xref: /linux/arch/x86/mm/hugetlbpage.c (revision e58e871becec2d3b04ed91c0c16fe8deac9c9dfa)
1 /*
2  * IA-32 Huge TLB Page Support for Kernel.
3  *
4  * Copyright (C) 2002, Rohit Seth <rohit.seth@intel.com>
5  */
6 
7 #include <linux/init.h>
8 #include <linux/fs.h>
9 #include <linux/mm.h>
10 #include <linux/sched/mm.h>
11 #include <linux/hugetlb.h>
12 #include <linux/pagemap.h>
13 #include <linux/err.h>
14 #include <linux/sysctl.h>
15 #include <linux/compat.h>
16 #include <asm/mman.h>
17 #include <asm/tlb.h>
18 #include <asm/tlbflush.h>
19 #include <asm/pgalloc.h>
20 #include <asm/elf.h>
21 
22 #if 0	/* This is just for testing */
23 struct page *
24 follow_huge_addr(struct mm_struct *mm, unsigned long address, int write)
25 {
26 	unsigned long start = address;
27 	int length = 1;
28 	int nr;
29 	struct page *page;
30 	struct vm_area_struct *vma;
31 
32 	vma = find_vma(mm, addr);
33 	if (!vma || !is_vm_hugetlb_page(vma))
34 		return ERR_PTR(-EINVAL);
35 
36 	pte = huge_pte_offset(mm, address);
37 
38 	/* hugetlb should be locked, and hence, prefaulted */
39 	WARN_ON(!pte || pte_none(*pte));
40 
41 	page = &pte_page(*pte)[vpfn % (HPAGE_SIZE/PAGE_SIZE)];
42 
43 	WARN_ON(!PageHead(page));
44 
45 	return page;
46 }
47 
48 int pmd_huge(pmd_t pmd)
49 {
50 	return 0;
51 }
52 
53 int pud_huge(pud_t pud)
54 {
55 	return 0;
56 }
57 
58 #else
59 
60 /*
61  * pmd_huge() returns 1 if @pmd is hugetlb related entry, that is normal
62  * hugetlb entry or non-present (migration or hwpoisoned) hugetlb entry.
63  * Otherwise, returns 0.
64  */
65 int pmd_huge(pmd_t pmd)
66 {
67 	return !pmd_none(pmd) &&
68 		(pmd_val(pmd) & (_PAGE_PRESENT|_PAGE_PSE)) != _PAGE_PRESENT;
69 }
70 
71 int pud_huge(pud_t pud)
72 {
73 	return !!(pud_val(pud) & _PAGE_PSE);
74 }
75 #endif
76 
77 #ifdef CONFIG_HUGETLB_PAGE
78 static unsigned long hugetlb_get_unmapped_area_bottomup(struct file *file,
79 		unsigned long addr, unsigned long len,
80 		unsigned long pgoff, unsigned long flags)
81 {
82 	struct hstate *h = hstate_file(file);
83 	struct vm_unmapped_area_info info;
84 
85 	info.flags = 0;
86 	info.length = len;
87 	info.low_limit = get_mmap_base(1);
88 	info.high_limit = in_compat_syscall() ?
89 		tasksize_32bit() : tasksize_64bit();
90 	info.align_mask = PAGE_MASK & ~huge_page_mask(h);
91 	info.align_offset = 0;
92 	return vm_unmapped_area(&info);
93 }
94 
95 static unsigned long hugetlb_get_unmapped_area_topdown(struct file *file,
96 		unsigned long addr0, unsigned long len,
97 		unsigned long pgoff, unsigned long flags)
98 {
99 	struct hstate *h = hstate_file(file);
100 	struct vm_unmapped_area_info info;
101 	unsigned long addr;
102 
103 	info.flags = VM_UNMAPPED_AREA_TOPDOWN;
104 	info.length = len;
105 	info.low_limit = PAGE_SIZE;
106 	info.high_limit = get_mmap_base(0);
107 	info.align_mask = PAGE_MASK & ~huge_page_mask(h);
108 	info.align_offset = 0;
109 	addr = vm_unmapped_area(&info);
110 
111 	/*
112 	 * A failed mmap() very likely causes application failure,
113 	 * so fall back to the bottom-up function here. This scenario
114 	 * can happen with large stack limits and large mmap()
115 	 * allocations.
116 	 */
117 	if (addr & ~PAGE_MASK) {
118 		VM_BUG_ON(addr != -ENOMEM);
119 		info.flags = 0;
120 		info.low_limit = TASK_UNMAPPED_BASE;
121 		info.high_limit = TASK_SIZE;
122 		addr = vm_unmapped_area(&info);
123 	}
124 
125 	return addr;
126 }
127 
128 unsigned long
129 hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
130 		unsigned long len, unsigned long pgoff, unsigned long flags)
131 {
132 	struct hstate *h = hstate_file(file);
133 	struct mm_struct *mm = current->mm;
134 	struct vm_area_struct *vma;
135 
136 	if (len & ~huge_page_mask(h))
137 		return -EINVAL;
138 	if (len > TASK_SIZE)
139 		return -ENOMEM;
140 
141 	if (flags & MAP_FIXED) {
142 		if (prepare_hugepage_range(file, addr, len))
143 			return -EINVAL;
144 		return addr;
145 	}
146 
147 	if (addr) {
148 		addr = ALIGN(addr, huge_page_size(h));
149 		vma = find_vma(mm, addr);
150 		if (TASK_SIZE - len >= addr &&
151 		    (!vma || addr + len <= vma->vm_start))
152 			return addr;
153 	}
154 	if (mm->get_unmapped_area == arch_get_unmapped_area)
155 		return hugetlb_get_unmapped_area_bottomup(file, addr, len,
156 				pgoff, flags);
157 	else
158 		return hugetlb_get_unmapped_area_topdown(file, addr, len,
159 				pgoff, flags);
160 }
161 #endif /* CONFIG_HUGETLB_PAGE */
162 
163 #ifdef CONFIG_X86_64
164 static __init int setup_hugepagesz(char *opt)
165 {
166 	unsigned long ps = memparse(opt, &opt);
167 	if (ps == PMD_SIZE) {
168 		hugetlb_add_hstate(PMD_SHIFT - PAGE_SHIFT);
169 	} else if (ps == PUD_SIZE && boot_cpu_has(X86_FEATURE_GBPAGES)) {
170 		hugetlb_add_hstate(PUD_SHIFT - PAGE_SHIFT);
171 	} else {
172 		hugetlb_bad_size();
173 		printk(KERN_ERR "hugepagesz: Unsupported page size %lu M\n",
174 			ps >> 20);
175 		return 0;
176 	}
177 	return 1;
178 }
179 __setup("hugepagesz=", setup_hugepagesz);
180 
181 #if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
182 static __init int gigantic_pages_init(void)
183 {
184 	/* With compaction or CMA we can allocate gigantic pages at runtime */
185 	if (boot_cpu_has(X86_FEATURE_GBPAGES) && !size_to_hstate(1UL << PUD_SHIFT))
186 		hugetlb_add_hstate(PUD_SHIFT - PAGE_SHIFT);
187 	return 0;
188 }
189 arch_initcall(gigantic_pages_init);
190 #endif
191 #endif
192