn_mapped << PAGE_SHIFT,
59 					PAGE_SIZE * num , PAGE_SIZE);
60 		if (!ret)
61 			panic("alloc_low_pages: can not alloc memory");
62 		memblock_reserve(ret, PAGE_SIZE * num);
63 		pfn = ret >> PAGE_SHIFT;
64 	} else {
65 		pfn = pgt_buf_end;
66 		pgt_buf_end += num;
67 		printk(KERN_DEBUG "BRK [%#010lx, %#010lx] PGTABLE\n",
68 			pfn << PAGE_SHIFT, (pgt_buf_end << PAGE_SHIFT) - 1);
69 	}
70 
71 	for (i = 0; i < num; i++) {
72 		void *adr;
73 
74 		adr = __va((pfn + i) << PAGE_SHIFT);
75 		clear_page(adr);
76 	}
77 
78 	return __va(pfn << PAGE_SHIFT);
79 }
80 
81 /* need 3 4k for initial PMD_SIZE,  3 4k for 0-ISA_END_ADDRESS */
82 #define INIT_PGT_BUF_SIZE	(6 * PAGE_SIZE)
83 RESERVE_BRK(early_pgt_alloc, INIT_PGT_BUF_SIZE);
84 void  __init early_alloc_pgt_buf(void)
85 {
86 	unsigned long tables = INIT_PGT_BUF_SIZE;
87 	phys_addr_t base;
88 
89 	base = __pa(extend_brk(tables, PAGE_SIZE));
90 
91 	pgt_buf_start = base >> PAGE_SHIFT;
92 	pgt_buf_end = pgt_buf_start;
93 	pgt_buf_top = pgt_buf_start + (tables >> PAGE_SHIFT);
94 }
95 
96 int after_bootmem;
97 
98 int direct_gbpages
99 #ifdef CONFIG_DIRECT_GBPAGES
100 				= 1
101 #endif
102 ;
103 
104 static void __init init_gbpages(void)
105 {
106 #ifdef CONFIG_X86_64
107 	if (direct_gbpages && cpu_has_gbpages)
108 		printk(KERN_INFO "Using GB pages for direct mapping\n");
109 	else
110 		direct_gbpages = 0;
111 #endif
112 }
113 
114 struct map_range {
115 	unsigned long start;
116 	unsigned long end;
117 	unsigned page_size_mask;
118 };
119 
120 static int page_size_mask;
121 
122 static void __init probe_page_size_mask(void)
123 {
124 	init_gbpages();
125 
126 #if !defined(CONFIG_DEBUG_PAGEALLOC) && !defined(CONFIG_KMEMCHECK)
127 	/*
128 	 * For CONFIG_DEBUG_PAGEALLOC, identity mapping will use small pages.
129 	 * This will simplify cpa(), which otherwise needs to support splitting
130 	 * large pages into small in interrupt context, etc.
131 	 */
132 	if (direct_gbpages)
133 		page_size_mask |= 1 << PG_LEVEL_1G;
134 	if (cpu_has_pse)
135 		page_size_mask |= 1 << PG_LEVEL_2M;
136 #endif
137 
138 	/* Enable PSE if available */
139 	if (cpu_has_pse)
140 		set_in_cr4(X86_CR4_PSE);
141 
142 	/* Enable PGE if available */
143 	if (cpu_has_pge) {
144 		set_in_cr4(X86_CR4_PGE);
145 		__supported_pte_mask |= _PAGE_GLOBAL;
146 	}
147 }
148 
149 #ifdef CONFIG_X86_32
150 #define NR_RANGE_MR 3
151 #else /* CONFIG_X86_64 */
152 #define NR_RANGE_MR 5
153 #endif
154 
155 static int __meminit save_mr(struct map_range *mr, int nr_range,
156 			     unsigned long start_pfn, unsigned long end_pfn,
157 			     unsigned long page_size_mask)
158 {
159 	if (start_pfn < end_pfn) {
160 		if (nr_range >= NR_RANGE_MR)
161 			panic("run out of range for init_memory_mapping\n");
162 		mr[nr_range].start = start_pfn<<PAGE_SHIFT;
163 		mr[nr_range].end   = end_pfn<<PAGE_SHIFT;
164 		mr[nr_range].page_size_mask = page_size_mask;
165 		nr_range++;
166 	}
167 
168 	return nr_range;
169 }
170 
171 /*
172  * adjust the page_size_mask for small range to go with
173  *	big page size instead small one if nearby are ram too.
174  */
175 static void __init_refok adjust_range_page_size_mask(struct map_range *mr,
176 							 int nr_range)
177 {
178 	int i;
179 
180 	for (i = 0; i < nr_range; i++) {
181 		if ((page_size_mask & (1<<PG_LEVEL_2M)) &&
182 		    !(mr[i].page_size_mask & (1<<PG_LEVEL_2M))) {
183 			unsigned long start = round_down(mr[i].start, PMD_SIZE);
184 			unsigned long end = round_up(mr[i].end, PMD_SIZE);
185 
186 #ifdef CONFIG_X86_32
187 			if ((end >> PAGE_SHIFT) > max_low_pfn)
188 				continue;
189 #endif
190 
191 			if (memblock_is_region_memory(start, end - start))
192 				mr[i].page_size_mask |= 1<<PG_LEVEL_2M;
193 		}
194 		if ((page_size_mask & (1<<PG_LEVEL_1G)) &&
195 		    !(mr[i].page_size_mask & (1<<PG_LEVEL_1G))) {
196 			unsigned long start = round_down(mr[i].start, PUD_SIZE);
197 			unsigned long end = round_up(mr[i].end, PUD_SIZE);
198 
199 			if (memblock_is_region_memory(start, end - start))
200 				mr[i].page_size_mask |= 1<<PG_LEVEL_1G;
201 		}
202 	}
203 }
204 
205 static int __meminit split_mem_range(struct map_range *mr, int nr_range,
206 				     unsigned long start,
207 				     unsigned long end)
208 {
209 	unsigned long start_pfn, end_pfn, limit_pfn;
210 	unsigned long pfn;
211 	int i;
212 
213 	limit_pfn = PFN_DOWN(end);
214 
215 	/* head if not big page alignment ? */
216 	pfn = start_pfn = PFN_DOWN(start);
217 #ifdef CONFIG_X86_32
218 	/*
219 	 * Don't use a large page for the first 2/4MB of memory
220 	 * because there are often fixed size MTRRs in there
221 	 * and overlapping MTRRs into large pages can cause
222 	 * slowdowns.
223 	 */
224 	if (pfn == 0)
225 		end_pfn = PFN_DOWN(PMD_SIZE);
226 	else
227 		end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
228 #else /* CONFIG_X86_64 */
229 	end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
230 #endif
231 	if (end_pfn > limit_pfn)
232 		end_pfn = limit_pfn;
233 	if (start_pfn < end_pfn) {
234 		nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
235 		pfn = end_pfn;
236 	}
237 
238 	/* big page (2M) range */
239 	start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
240 #ifdef CONFIG_X86_32
241 	end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
242 #else /* CONFIG_X86_64 */
243 	end_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
244 	if (end_pfn > round_down(limit_pfn, PFN_DOWN(PMD_SIZE)))
245 		end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
246 #endif
247 
248 	if (start_pfn < end_pfn) {
249 		nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
250 				page_size_mask & (1<<PG_LEVEL_2M));
251 		pfn = end_pfn;
252 	}
253 
254 #ifdef CONFIG_X86_64
255 	/* big page (1G) range */
256 	start_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
257 	end_pfn = round_down(limit_pfn, PFN_DOWN(PUD_SIZE));
258 	if (start_pfn < end_pfn) {
259 		nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
260 				page_size_mask &
261 				 ((1<<PG_LEVEL_2M)|(1<<PG_LEVEL_1G)));
262 		pfn = end_pfn;
263 	}
264 
265 	/* tail is not big page (1G) alignment */
266 	start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
267 	end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
268 	if (start_pfn < end_pfn) {
269 		nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
270 				page_size_mask & (1<<PG_LEVEL_2M));
271 		pfn = end_pfn;
272 	}
273 #endif
274 
275 	/* tail is not big page (2M) alignment */
276 	start_pfn = pfn;
277 	end_pfn = limit_pfn;
278 	nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
279 
280 	if (!after_bootmem)
281 		adjust_range_page_size_mask(mr, nr_range);
282 
283 	/* try to merge same page size and continuous */
284 	for (i = 0; nr_range > 1 && i < nr_range - 1; i++) {
285 		unsigned long old_start;
286 		if (mr[i].end != mr[i+1].start ||
287 		    mr[i].page_size_mask != mr[i+1].page_size_mask)
288 			continue;
289 		/* move it */
290 		old_start = mr[i].start;
291 		memmove(&mr[i], &mr[i+1],
292 			(nr_range - 1 - i) * sizeof(struct map_range));
293 		mr[i--].start = old_start;
294 		nr_range--;
295 	}
296 
297 	for (i = 0; i < nr_range; i++)
298 		printk(KERN_DEBUG " [mem %#010lx-%#010lx] page %s\n",
299 				mr[i].start, mr[i].end - 1,
300 			(mr[i].page_size_mask & (1<<PG_LEVEL_1G))?"1G":(
301 			 (mr[i].page_size_mask & (1<<PG_LEVEL_2M))?"2M":"4k"));
302 
303 	return nr_range;
304 }
305 
306 struct range pfn_mapped[E820_X_MAX];
307 int nr_pfn_mapped;
308 
309 static void add_pfn_range_mapped(unsigned long start_pfn, unsigned long end_pfn)
310 {
311 	nr_pfn_mapped = add_range_with_merge(pfn_mapped, E820_X_MAX,
312 					     nr_pfn_mapped, start_pfn, end_pfn);
313 	nr_pfn_mapped = clean_sort_range(pfn_mapped, E820_X_MAX);
314 
315 	max_pfn_mapped = max(max_pfn_mapped, end_pfn);
316 
317 	if (start_pfn < (1UL<<(32-PAGE_SHIFT)))
318 		max_low_pfn_mapped = max(max_low_pfn_mapped,
319 					 min(end_pfn, 1UL<<(32-PAGE_SHIFT)));
320 }
321 
322 bool pfn_range_is_mapped(unsigned long start_pfn, unsigned long end_pfn)
323 {
324 	int i;
325 
326 	for (i = 0; i < nr_pfn_mapped; i++)
327 		if ((start_pfn >= pfn_mapped[i].start) &&
328 		    (end_pfn <= pfn_mapped[i].end))
329 			return true;
330 
331 	return false;
332 }
333 
334 /*
335  * Setup the direct mapping of the physical memory at PAGE_OFFSET.
336  * This runs before bootmem is initialized and gets pages directly from
337  * the physical memory. To access them they are temporarily mapped.
338  */
339 unsigned long __init_refok init_memory_mapping(unsigned long start,
340 					       unsigned long end)
341 {
342 	struct map_range mr[NR_RANGE_MR];
343 	unsigned long ret = 0;
344 	int nr_range, i;
345 
346 	pr_info("init_memory_mapping: [mem %#010lx-%#010lx]\n",
347 	       start, end - 1);
348 
349 	memset(mr, 0, sizeof(mr));
350 	nr_range = split_mem_range(mr, 0, start, end);
351 
352 	for (i = 0; i < nr_range; i++)
353 		ret = kernel_physical_mapping_init(mr[i].start, mr[i].end,
354 						   mr[i].page_size_mask);
355 
356 	add_pfn_range_mapped(start >> PAGE_SHIFT, ret >> PAGE_SHIFT);
357 
358 	return ret >> PAGE_SHIFT;
359 }
360 
361 /*
362  * We need to iterate through the E820 memory map and create direct mappings
363  * for only E820_RAM and E820_KERN_RESERVED regions. We cannot simply
364  * create direct mappings for all pfns from [0 to max_low_pfn) and
365  * [4GB to max_pfn) because of possible memory holes in high addresses
366  * that cannot be marked as UC by fixed/variable range MTRRs.
367  * Depending on the alignment of E820 ranges, this may possibly result
368  * in using smaller size (i.e. 4K instead of 2M or 1G) page tables.
369  *
370  * init_mem_mapping() calls init_range_memory_mapping() with big range.
371  * That range would have hole in the middle or ends, and only ram parts
372  * will be mapped in init_range_memory_mapping().
373  */
374 static unsigned long __init init_range_memory_mapping(
375 					   unsigned long r_start,
376 					   unsigned long r_end)
377 {
378 	unsigned long start_pfn, end_pfn;
379 	unsigned long mapped_ram_size = 0;
380 	int i;
381 
382 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) {
383 		u64 start = clamp_val(PFN_PHYS(start_pfn), r_start, r_end);
384 		u64 end = clamp_val(PFN_PHYS(end_pfn), r_start, r_end);
385 		if (start >= end)
386 			continue;
387 
388 		/*
389 		 * if it is overlapping with brk pgt, we need to
390 		 * alloc pgt buf from memblock instead.
391 		 */
392 		can_use_brk_pgt = max(start, (u64)pgt_buf_end<<PAGE_SHIFT) >=
393 				    min(end, (u64)pgt_buf_top<<PAGE_SHIFT);
394 		init_memory_mapping(start, end);
395 		mapped_ram_size += end - start;
396 		can_use_brk_pgt = true;
397 	}
398 
399 	return mapped_ram_size;
400 }
401 
402 static unsigned long __init get_new_step_size(unsigned long step_size)
403 {
404 	/*
405 	 * Explain why we shift by 5 and why we don't have to worry about
406 	 * 'step_size << 5' overflowing:
407 	 *
408 	 * initial mapped size is PMD_SIZE (2M).
409 	 * We can not set step_size to be PUD_SIZE (1G) yet.
410 	 * In worse case, when we cross the 1G boundary, and
411 	 * PG_LEVEL_2M is not set, we will need 1+1+512 pages (2M + 8k)
412 	 * to map 1G range with PTE. Use 5 as shift for now.
413 	 *
414 	 * Don't need to worry about overflow, on 32bit, when step_size
415 	 * is 0, round_down() returns 0 for start, and that turns it
416 	 * into 0x100000000ULL.
417 	 */
418 	return step_size << 5;
419 }
420 
421 /**
422  * memory_map_top_down - Map [map_start, map_end) top down
423  * @map_start: start address of the target memory range
424  * @map_end: end address of the target memory range
425  *
426  * This function will setup direct mapping for memory range
427  * [map_start, map_end) in top-down. That said, the page tables
428  * will be allocated at the end of the memory, and we map the
429  * memory in top-down.
430  */
431 static void __init memory_map_top_down(unsigned long map_start,
432 				       unsigned long map_end)
433 {
434 	unsigned long real_end, start, last_start;
435 	unsigned long step_size;
436 	unsigned long addr;
437 	unsigned long mapped_ram_size = 0;
438 	unsigned long new_mapped_ram_size;
439 
440 	/* xen has big range in reserved near end of ram, skip it at first.*/
441 	addr = memblock_find_in_range(map_start, map_end, PMD_SIZE, PMD_SIZE);
442 	real_end = addr + PMD_SIZE;
443 
444 	/* step_size need to be small so pgt_buf from BRK could cover it */
445 	step_size = PMD_SIZE;
446 	max_pfn_mapped = 0; /* will get exact value next */
447 	min_pfn_mapped = real_end >> PAGE_SHIFT;
448 	last_start = start = real_end;
449 
450 	/*
451 	 * We start from the top (end of memory) and go to the bottom.
452 	 * The memblock_find_in_range() gets us a block of RAM from the
453 	 * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
454 	 * for page table.
455 	 */
456 	while (last_start > map_start) {
457 		if (last_start > step_size) {
458 			start = round_down(last_start - 1, step_size);
459 			if (start < map_start)
460 				start = map_start;
461 		} else
462 			start = map_start;
463 		new_mapped_ram_size = init_range_memory_mapping(start,
464 							last_start);
465 		last_start = start;
466 		min_pfn_mapped = last_start >> PAGE_SHIFT;
467 		/* only increase step_size after big range get mapped */
468 		if (new_mapped_ram_size > mapped_ram_size)
469 			step_size = get_new_step_size(step_size);
470 		mapped_ram_size += new_mapped_ram_size;
471 	}
472 
473 	if (real_end < map_end)
474 		init_range_memory_mapping(real_end, map_end);
475 }
476 
477 /**
478  * memory_map_bottom_up - Map [map_start, map_end) bottom up
479  * @map_start: start address of the target memory range
480  * @map_end: end address of the target memory range
481  *
482  * This function will setup direct mapping for memory range
483  * [map_start, map_end) in bottom-up. Since we have limited the
484  * bottom-up allocation above the kernel, the page tables will
485  * be allocated just above the kernel and we map the memory
486  * in [map_start, map_end) in bottom-up.
487  */
488 static void __init memory_map_bottom_up(unsigned long map_start,
489 					unsigned long map_end)
490 {
491 	unsigned long next, new_mapped_ram_size, start;
492 	unsigned long mapped_ram_size = 0;
493 	/* step_size need to be small so pgt_buf from BRK could cover it */
494 	unsigned long step_size = PMD_SIZE;
495 
496 	start = map_start;
497 	min_pfn_mapped = start >> PAGE_SHIFT;
498 
499 	/*
500 	 * We start from the bottom (@map_start) and go to the top (@map_end).
501 	 * The memblock_find_in_range() gets us a block of RAM from the
502 	 * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
503 	 * for page table.
504 	 */
505 	while (start < map_end) {
506 		if (map_end - start > step_size) {
507 			next = round_up(start + 1, step_size);
508 			if (next > map_end)
509 				next = map_end;
510 		} else
511 			next = map_end;
512 
513 		new_mapped_ram_size = init_range_memory_mapping(start, next);
514 		start = next;
515 
516 		if (new_mapped_ram_size > mapped_ram_size)
517 			step_size = get_new_step_size(step_size);
518 		mapped_ram_size += new_mapped_ram_size;
519 	}
520 }
521 
522 void __init init_mem_mapping(void)
523 {
524 	unsigned long end;
525 
526 	probe_page_size_mask();
527 
528 #ifdef CONFIG_X86_64
529 	end = max_pfn << PAGE_SHIFT;
530 #else
531 	end = max_low_pfn << PAGE_SHIFT;
532 #endif
533 
534 	/* the ISA range is always mapped regardless of memory holes */
535 	init_memory_mapping(0, ISA_END_ADDRESS);
536 
537 	/*
538 	 * If the allocation is in bottom-up direction, we setup direct mapping
539 	 * in bottom-up, otherwise we setup direct mapping in top-down.
540 	 */
541 	if (memblock_bottom_up()) {
542 		unsigned long kernel_end = __pa_symbol(_end);
543 
544 		/*
545 		 * we need two separate calls here. This is because we want to
546 		 * allocate page tables above the kernel. So we first map
547 		 * [kernel_end, end) to make memory above the kernel be mapped
548 		 * as soon as possible. And then use page tables allocated above
549 		 * the kernel to map [ISA_END_ADDRESS, kernel_end).
550 		 */
551 		memory_map_bottom_up(kernel_end, end);
552 		memory_map_bottom_up(ISA_END_ADDRESS, kernel_end);
553 	} else {
554 		memory_map_top_down(ISA_END_ADDRESS, end);
555 	}
556 
557 #ifdef CONFIG_X86_64
558 	if (max_pfn > max_low_pfn) {
559 		/* can we preseve max_low_pfn ?*/
560 		max_low_pfn = max_pfn;
561 	}
562 #else
563 	early_ioremap_page_table_range_init();
564 #endif
565 
566 	load_cr3(swapper_pg_dir);
567 	__flush_tlb_all();
568 
569 	early_memtest(0, max_pfn_mapped << PAGE_SHIFT);
570 }
571 
572 /*
573  * devmem_is_allowed() checks to see if /dev/mem access to a certain address
574  * is valid. The argument is a physical page number.
575  *
576  *
577  * On x86, access has to be given to the first megabyte of ram because that area
578  * contains bios code and data regions used by X and dosemu and similar apps.
579  * Access has to be given to non-kernel-ram areas as well, these contain the PCI
580  * mmio resources as well as potential bios/acpi data regions.
581  */
582 int devmem_is_allowed(unsigned long pagenr)
583 {
584 	if (pagenr < 256)
585 		return 1;
586 	if (iomem_is_exclusive(pagenr << PAGE_SHIFT))
587 		return 0;
588 	if (!page_is_ram(pagenr))
589 		return 1;
590 	return 0;
591 }
592 
593 void free_init_pages(char *what, unsigned long begin, unsigned long end)
594 {
595 	unsigned long begin_aligned, end_aligned;
596 
597 	/* Make sure boundaries are page aligned */
598 	begin_aligned = PAGE_ALIGN(begin);
599 	end_aligned   = end & PAGE_MASK;
600 
601 	if (WARN_ON(begin_aligned != begin || end_aligned != end)) {
602 		begin = begin_aligned;
603 		end   = end_aligned;
604 	}
605 
606 	if (begin >= end)
607 		return;
608 
609 	/*
610 	 * If debugging page accesses then do not free this memory but
611 	 * mark them not present - any buggy init-section access will
612 	 * create a kernel page fault:
613 	 */
614 #ifdef CONFIG_DEBUG_PAGEALLOC
615 	printk(KERN_INFO "debug: unmapping init [mem %#010lx-%#010lx]\n",
616 		begin, end - 1);
617 	set_memory_np(begin, (end - begin) >> PAGE_SHIFT);
618 #else
619 	/*
620 	 * We just marked the kernel text read only above, now that
621 	 * we are going to free part of that, we need to make that
622 	 * writeable and non-executable first.
623 	 */
624 	set_memory_nx(begin, (end - begin) >> PAGE_SHIFT);
625 	set_memory_rw(begin, (end - begin) >> PAGE_SHIFT);
626 
627 	free_reserved_area((void *)begin, (void *)end, POISON_FREE_INITMEM, what);
628 #endif
629 }
630 
631 void free_initmem(void)
632 {
633 	free_init_pages("unused kernel",
634 			(unsigned long)(&__init_begin),
635 			(unsigned long)(&__init_end));
636 }
637 
638 #ifdef CONFIG_BLK_DEV_INITRD
639 void __init free_initrd_mem(unsigned long start, unsigned long end)
640 {
641 #ifdef CONFIG_MICROCODE_EARLY
642 	/*
643 	 * Remember, initrd memory may contain microcode or other useful things.
644 	 * Before we lose initrd mem, we need to find a place to hold them
645 	 * now that normal virtual memory is enabled.
646 	 */
647 	save_microcode_in_initrd();
648 #endif
649 
650 	/*
651 	 * end could be not aligned, and We can not align that,
652 	 * decompresser could be confused by aligned initrd_end
653 	 * We already reserve the end partial page before in
654 	 *   - i386_start_kernel()
655 	 *   - x86_64_start_kernel()
656 	 *   - relocate_initrd()
657 	 * So here We can do PAGE_ALIGN() safely to get partial page to be freed
658 	 */
659 	free_init_pages("initrd", start, PAGE_ALIGN(end));
660 }
661 #endif
662 
663 void __init zone_sizes_init(void)
664 {
665 	unsigned long max_zone_pfns[MAX_NR_ZONES];
666 
667 	memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
668 
669 #ifdef CONFIG_ZONE_DMA
670 	max_zone_pfns[ZONE_DMA]		= MAX_DMA_PFN;
671 #endif
672 #ifdef CONFIG_ZONE_DMA32
673 	max_zone_pfns[ZONE_DMA32]	= MAX_DMA32_PFN;
674 #endif
675 	max_zone_pfns[ZONE_NORMAL]	= max_low_pfn;
676 #ifdef CONFIG_HIGHMEM
677 	max_zone_pfns[ZONE_HIGHMEM]	= max_pfn;
678 #endif
679 
680 	free_area_init_nodes(max_zone_pfns);
681 }
682 
683