xref: /linux/arch/x86/mm/hugetlbpage.c (revision 8fa5723aa7e053d498336b48448b292fc2e0458b)
1 /*
2  * IA-32 Huge TLB Page Support for Kernel.
3  *
4  * Copyright (C) 2002, Rohit Seth <rohit.seth@intel.com>
5  */
6 
7 #include <linux/init.h>
8 #include <linux/fs.h>
9 #include <linux/mm.h>
10 #include <linux/hugetlb.h>
11 #include <linux/pagemap.h>
12 #include <linux/slab.h>
13 #include <linux/err.h>
14 #include <linux/sysctl.h>
15 #include <asm/mman.h>
16 #include <asm/tlb.h>
17 #include <asm/tlbflush.h>
18 #include <asm/pgalloc.h>
19 
20 static unsigned long page_table_shareable(struct vm_area_struct *svma,
21 				struct vm_area_struct *vma,
22 				unsigned long addr, pgoff_t idx)
23 {
24 	unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
25 				svma->vm_start;
26 	unsigned long sbase = saddr & PUD_MASK;
27 	unsigned long s_end = sbase + PUD_SIZE;
28 
29 	/*
30 	 * match the virtual addresses, permission and the alignment of the
31 	 * page table page.
32 	 */
33 	if (pmd_index(addr) != pmd_index(saddr) ||
34 	    vma->vm_flags != svma->vm_flags ||
35 	    sbase < svma->vm_start || svma->vm_end < s_end)
36 		return 0;
37 
38 	return saddr;
39 }
40 
41 static int vma_shareable(struct vm_area_struct *vma, unsigned long addr)
42 {
43 	unsigned long base = addr & PUD_MASK;
44 	unsigned long end = base + PUD_SIZE;
45 
46 	/*
47 	 * check on proper vm_flags and page table alignment
48 	 */
49 	if (vma->vm_flags & VM_MAYSHARE &&
50 	    vma->vm_start <= base && end <= vma->vm_end)
51 		return 1;
52 	return 0;
53 }
54 
55 /*
56  * search for a shareable pmd page for hugetlb.
57  */
58 static void huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
59 {
60 	struct vm_area_struct *vma = find_vma(mm, addr);
61 	struct address_space *mapping = vma->vm_file->f_mapping;
62 	pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
63 			vma->vm_pgoff;
64 	struct prio_tree_iter iter;
65 	struct vm_area_struct *svma;
66 	unsigned long saddr;
67 	pte_t *spte = NULL;
68 
69 	if (!vma_shareable(vma, addr))
70 		return;
71 
72 	spin_lock(&mapping->i_mmap_lock);
73 	vma_prio_tree_foreach(svma, &iter, &mapping->i_mmap, idx, idx) {
74 		if (svma == vma)
75 			continue;
76 
77 		saddr = page_table_shareable(svma, vma, addr, idx);
78 		if (saddr) {
79 			spte = huge_pte_offset(svma->vm_mm, saddr);
80 			if (spte) {
81 				get_page(virt_to_page(spte));
82 				break;
83 			}
84 		}
85 	}
86 
87 	if (!spte)
88 		goto out;
89 
90 	spin_lock(&mm->page_table_lock);
91 	if (pud_none(*pud))
92 		pud_populate(mm, pud, (pmd_t *)((unsigned long)spte & PAGE_MASK));
93 	else
94 		put_page(virt_to_page(spte));
95 	spin_unlock(&mm->page_table_lock);
96 out:
97 	spin_unlock(&mapping->i_mmap_lock);
98 }
99 
100 /*
101  * unmap huge page backed by shared pte.
102  *
103  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
104  * indicated by page_count > 1, unmap is achieved by clearing pud and
105  * decrementing the ref count. If count == 1, the pte page is not shared.
106  *
107  * called with vma->vm_mm->page_table_lock held.
108  *
109  * returns: 1 successfully unmapped a shared pte page
110  *	    0 the underlying pte page is not shared, or it is the last user
111  */
112 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
113 {
114 	pgd_t *pgd = pgd_offset(mm, *addr);
115 	pud_t *pud = pud_offset(pgd, *addr);
116 
117 	BUG_ON(page_count(virt_to_page(ptep)) == 0);
118 	if (page_count(virt_to_page(ptep)) == 1)
119 		return 0;
120 
121 	pud_clear(pud);
122 	put_page(virt_to_page(ptep));
123 	*addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
124 	return 1;
125 }
126 
127 pte_t *huge_pte_alloc(struct mm_struct *mm,
128 			unsigned long addr, unsigned long sz)
129 {
130 	pgd_t *pgd;
131 	pud_t *pud;
132 	pte_t *pte = NULL;
133 
134 	pgd = pgd_offset(mm, addr);
135 	pud = pud_alloc(mm, pgd, addr);
136 	if (pud) {
137 		if (sz == PUD_SIZE) {
138 			pte = (pte_t *)pud;
139 		} else {
140 			BUG_ON(sz != PMD_SIZE);
141 			if (pud_none(*pud))
142 				huge_pmd_share(mm, addr, pud);
143 			pte = (pte_t *) pmd_alloc(mm, pud, addr);
144 		}
145 	}
146 	BUG_ON(pte && !pte_none(*pte) && !pte_huge(*pte));
147 
148 	return pte;
149 }
150 
151 pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
152 {
153 	pgd_t *pgd;
154 	pud_t *pud;
155 	pmd_t *pmd = NULL;
156 
157 	pgd = pgd_offset(mm, addr);
158 	if (pgd_present(*pgd)) {
159 		pud = pud_offset(pgd, addr);
160 		if (pud_present(*pud)) {
161 			if (pud_large(*pud))
162 				return (pte_t *)pud;
163 			pmd = pmd_offset(pud, addr);
164 		}
165 	}
166 	return (pte_t *) pmd;
167 }
168 
169 #if 0	/* This is just for testing */
170 struct page *
171 follow_huge_addr(struct mm_struct *mm, unsigned long address, int write)
172 {
173 	unsigned long start = address;
174 	int length = 1;
175 	int nr;
176 	struct page *page;
177 	struct vm_area_struct *vma;
178 
179 	vma = find_vma(mm, addr);
180 	if (!vma || !is_vm_hugetlb_page(vma))
181 		return ERR_PTR(-EINVAL);
182 
183 	pte = huge_pte_offset(mm, address);
184 
185 	/* hugetlb should be locked, and hence, prefaulted */
186 	WARN_ON(!pte || pte_none(*pte));
187 
188 	page = &pte_page(*pte)[vpfn % (HPAGE_SIZE/PAGE_SIZE)];
189 
190 	WARN_ON(!PageHead(page));
191 
192 	return page;
193 }
194 
195 int pmd_huge(pmd_t pmd)
196 {
197 	return 0;
198 }
199 
200 int pud_huge(pud_t pud)
201 {
202 	return 0;
203 }
204 
205 struct page *
206 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
207 		pmd_t *pmd, int write)
208 {
209 	return NULL;
210 }
211 
212 #else
213 
214 struct page *
215 follow_huge_addr(struct mm_struct *mm, unsigned long address, int write)
216 {
217 	return ERR_PTR(-EINVAL);
218 }
219 
220 int pmd_huge(pmd_t pmd)
221 {
222 	return !!(pmd_val(pmd) & _PAGE_PSE);
223 }
224 
225 int pud_huge(pud_t pud)
226 {
227 	return !!(pud_val(pud) & _PAGE_PSE);
228 }
229 
230 struct page *
231 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
232 		pmd_t *pmd, int write)
233 {
234 	struct page *page;
235 
236 	page = pte_page(*(pte_t *)pmd);
237 	if (page)
238 		page += ((address & ~PMD_MASK) >> PAGE_SHIFT);
239 	return page;
240 }
241 
242 struct page *
243 follow_huge_pud(struct mm_struct *mm, unsigned long address,
244 		pud_t *pud, int write)
245 {
246 	struct page *page;
247 
248 	page = pte_page(*(pte_t *)pud);
249 	if (page)
250 		page += ((address & ~PUD_MASK) >> PAGE_SHIFT);
251 	return page;
252 }
253 
254 #endif
255 
256 /* x86_64 also uses this file */
257 
258 #ifdef HAVE_ARCH_HUGETLB_UNMAPPED_AREA
259 static unsigned long hugetlb_get_unmapped_area_bottomup(struct file *file,
260 		unsigned long addr, unsigned long len,
261 		unsigned long pgoff, unsigned long flags)
262 {
263 	struct hstate *h = hstate_file(file);
264 	struct mm_struct *mm = current->mm;
265 	struct vm_area_struct *vma;
266 	unsigned long start_addr;
267 
268 	if (len > mm->cached_hole_size) {
269 	        start_addr = mm->free_area_cache;
270 	} else {
271 	        start_addr = TASK_UNMAPPED_BASE;
272 	        mm->cached_hole_size = 0;
273 	}
274 
275 full_search:
276 	addr = ALIGN(start_addr, huge_page_size(h));
277 
278 	for (vma = find_vma(mm, addr); ; vma = vma->vm_next) {
279 		/* At this point:  (!vma || addr < vma->vm_end). */
280 		if (TASK_SIZE - len < addr) {
281 			/*
282 			 * Start a new search - just in case we missed
283 			 * some holes.
284 			 */
285 			if (start_addr != TASK_UNMAPPED_BASE) {
286 				start_addr = TASK_UNMAPPED_BASE;
287 				mm->cached_hole_size = 0;
288 				goto full_search;
289 			}
290 			return -ENOMEM;
291 		}
292 		if (!vma || addr + len <= vma->vm_start) {
293 			mm->free_area_cache = addr + len;
294 			return addr;
295 		}
296 		if (addr + mm->cached_hole_size < vma->vm_start)
297 		        mm->cached_hole_size = vma->vm_start - addr;
298 		addr = ALIGN(vma->vm_end, huge_page_size(h));
299 	}
300 }
301 
302 static unsigned long hugetlb_get_unmapped_area_topdown(struct file *file,
303 		unsigned long addr0, unsigned long len,
304 		unsigned long pgoff, unsigned long flags)
305 {
306 	struct hstate *h = hstate_file(file);
307 	struct mm_struct *mm = current->mm;
308 	struct vm_area_struct *vma, *prev_vma;
309 	unsigned long base = mm->mmap_base, addr = addr0;
310 	unsigned long largest_hole = mm->cached_hole_size;
311 	int first_time = 1;
312 
313 	/* don't allow allocations above current base */
314 	if (mm->free_area_cache > base)
315 		mm->free_area_cache = base;
316 
317 	if (len <= largest_hole) {
318 	        largest_hole = 0;
319 		mm->free_area_cache  = base;
320 	}
321 try_again:
322 	/* make sure it can fit in the remaining address space */
323 	if (mm->free_area_cache < len)
324 		goto fail;
325 
326 	/* either no address requested or cant fit in requested address hole */
327 	addr = (mm->free_area_cache - len) & huge_page_mask(h);
328 	do {
329 		/*
330 		 * Lookup failure means no vma is above this address,
331 		 * i.e. return with success:
332 		 */
333 		if (!(vma = find_vma_prev(mm, addr, &prev_vma)))
334 			return addr;
335 
336 		/*
337 		 * new region fits between prev_vma->vm_end and
338 		 * vma->vm_start, use it:
339 		 */
340 		if (addr + len <= vma->vm_start &&
341 		            (!prev_vma || (addr >= prev_vma->vm_end))) {
342 			/* remember the address as a hint for next time */
343 		        mm->cached_hole_size = largest_hole;
344 		        return (mm->free_area_cache = addr);
345 		} else {
346 			/* pull free_area_cache down to the first hole */
347 		        if (mm->free_area_cache == vma->vm_end) {
348 				mm->free_area_cache = vma->vm_start;
349 				mm->cached_hole_size = largest_hole;
350 			}
351 		}
352 
353 		/* remember the largest hole we saw so far */
354 		if (addr + largest_hole < vma->vm_start)
355 		        largest_hole = vma->vm_start - addr;
356 
357 		/* try just below the current vma->vm_start */
358 		addr = (vma->vm_start - len) & huge_page_mask(h);
359 	} while (len <= vma->vm_start);
360 
361 fail:
362 	/*
363 	 * if hint left us with no space for the requested
364 	 * mapping then try again:
365 	 */
366 	if (first_time) {
367 		mm->free_area_cache = base;
368 		largest_hole = 0;
369 		first_time = 0;
370 		goto try_again;
371 	}
372 	/*
373 	 * A failed mmap() very likely causes application failure,
374 	 * so fall back to the bottom-up function here. This scenario
375 	 * can happen with large stack limits and large mmap()
376 	 * allocations.
377 	 */
378 	mm->free_area_cache = TASK_UNMAPPED_BASE;
379 	mm->cached_hole_size = ~0UL;
380 	addr = hugetlb_get_unmapped_area_bottomup(file, addr0,
381 			len, pgoff, flags);
382 
383 	/*
384 	 * Restore the topdown base:
385 	 */
386 	mm->free_area_cache = base;
387 	mm->cached_hole_size = ~0UL;
388 
389 	return addr;
390 }
391 
392 unsigned long
393 hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
394 		unsigned long len, unsigned long pgoff, unsigned long flags)
395 {
396 	struct hstate *h = hstate_file(file);
397 	struct mm_struct *mm = current->mm;
398 	struct vm_area_struct *vma;
399 
400 	if (len & ~huge_page_mask(h))
401 		return -EINVAL;
402 	if (len > TASK_SIZE)
403 		return -ENOMEM;
404 
405 	if (flags & MAP_FIXED) {
406 		if (prepare_hugepage_range(file, addr, len))
407 			return -EINVAL;
408 		return addr;
409 	}
410 
411 	if (addr) {
412 		addr = ALIGN(addr, huge_page_size(h));
413 		vma = find_vma(mm, addr);
414 		if (TASK_SIZE - len >= addr &&
415 		    (!vma || addr + len <= vma->vm_start))
416 			return addr;
417 	}
418 	if (mm->get_unmapped_area == arch_get_unmapped_area)
419 		return hugetlb_get_unmapped_area_bottomup(file, addr, len,
420 				pgoff, flags);
421 	else
422 		return hugetlb_get_unmapped_area_topdown(file, addr, len,
423 				pgoff, flags);
424 }
425 
426 #endif /*HAVE_ARCH_HUGETLB_UNMAPPED_AREA*/
427 
428 #ifdef CONFIG_X86_64
429 static __init int setup_hugepagesz(char *opt)
430 {
431 	unsigned long ps = memparse(opt, &opt);
432 	if (ps == PMD_SIZE) {
433 		hugetlb_add_hstate(PMD_SHIFT - PAGE_SHIFT);
434 	} else if (ps == PUD_SIZE && cpu_has_gbpages) {
435 		hugetlb_add_hstate(PUD_SHIFT - PAGE_SHIFT);
436 	} else {
437 		printk(KERN_ERR "hugepagesz: Unsupported page size %lu M\n",
438 			ps >> 20);
439 		return 0;
440 	}
441 	return 1;
442 }
443 __setup("hugepagesz=", setup_hugepagesz);
444 #endif
445