xref: /linux/arch/x86/mm/fault.c (revision eb01fe7abbe2d0b38824d2a93fdb4cc3eaf2ccc1)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  Copyright (C) 1995  Linus Torvalds
4  *  Copyright (C) 2001, 2002 Andi Kleen, SuSE Labs.
5  *  Copyright (C) 2008-2009, Red Hat Inc., Ingo Molnar
6  */
7 #include <linux/sched.h>		/* test_thread_flag(), ...	*/
8 #include <linux/sched/task_stack.h>	/* task_stack_*(), ...		*/
9 #include <linux/kdebug.h>		/* oops_begin/end, ...		*/
10 #include <linux/extable.h>		/* search_exception_tables	*/
11 #include <linux/memblock.h>		/* max_low_pfn			*/
12 #include <linux/kfence.h>		/* kfence_handle_page_fault	*/
13 #include <linux/kprobes.h>		/* NOKPROBE_SYMBOL, ...		*/
14 #include <linux/mmiotrace.h>		/* kmmio_handler, ...		*/
15 #include <linux/perf_event.h>		/* perf_sw_event		*/
16 #include <linux/hugetlb.h>		/* hstate_index_to_shift	*/
17 #include <linux/prefetch.h>		/* prefetchw			*/
18 #include <linux/context_tracking.h>	/* exception_enter(), ...	*/
19 #include <linux/uaccess.h>		/* faulthandler_disabled()	*/
20 #include <linux/efi.h>			/* efi_crash_gracefully_on_page_fault()*/
21 #include <linux/mm_types.h>
22 #include <linux/mm.h>			/* find_and_lock_vma() */
23 
24 #include <asm/cpufeature.h>		/* boot_cpu_has, ...		*/
25 #include <asm/traps.h>			/* dotraplinkage, ...		*/
26 #include <asm/fixmap.h>			/* VSYSCALL_ADDR		*/
27 #include <asm/vsyscall.h>		/* emulate_vsyscall		*/
28 #include <asm/vm86.h>			/* struct vm86			*/
29 #include <asm/mmu_context.h>		/* vma_pkey()			*/
30 #include <asm/efi.h>			/* efi_crash_gracefully_on_page_fault()*/
31 #include <asm/desc.h>			/* store_idt(), ...		*/
32 #include <asm/cpu_entry_area.h>		/* exception stack		*/
33 #include <asm/pgtable_areas.h>		/* VMALLOC_START, ...		*/
34 #include <asm/kvm_para.h>		/* kvm_handle_async_pf		*/
35 #include <asm/vdso.h>			/* fixup_vdso_exception()	*/
36 #include <asm/irq_stack.h>
37 #include <asm/fred.h>
38 #include <asm/sev.h>			/* snp_dump_hva_rmpentry()	*/
39 
40 #define CREATE_TRACE_POINTS
41 #include <asm/trace/exceptions.h>
42 
43 /*
44  * Returns 0 if mmiotrace is disabled, or if the fault is not
45  * handled by mmiotrace:
46  */
47 static nokprobe_inline int
48 kmmio_fault(struct pt_regs *regs, unsigned long addr)
49 {
50 	if (unlikely(is_kmmio_active()))
51 		if (kmmio_handler(regs, addr) == 1)
52 			return -1;
53 	return 0;
54 }
55 
56 /*
57  * Prefetch quirks:
58  *
59  * 32-bit mode:
60  *
61  *   Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
62  *   Check that here and ignore it.  This is AMD erratum #91.
63  *
64  * 64-bit mode:
65  *
66  *   Sometimes the CPU reports invalid exceptions on prefetch.
67  *   Check that here and ignore it.
68  *
69  * Opcode checker based on code by Richard Brunner.
70  */
71 static inline int
72 check_prefetch_opcode(struct pt_regs *regs, unsigned char *instr,
73 		      unsigned char opcode, int *prefetch)
74 {
75 	unsigned char instr_hi = opcode & 0xf0;
76 	unsigned char instr_lo = opcode & 0x0f;
77 
78 	switch (instr_hi) {
79 	case 0x20:
80 	case 0x30:
81 		/*
82 		 * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes.
83 		 * In X86_64 long mode, the CPU will signal invalid
84 		 * opcode if some of these prefixes are present so
85 		 * X86_64 will never get here anyway
86 		 */
87 		return ((instr_lo & 7) == 0x6);
88 #ifdef CONFIG_X86_64
89 	case 0x40:
90 		/*
91 		 * In 64-bit mode 0x40..0x4F are valid REX prefixes
92 		 */
93 		return (!user_mode(regs) || user_64bit_mode(regs));
94 #endif
95 	case 0x60:
96 		/* 0x64 thru 0x67 are valid prefixes in all modes. */
97 		return (instr_lo & 0xC) == 0x4;
98 	case 0xF0:
99 		/* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */
100 		return !instr_lo || (instr_lo>>1) == 1;
101 	case 0x00:
102 		/* Prefetch instruction is 0x0F0D or 0x0F18 */
103 		if (get_kernel_nofault(opcode, instr))
104 			return 0;
105 
106 		*prefetch = (instr_lo == 0xF) &&
107 			(opcode == 0x0D || opcode == 0x18);
108 		return 0;
109 	default:
110 		return 0;
111 	}
112 }
113 
114 static bool is_amd_k8_pre_npt(void)
115 {
116 	struct cpuinfo_x86 *c = &boot_cpu_data;
117 
118 	return unlikely(IS_ENABLED(CONFIG_CPU_SUP_AMD) &&
119 			c->x86_vendor == X86_VENDOR_AMD &&
120 			c->x86 == 0xf && c->x86_model < 0x40);
121 }
122 
123 static int
124 is_prefetch(struct pt_regs *regs, unsigned long error_code, unsigned long addr)
125 {
126 	unsigned char *max_instr;
127 	unsigned char *instr;
128 	int prefetch = 0;
129 
130 	/* Erratum #91 affects AMD K8, pre-NPT CPUs */
131 	if (!is_amd_k8_pre_npt())
132 		return 0;
133 
134 	/*
135 	 * If it was a exec (instruction fetch) fault on NX page, then
136 	 * do not ignore the fault:
137 	 */
138 	if (error_code & X86_PF_INSTR)
139 		return 0;
140 
141 	instr = (void *)convert_ip_to_linear(current, regs);
142 	max_instr = instr + 15;
143 
144 	/*
145 	 * This code has historically always bailed out if IP points to a
146 	 * not-present page (e.g. due to a race).  No one has ever
147 	 * complained about this.
148 	 */
149 	pagefault_disable();
150 
151 	while (instr < max_instr) {
152 		unsigned char opcode;
153 
154 		if (user_mode(regs)) {
155 			if (get_user(opcode, (unsigned char __user *) instr))
156 				break;
157 		} else {
158 			if (get_kernel_nofault(opcode, instr))
159 				break;
160 		}
161 
162 		instr++;
163 
164 		if (!check_prefetch_opcode(regs, instr, opcode, &prefetch))
165 			break;
166 	}
167 
168 	pagefault_enable();
169 	return prefetch;
170 }
171 
172 DEFINE_SPINLOCK(pgd_lock);
173 LIST_HEAD(pgd_list);
174 
175 #ifdef CONFIG_X86_32
176 static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
177 {
178 	unsigned index = pgd_index(address);
179 	pgd_t *pgd_k;
180 	p4d_t *p4d, *p4d_k;
181 	pud_t *pud, *pud_k;
182 	pmd_t *pmd, *pmd_k;
183 
184 	pgd += index;
185 	pgd_k = init_mm.pgd + index;
186 
187 	if (!pgd_present(*pgd_k))
188 		return NULL;
189 
190 	/*
191 	 * set_pgd(pgd, *pgd_k); here would be useless on PAE
192 	 * and redundant with the set_pmd() on non-PAE. As would
193 	 * set_p4d/set_pud.
194 	 */
195 	p4d = p4d_offset(pgd, address);
196 	p4d_k = p4d_offset(pgd_k, address);
197 	if (!p4d_present(*p4d_k))
198 		return NULL;
199 
200 	pud = pud_offset(p4d, address);
201 	pud_k = pud_offset(p4d_k, address);
202 	if (!pud_present(*pud_k))
203 		return NULL;
204 
205 	pmd = pmd_offset(pud, address);
206 	pmd_k = pmd_offset(pud_k, address);
207 
208 	if (pmd_present(*pmd) != pmd_present(*pmd_k))
209 		set_pmd(pmd, *pmd_k);
210 
211 	if (!pmd_present(*pmd_k))
212 		return NULL;
213 	else
214 		BUG_ON(pmd_pfn(*pmd) != pmd_pfn(*pmd_k));
215 
216 	return pmd_k;
217 }
218 
219 /*
220  *   Handle a fault on the vmalloc or module mapping area
221  *
222  *   This is needed because there is a race condition between the time
223  *   when the vmalloc mapping code updates the PMD to the point in time
224  *   where it synchronizes this update with the other page-tables in the
225  *   system.
226  *
227  *   In this race window another thread/CPU can map an area on the same
228  *   PMD, finds it already present and does not synchronize it with the
229  *   rest of the system yet. As a result v[mz]alloc might return areas
230  *   which are not mapped in every page-table in the system, causing an
231  *   unhandled page-fault when they are accessed.
232  */
233 static noinline int vmalloc_fault(unsigned long address)
234 {
235 	unsigned long pgd_paddr;
236 	pmd_t *pmd_k;
237 	pte_t *pte_k;
238 
239 	/* Make sure we are in vmalloc area: */
240 	if (!(address >= VMALLOC_START && address < VMALLOC_END))
241 		return -1;
242 
243 	/*
244 	 * Synchronize this task's top level page-table
245 	 * with the 'reference' page table.
246 	 *
247 	 * Do _not_ use "current" here. We might be inside
248 	 * an interrupt in the middle of a task switch..
249 	 */
250 	pgd_paddr = read_cr3_pa();
251 	pmd_k = vmalloc_sync_one(__va(pgd_paddr), address);
252 	if (!pmd_k)
253 		return -1;
254 
255 	if (pmd_leaf(*pmd_k))
256 		return 0;
257 
258 	pte_k = pte_offset_kernel(pmd_k, address);
259 	if (!pte_present(*pte_k))
260 		return -1;
261 
262 	return 0;
263 }
264 NOKPROBE_SYMBOL(vmalloc_fault);
265 
266 void arch_sync_kernel_mappings(unsigned long start, unsigned long end)
267 {
268 	unsigned long addr;
269 
270 	for (addr = start & PMD_MASK;
271 	     addr >= TASK_SIZE_MAX && addr < VMALLOC_END;
272 	     addr += PMD_SIZE) {
273 		struct page *page;
274 
275 		spin_lock(&pgd_lock);
276 		list_for_each_entry(page, &pgd_list, lru) {
277 			spinlock_t *pgt_lock;
278 
279 			/* the pgt_lock only for Xen */
280 			pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
281 
282 			spin_lock(pgt_lock);
283 			vmalloc_sync_one(page_address(page), addr);
284 			spin_unlock(pgt_lock);
285 		}
286 		spin_unlock(&pgd_lock);
287 	}
288 }
289 
290 static bool low_pfn(unsigned long pfn)
291 {
292 	return pfn < max_low_pfn;
293 }
294 
295 static void dump_pagetable(unsigned long address)
296 {
297 	pgd_t *base = __va(read_cr3_pa());
298 	pgd_t *pgd = &base[pgd_index(address)];
299 	p4d_t *p4d;
300 	pud_t *pud;
301 	pmd_t *pmd;
302 	pte_t *pte;
303 
304 #ifdef CONFIG_X86_PAE
305 	pr_info("*pdpt = %016Lx ", pgd_val(*pgd));
306 	if (!low_pfn(pgd_val(*pgd) >> PAGE_SHIFT) || !pgd_present(*pgd))
307 		goto out;
308 #define pr_pde pr_cont
309 #else
310 #define pr_pde pr_info
311 #endif
312 	p4d = p4d_offset(pgd, address);
313 	pud = pud_offset(p4d, address);
314 	pmd = pmd_offset(pud, address);
315 	pr_pde("*pde = %0*Lx ", sizeof(*pmd) * 2, (u64)pmd_val(*pmd));
316 #undef pr_pde
317 
318 	/*
319 	 * We must not directly access the pte in the highpte
320 	 * case if the page table is located in highmem.
321 	 * And let's rather not kmap-atomic the pte, just in case
322 	 * it's allocated already:
323 	 */
324 	if (!low_pfn(pmd_pfn(*pmd)) || !pmd_present(*pmd) || pmd_leaf(*pmd))
325 		goto out;
326 
327 	pte = pte_offset_kernel(pmd, address);
328 	pr_cont("*pte = %0*Lx ", sizeof(*pte) * 2, (u64)pte_val(*pte));
329 out:
330 	pr_cont("\n");
331 }
332 
333 #else /* CONFIG_X86_64: */
334 
335 #ifdef CONFIG_CPU_SUP_AMD
336 static const char errata93_warning[] =
337 KERN_ERR
338 "******* Your BIOS seems to not contain a fix for K8 errata #93\n"
339 "******* Working around it, but it may cause SEGVs or burn power.\n"
340 "******* Please consider a BIOS update.\n"
341 "******* Disabling USB legacy in the BIOS may also help.\n";
342 #endif
343 
344 static int bad_address(void *p)
345 {
346 	unsigned long dummy;
347 
348 	return get_kernel_nofault(dummy, (unsigned long *)p);
349 }
350 
351 static void dump_pagetable(unsigned long address)
352 {
353 	pgd_t *base = __va(read_cr3_pa());
354 	pgd_t *pgd = base + pgd_index(address);
355 	p4d_t *p4d;
356 	pud_t *pud;
357 	pmd_t *pmd;
358 	pte_t *pte;
359 
360 	if (bad_address(pgd))
361 		goto bad;
362 
363 	pr_info("PGD %lx ", pgd_val(*pgd));
364 
365 	if (!pgd_present(*pgd))
366 		goto out;
367 
368 	p4d = p4d_offset(pgd, address);
369 	if (bad_address(p4d))
370 		goto bad;
371 
372 	pr_cont("P4D %lx ", p4d_val(*p4d));
373 	if (!p4d_present(*p4d) || p4d_leaf(*p4d))
374 		goto out;
375 
376 	pud = pud_offset(p4d, address);
377 	if (bad_address(pud))
378 		goto bad;
379 
380 	pr_cont("PUD %lx ", pud_val(*pud));
381 	if (!pud_present(*pud) || pud_leaf(*pud))
382 		goto out;
383 
384 	pmd = pmd_offset(pud, address);
385 	if (bad_address(pmd))
386 		goto bad;
387 
388 	pr_cont("PMD %lx ", pmd_val(*pmd));
389 	if (!pmd_present(*pmd) || pmd_leaf(*pmd))
390 		goto out;
391 
392 	pte = pte_offset_kernel(pmd, address);
393 	if (bad_address(pte))
394 		goto bad;
395 
396 	pr_cont("PTE %lx", pte_val(*pte));
397 out:
398 	pr_cont("\n");
399 	return;
400 bad:
401 	pr_info("BAD\n");
402 }
403 
404 #endif /* CONFIG_X86_64 */
405 
406 /*
407  * Workaround for K8 erratum #93 & buggy BIOS.
408  *
409  * BIOS SMM functions are required to use a specific workaround
410  * to avoid corruption of the 64bit RIP register on C stepping K8.
411  *
412  * A lot of BIOS that didn't get tested properly miss this.
413  *
414  * The OS sees this as a page fault with the upper 32bits of RIP cleared.
415  * Try to work around it here.
416  *
417  * Note we only handle faults in kernel here.
418  * Does nothing on 32-bit.
419  */
420 static int is_errata93(struct pt_regs *regs, unsigned long address)
421 {
422 #if defined(CONFIG_X86_64) && defined(CONFIG_CPU_SUP_AMD)
423 	if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD
424 	    || boot_cpu_data.x86 != 0xf)
425 		return 0;
426 
427 	if (user_mode(regs))
428 		return 0;
429 
430 	if (address != regs->ip)
431 		return 0;
432 
433 	if ((address >> 32) != 0)
434 		return 0;
435 
436 	address |= 0xffffffffUL << 32;
437 	if ((address >= (u64)_stext && address <= (u64)_etext) ||
438 	    (address >= MODULES_VADDR && address <= MODULES_END)) {
439 		printk_once(errata93_warning);
440 		regs->ip = address;
441 		return 1;
442 	}
443 #endif
444 	return 0;
445 }
446 
447 /*
448  * Work around K8 erratum #100 K8 in compat mode occasionally jumps
449  * to illegal addresses >4GB.
450  *
451  * We catch this in the page fault handler because these addresses
452  * are not reachable. Just detect this case and return.  Any code
453  * segment in LDT is compatibility mode.
454  */
455 static int is_errata100(struct pt_regs *regs, unsigned long address)
456 {
457 #ifdef CONFIG_X86_64
458 	if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) && (address >> 32))
459 		return 1;
460 #endif
461 	return 0;
462 }
463 
464 /* Pentium F0 0F C7 C8 bug workaround: */
465 static int is_f00f_bug(struct pt_regs *regs, unsigned long error_code,
466 		       unsigned long address)
467 {
468 #ifdef CONFIG_X86_F00F_BUG
469 	if (boot_cpu_has_bug(X86_BUG_F00F) && !(error_code & X86_PF_USER) &&
470 	    idt_is_f00f_address(address)) {
471 		handle_invalid_op(regs);
472 		return 1;
473 	}
474 #endif
475 	return 0;
476 }
477 
478 static void show_ldttss(const struct desc_ptr *gdt, const char *name, u16 index)
479 {
480 	u32 offset = (index >> 3) * sizeof(struct desc_struct);
481 	unsigned long addr;
482 	struct ldttss_desc desc;
483 
484 	if (index == 0) {
485 		pr_alert("%s: NULL\n", name);
486 		return;
487 	}
488 
489 	if (offset + sizeof(struct ldttss_desc) >= gdt->size) {
490 		pr_alert("%s: 0x%hx -- out of bounds\n", name, index);
491 		return;
492 	}
493 
494 	if (copy_from_kernel_nofault(&desc, (void *)(gdt->address + offset),
495 			      sizeof(struct ldttss_desc))) {
496 		pr_alert("%s: 0x%hx -- GDT entry is not readable\n",
497 			 name, index);
498 		return;
499 	}
500 
501 	addr = desc.base0 | (desc.base1 << 16) | ((unsigned long)desc.base2 << 24);
502 #ifdef CONFIG_X86_64
503 	addr |= ((u64)desc.base3 << 32);
504 #endif
505 	pr_alert("%s: 0x%hx -- base=0x%lx limit=0x%x\n",
506 		 name, index, addr, (desc.limit0 | (desc.limit1 << 16)));
507 }
508 
509 static void
510 show_fault_oops(struct pt_regs *regs, unsigned long error_code, unsigned long address)
511 {
512 	if (!oops_may_print())
513 		return;
514 
515 	if (error_code & X86_PF_INSTR) {
516 		unsigned int level;
517 		pgd_t *pgd;
518 		pte_t *pte;
519 
520 		pgd = __va(read_cr3_pa());
521 		pgd += pgd_index(address);
522 
523 		pte = lookup_address_in_pgd(pgd, address, &level);
524 
525 		if (pte && pte_present(*pte) && !pte_exec(*pte))
526 			pr_crit("kernel tried to execute NX-protected page - exploit attempt? (uid: %d)\n",
527 				from_kuid(&init_user_ns, current_uid()));
528 		if (pte && pte_present(*pte) && pte_exec(*pte) &&
529 				(pgd_flags(*pgd) & _PAGE_USER) &&
530 				(__read_cr4() & X86_CR4_SMEP))
531 			pr_crit("unable to execute userspace code (SMEP?) (uid: %d)\n",
532 				from_kuid(&init_user_ns, current_uid()));
533 	}
534 
535 	if (address < PAGE_SIZE && !user_mode(regs))
536 		pr_alert("BUG: kernel NULL pointer dereference, address: %px\n",
537 			(void *)address);
538 	else
539 		pr_alert("BUG: unable to handle page fault for address: %px\n",
540 			(void *)address);
541 
542 	pr_alert("#PF: %s %s in %s mode\n",
543 		 (error_code & X86_PF_USER)  ? "user" : "supervisor",
544 		 (error_code & X86_PF_INSTR) ? "instruction fetch" :
545 		 (error_code & X86_PF_WRITE) ? "write access" :
546 					       "read access",
547 			     user_mode(regs) ? "user" : "kernel");
548 	pr_alert("#PF: error_code(0x%04lx) - %s\n", error_code,
549 		 !(error_code & X86_PF_PROT) ? "not-present page" :
550 		 (error_code & X86_PF_RSVD)  ? "reserved bit violation" :
551 		 (error_code & X86_PF_PK)    ? "protection keys violation" :
552 		 (error_code & X86_PF_RMP)   ? "RMP violation" :
553 					       "permissions violation");
554 
555 	if (!(error_code & X86_PF_USER) && user_mode(regs)) {
556 		struct desc_ptr idt, gdt;
557 		u16 ldtr, tr;
558 
559 		/*
560 		 * This can happen for quite a few reasons.  The more obvious
561 		 * ones are faults accessing the GDT, or LDT.  Perhaps
562 		 * surprisingly, if the CPU tries to deliver a benign or
563 		 * contributory exception from user code and gets a page fault
564 		 * during delivery, the page fault can be delivered as though
565 		 * it originated directly from user code.  This could happen
566 		 * due to wrong permissions on the IDT, GDT, LDT, TSS, or
567 		 * kernel or IST stack.
568 		 */
569 		store_idt(&idt);
570 
571 		/* Usable even on Xen PV -- it's just slow. */
572 		native_store_gdt(&gdt);
573 
574 		pr_alert("IDT: 0x%lx (limit=0x%hx) GDT: 0x%lx (limit=0x%hx)\n",
575 			 idt.address, idt.size, gdt.address, gdt.size);
576 
577 		store_ldt(ldtr);
578 		show_ldttss(&gdt, "LDTR", ldtr);
579 
580 		store_tr(tr);
581 		show_ldttss(&gdt, "TR", tr);
582 	}
583 
584 	dump_pagetable(address);
585 
586 	if (error_code & X86_PF_RMP)
587 		snp_dump_hva_rmpentry(address);
588 }
589 
590 static noinline void
591 pgtable_bad(struct pt_regs *regs, unsigned long error_code,
592 	    unsigned long address)
593 {
594 	struct task_struct *tsk;
595 	unsigned long flags;
596 	int sig;
597 
598 	flags = oops_begin();
599 	tsk = current;
600 	sig = SIGKILL;
601 
602 	printk(KERN_ALERT "%s: Corrupted page table at address %lx\n",
603 	       tsk->comm, address);
604 	dump_pagetable(address);
605 
606 	if (__die("Bad pagetable", regs, error_code))
607 		sig = 0;
608 
609 	oops_end(flags, regs, sig);
610 }
611 
612 static void sanitize_error_code(unsigned long address,
613 				unsigned long *error_code)
614 {
615 	/*
616 	 * To avoid leaking information about the kernel page
617 	 * table layout, pretend that user-mode accesses to
618 	 * kernel addresses are always protection faults.
619 	 *
620 	 * NB: This means that failed vsyscalls with vsyscall=none
621 	 * will have the PROT bit.  This doesn't leak any
622 	 * information and does not appear to cause any problems.
623 	 */
624 	if (address >= TASK_SIZE_MAX)
625 		*error_code |= X86_PF_PROT;
626 }
627 
628 static void set_signal_archinfo(unsigned long address,
629 				unsigned long error_code)
630 {
631 	struct task_struct *tsk = current;
632 
633 	tsk->thread.trap_nr = X86_TRAP_PF;
634 	tsk->thread.error_code = error_code | X86_PF_USER;
635 	tsk->thread.cr2 = address;
636 }
637 
638 static noinline void
639 page_fault_oops(struct pt_regs *regs, unsigned long error_code,
640 		unsigned long address)
641 {
642 #ifdef CONFIG_VMAP_STACK
643 	struct stack_info info;
644 #endif
645 	unsigned long flags;
646 	int sig;
647 
648 	if (user_mode(regs)) {
649 		/*
650 		 * Implicit kernel access from user mode?  Skip the stack
651 		 * overflow and EFI special cases.
652 		 */
653 		goto oops;
654 	}
655 
656 #ifdef CONFIG_VMAP_STACK
657 	/*
658 	 * Stack overflow?  During boot, we can fault near the initial
659 	 * stack in the direct map, but that's not an overflow -- check
660 	 * that we're in vmalloc space to avoid this.
661 	 */
662 	if (is_vmalloc_addr((void *)address) &&
663 	    get_stack_guard_info((void *)address, &info)) {
664 		/*
665 		 * We're likely to be running with very little stack space
666 		 * left.  It's plausible that we'd hit this condition but
667 		 * double-fault even before we get this far, in which case
668 		 * we're fine: the double-fault handler will deal with it.
669 		 *
670 		 * We don't want to make it all the way into the oops code
671 		 * and then double-fault, though, because we're likely to
672 		 * break the console driver and lose most of the stack dump.
673 		 */
674 		call_on_stack(__this_cpu_ist_top_va(DF) - sizeof(void*),
675 			      handle_stack_overflow,
676 			      ASM_CALL_ARG3,
677 			      , [arg1] "r" (regs), [arg2] "r" (address), [arg3] "r" (&info));
678 
679 		unreachable();
680 	}
681 #endif
682 
683 	/*
684 	 * Buggy firmware could access regions which might page fault.  If
685 	 * this happens, EFI has a special OOPS path that will try to
686 	 * avoid hanging the system.
687 	 */
688 	if (IS_ENABLED(CONFIG_EFI))
689 		efi_crash_gracefully_on_page_fault(address);
690 
691 	/* Only not-present faults should be handled by KFENCE. */
692 	if (!(error_code & X86_PF_PROT) &&
693 	    kfence_handle_page_fault(address, error_code & X86_PF_WRITE, regs))
694 		return;
695 
696 oops:
697 	/*
698 	 * Oops. The kernel tried to access some bad page. We'll have to
699 	 * terminate things with extreme prejudice:
700 	 */
701 	flags = oops_begin();
702 
703 	show_fault_oops(regs, error_code, address);
704 
705 	if (task_stack_end_corrupted(current))
706 		printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
707 
708 	sig = SIGKILL;
709 	if (__die("Oops", regs, error_code))
710 		sig = 0;
711 
712 	/* Executive summary in case the body of the oops scrolled away */
713 	printk(KERN_DEFAULT "CR2: %016lx\n", address);
714 
715 	oops_end(flags, regs, sig);
716 }
717 
718 static noinline void
719 kernelmode_fixup_or_oops(struct pt_regs *regs, unsigned long error_code,
720 			 unsigned long address, int signal, int si_code,
721 			 u32 pkey)
722 {
723 	WARN_ON_ONCE(user_mode(regs));
724 
725 	/* Are we prepared to handle this kernel fault? */
726 	if (fixup_exception(regs, X86_TRAP_PF, error_code, address)) {
727 		/*
728 		 * Any interrupt that takes a fault gets the fixup. This makes
729 		 * the below recursive fault logic only apply to a faults from
730 		 * task context.
731 		 */
732 		if (in_interrupt())
733 			return;
734 
735 		/*
736 		 * Per the above we're !in_interrupt(), aka. task context.
737 		 *
738 		 * In this case we need to make sure we're not recursively
739 		 * faulting through the emulate_vsyscall() logic.
740 		 */
741 		if (current->thread.sig_on_uaccess_err && signal) {
742 			sanitize_error_code(address, &error_code);
743 
744 			set_signal_archinfo(address, error_code);
745 
746 			if (si_code == SEGV_PKUERR) {
747 				force_sig_pkuerr((void __user *)address, pkey);
748 			} else {
749 				/* XXX: hwpoison faults will set the wrong code. */
750 				force_sig_fault(signal, si_code, (void __user *)address);
751 			}
752 		}
753 
754 		/*
755 		 * Barring that, we can do the fixup and be happy.
756 		 */
757 		return;
758 	}
759 
760 	/*
761 	 * AMD erratum #91 manifests as a spurious page fault on a PREFETCH
762 	 * instruction.
763 	 */
764 	if (is_prefetch(regs, error_code, address))
765 		return;
766 
767 	page_fault_oops(regs, error_code, address);
768 }
769 
770 /*
771  * Print out info about fatal segfaults, if the show_unhandled_signals
772  * sysctl is set:
773  */
774 static inline void
775 show_signal_msg(struct pt_regs *regs, unsigned long error_code,
776 		unsigned long address, struct task_struct *tsk)
777 {
778 	const char *loglvl = task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG;
779 	/* This is a racy snapshot, but it's better than nothing. */
780 	int cpu = raw_smp_processor_id();
781 
782 	if (!unhandled_signal(tsk, SIGSEGV))
783 		return;
784 
785 	if (!printk_ratelimit())
786 		return;
787 
788 	printk("%s%s[%d]: segfault at %lx ip %px sp %px error %lx",
789 		loglvl, tsk->comm, task_pid_nr(tsk), address,
790 		(void *)regs->ip, (void *)regs->sp, error_code);
791 
792 	print_vma_addr(KERN_CONT " in ", regs->ip);
793 
794 	/*
795 	 * Dump the likely CPU where the fatal segfault happened.
796 	 * This can help identify faulty hardware.
797 	 */
798 	printk(KERN_CONT " likely on CPU %d (core %d, socket %d)", cpu,
799 	       topology_core_id(cpu), topology_physical_package_id(cpu));
800 
801 
802 	printk(KERN_CONT "\n");
803 
804 	show_opcodes(regs, loglvl);
805 }
806 
807 static void
808 __bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
809 		       unsigned long address, u32 pkey, int si_code)
810 {
811 	struct task_struct *tsk = current;
812 
813 	if (!user_mode(regs)) {
814 		kernelmode_fixup_or_oops(regs, error_code, address,
815 					 SIGSEGV, si_code, pkey);
816 		return;
817 	}
818 
819 	if (!(error_code & X86_PF_USER)) {
820 		/* Implicit user access to kernel memory -- just oops */
821 		page_fault_oops(regs, error_code, address);
822 		return;
823 	}
824 
825 	/*
826 	 * User mode accesses just cause a SIGSEGV.
827 	 * It's possible to have interrupts off here:
828 	 */
829 	local_irq_enable();
830 
831 	/*
832 	 * Valid to do another page fault here because this one came
833 	 * from user space:
834 	 */
835 	if (is_prefetch(regs, error_code, address))
836 		return;
837 
838 	if (is_errata100(regs, address))
839 		return;
840 
841 	sanitize_error_code(address, &error_code);
842 
843 	if (fixup_vdso_exception(regs, X86_TRAP_PF, error_code, address))
844 		return;
845 
846 	if (likely(show_unhandled_signals))
847 		show_signal_msg(regs, error_code, address, tsk);
848 
849 	set_signal_archinfo(address, error_code);
850 
851 	if (si_code == SEGV_PKUERR)
852 		force_sig_pkuerr((void __user *)address, pkey);
853 	else
854 		force_sig_fault(SIGSEGV, si_code, (void __user *)address);
855 
856 	local_irq_disable();
857 }
858 
859 static noinline void
860 bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
861 		     unsigned long address)
862 {
863 	__bad_area_nosemaphore(regs, error_code, address, 0, SEGV_MAPERR);
864 }
865 
866 static void
867 __bad_area(struct pt_regs *regs, unsigned long error_code,
868 	   unsigned long address, u32 pkey, int si_code)
869 {
870 	struct mm_struct *mm = current->mm;
871 	/*
872 	 * Something tried to access memory that isn't in our memory map..
873 	 * Fix it, but check if it's kernel or user first..
874 	 */
875 	mmap_read_unlock(mm);
876 
877 	__bad_area_nosemaphore(regs, error_code, address, pkey, si_code);
878 }
879 
880 static inline bool bad_area_access_from_pkeys(unsigned long error_code,
881 		struct vm_area_struct *vma)
882 {
883 	/* This code is always called on the current mm */
884 	bool foreign = false;
885 
886 	if (!cpu_feature_enabled(X86_FEATURE_OSPKE))
887 		return false;
888 	if (error_code & X86_PF_PK)
889 		return true;
890 	/* this checks permission keys on the VMA: */
891 	if (!arch_vma_access_permitted(vma, (error_code & X86_PF_WRITE),
892 				       (error_code & X86_PF_INSTR), foreign))
893 		return true;
894 	return false;
895 }
896 
897 static noinline void
898 bad_area_access_error(struct pt_regs *regs, unsigned long error_code,
899 		      unsigned long address, struct vm_area_struct *vma)
900 {
901 	/*
902 	 * This OSPKE check is not strictly necessary at runtime.
903 	 * But, doing it this way allows compiler optimizations
904 	 * if pkeys are compiled out.
905 	 */
906 	if (bad_area_access_from_pkeys(error_code, vma)) {
907 		/*
908 		 * A protection key fault means that the PKRU value did not allow
909 		 * access to some PTE.  Userspace can figure out what PKRU was
910 		 * from the XSAVE state.  This function captures the pkey from
911 		 * the vma and passes it to userspace so userspace can discover
912 		 * which protection key was set on the PTE.
913 		 *
914 		 * If we get here, we know that the hardware signaled a X86_PF_PK
915 		 * fault and that there was a VMA once we got in the fault
916 		 * handler.  It does *not* guarantee that the VMA we find here
917 		 * was the one that we faulted on.
918 		 *
919 		 * 1. T1   : mprotect_key(foo, PAGE_SIZE, pkey=4);
920 		 * 2. T1   : set PKRU to deny access to pkey=4, touches page
921 		 * 3. T1   : faults...
922 		 * 4.    T2: mprotect_key(foo, PAGE_SIZE, pkey=5);
923 		 * 5. T1   : enters fault handler, takes mmap_lock, etc...
924 		 * 6. T1   : reaches here, sees vma_pkey(vma)=5, when we really
925 		 *	     faulted on a pte with its pkey=4.
926 		 */
927 		u32 pkey = vma_pkey(vma);
928 
929 		__bad_area(regs, error_code, address, pkey, SEGV_PKUERR);
930 	} else {
931 		__bad_area(regs, error_code, address, 0, SEGV_ACCERR);
932 	}
933 }
934 
935 static void
936 do_sigbus(struct pt_regs *regs, unsigned long error_code, unsigned long address,
937 	  vm_fault_t fault)
938 {
939 	/* Kernel mode? Handle exceptions or die: */
940 	if (!user_mode(regs)) {
941 		kernelmode_fixup_or_oops(regs, error_code, address,
942 					 SIGBUS, BUS_ADRERR, ARCH_DEFAULT_PKEY);
943 		return;
944 	}
945 
946 	/* User-space => ok to do another page fault: */
947 	if (is_prefetch(regs, error_code, address))
948 		return;
949 
950 	sanitize_error_code(address, &error_code);
951 
952 	if (fixup_vdso_exception(regs, X86_TRAP_PF, error_code, address))
953 		return;
954 
955 	set_signal_archinfo(address, error_code);
956 
957 #ifdef CONFIG_MEMORY_FAILURE
958 	if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
959 		struct task_struct *tsk = current;
960 		unsigned lsb = 0;
961 
962 		pr_err(
963 	"MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
964 			tsk->comm, tsk->pid, address);
965 		if (fault & VM_FAULT_HWPOISON_LARGE)
966 			lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
967 		if (fault & VM_FAULT_HWPOISON)
968 			lsb = PAGE_SHIFT;
969 		force_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, lsb);
970 		return;
971 	}
972 #endif
973 	force_sig_fault(SIGBUS, BUS_ADRERR, (void __user *)address);
974 }
975 
976 static int spurious_kernel_fault_check(unsigned long error_code, pte_t *pte)
977 {
978 	if ((error_code & X86_PF_WRITE) && !pte_write(*pte))
979 		return 0;
980 
981 	if ((error_code & X86_PF_INSTR) && !pte_exec(*pte))
982 		return 0;
983 
984 	return 1;
985 }
986 
987 /*
988  * Handle a spurious fault caused by a stale TLB entry.
989  *
990  * This allows us to lazily refresh the TLB when increasing the
991  * permissions of a kernel page (RO -> RW or NX -> X).  Doing it
992  * eagerly is very expensive since that implies doing a full
993  * cross-processor TLB flush, even if no stale TLB entries exist
994  * on other processors.
995  *
996  * Spurious faults may only occur if the TLB contains an entry with
997  * fewer permission than the page table entry.  Non-present (P = 0)
998  * and reserved bit (R = 1) faults are never spurious.
999  *
1000  * There are no security implications to leaving a stale TLB when
1001  * increasing the permissions on a page.
1002  *
1003  * Returns non-zero if a spurious fault was handled, zero otherwise.
1004  *
1005  * See Intel Developer's Manual Vol 3 Section 4.10.4.3, bullet 3
1006  * (Optional Invalidation).
1007  */
1008 static noinline int
1009 spurious_kernel_fault(unsigned long error_code, unsigned long address)
1010 {
1011 	pgd_t *pgd;
1012 	p4d_t *p4d;
1013 	pud_t *pud;
1014 	pmd_t *pmd;
1015 	pte_t *pte;
1016 	int ret;
1017 
1018 	/*
1019 	 * Only writes to RO or instruction fetches from NX may cause
1020 	 * spurious faults.
1021 	 *
1022 	 * These could be from user or supervisor accesses but the TLB
1023 	 * is only lazily flushed after a kernel mapping protection
1024 	 * change, so user accesses are not expected to cause spurious
1025 	 * faults.
1026 	 */
1027 	if (error_code != (X86_PF_WRITE | X86_PF_PROT) &&
1028 	    error_code != (X86_PF_INSTR | X86_PF_PROT))
1029 		return 0;
1030 
1031 	pgd = init_mm.pgd + pgd_index(address);
1032 	if (!pgd_present(*pgd))
1033 		return 0;
1034 
1035 	p4d = p4d_offset(pgd, address);
1036 	if (!p4d_present(*p4d))
1037 		return 0;
1038 
1039 	if (p4d_leaf(*p4d))
1040 		return spurious_kernel_fault_check(error_code, (pte_t *) p4d);
1041 
1042 	pud = pud_offset(p4d, address);
1043 	if (!pud_present(*pud))
1044 		return 0;
1045 
1046 	if (pud_leaf(*pud))
1047 		return spurious_kernel_fault_check(error_code, (pte_t *) pud);
1048 
1049 	pmd = pmd_offset(pud, address);
1050 	if (!pmd_present(*pmd))
1051 		return 0;
1052 
1053 	if (pmd_leaf(*pmd))
1054 		return spurious_kernel_fault_check(error_code, (pte_t *) pmd);
1055 
1056 	pte = pte_offset_kernel(pmd, address);
1057 	if (!pte_present(*pte))
1058 		return 0;
1059 
1060 	ret = spurious_kernel_fault_check(error_code, pte);
1061 	if (!ret)
1062 		return 0;
1063 
1064 	/*
1065 	 * Make sure we have permissions in PMD.
1066 	 * If not, then there's a bug in the page tables:
1067 	 */
1068 	ret = spurious_kernel_fault_check(error_code, (pte_t *) pmd);
1069 	WARN_ONCE(!ret, "PMD has incorrect permission bits\n");
1070 
1071 	return ret;
1072 }
1073 NOKPROBE_SYMBOL(spurious_kernel_fault);
1074 
1075 int show_unhandled_signals = 1;
1076 
1077 static inline int
1078 access_error(unsigned long error_code, struct vm_area_struct *vma)
1079 {
1080 	/* This is only called for the current mm, so: */
1081 	bool foreign = false;
1082 
1083 	/*
1084 	 * Read or write was blocked by protection keys.  This is
1085 	 * always an unconditional error and can never result in
1086 	 * a follow-up action to resolve the fault, like a COW.
1087 	 */
1088 	if (error_code & X86_PF_PK)
1089 		return 1;
1090 
1091 	/*
1092 	 * SGX hardware blocked the access.  This usually happens
1093 	 * when the enclave memory contents have been destroyed, like
1094 	 * after a suspend/resume cycle. In any case, the kernel can't
1095 	 * fix the cause of the fault.  Handle the fault as an access
1096 	 * error even in cases where no actual access violation
1097 	 * occurred.  This allows userspace to rebuild the enclave in
1098 	 * response to the signal.
1099 	 */
1100 	if (unlikely(error_code & X86_PF_SGX))
1101 		return 1;
1102 
1103 	/*
1104 	 * Make sure to check the VMA so that we do not perform
1105 	 * faults just to hit a X86_PF_PK as soon as we fill in a
1106 	 * page.
1107 	 */
1108 	if (!arch_vma_access_permitted(vma, (error_code & X86_PF_WRITE),
1109 				       (error_code & X86_PF_INSTR), foreign))
1110 		return 1;
1111 
1112 	/*
1113 	 * Shadow stack accesses (PF_SHSTK=1) are only permitted to
1114 	 * shadow stack VMAs. All other accesses result in an error.
1115 	 */
1116 	if (error_code & X86_PF_SHSTK) {
1117 		if (unlikely(!(vma->vm_flags & VM_SHADOW_STACK)))
1118 			return 1;
1119 		if (unlikely(!(vma->vm_flags & VM_WRITE)))
1120 			return 1;
1121 		return 0;
1122 	}
1123 
1124 	if (error_code & X86_PF_WRITE) {
1125 		/* write, present and write, not present: */
1126 		if (unlikely(vma->vm_flags & VM_SHADOW_STACK))
1127 			return 1;
1128 		if (unlikely(!(vma->vm_flags & VM_WRITE)))
1129 			return 1;
1130 		return 0;
1131 	}
1132 
1133 	/* read, present: */
1134 	if (unlikely(error_code & X86_PF_PROT))
1135 		return 1;
1136 
1137 	/* read, not present: */
1138 	if (unlikely(!vma_is_accessible(vma)))
1139 		return 1;
1140 
1141 	return 0;
1142 }
1143 
1144 bool fault_in_kernel_space(unsigned long address)
1145 {
1146 	/*
1147 	 * On 64-bit systems, the vsyscall page is at an address above
1148 	 * TASK_SIZE_MAX, but is not considered part of the kernel
1149 	 * address space.
1150 	 */
1151 	if (IS_ENABLED(CONFIG_X86_64) && is_vsyscall_vaddr(address))
1152 		return false;
1153 
1154 	return address >= TASK_SIZE_MAX;
1155 }
1156 
1157 /*
1158  * Called for all faults where 'address' is part of the kernel address
1159  * space.  Might get called for faults that originate from *code* that
1160  * ran in userspace or the kernel.
1161  */
1162 static void
1163 do_kern_addr_fault(struct pt_regs *regs, unsigned long hw_error_code,
1164 		   unsigned long address)
1165 {
1166 	/*
1167 	 * Protection keys exceptions only happen on user pages.  We
1168 	 * have no user pages in the kernel portion of the address
1169 	 * space, so do not expect them here.
1170 	 */
1171 	WARN_ON_ONCE(hw_error_code & X86_PF_PK);
1172 
1173 #ifdef CONFIG_X86_32
1174 	/*
1175 	 * We can fault-in kernel-space virtual memory on-demand. The
1176 	 * 'reference' page table is init_mm.pgd.
1177 	 *
1178 	 * NOTE! We MUST NOT take any locks for this case. We may
1179 	 * be in an interrupt or a critical region, and should
1180 	 * only copy the information from the master page table,
1181 	 * nothing more.
1182 	 *
1183 	 * Before doing this on-demand faulting, ensure that the
1184 	 * fault is not any of the following:
1185 	 * 1. A fault on a PTE with a reserved bit set.
1186 	 * 2. A fault caused by a user-mode access.  (Do not demand-
1187 	 *    fault kernel memory due to user-mode accesses).
1188 	 * 3. A fault caused by a page-level protection violation.
1189 	 *    (A demand fault would be on a non-present page which
1190 	 *     would have X86_PF_PROT==0).
1191 	 *
1192 	 * This is only needed to close a race condition on x86-32 in
1193 	 * the vmalloc mapping/unmapping code. See the comment above
1194 	 * vmalloc_fault() for details. On x86-64 the race does not
1195 	 * exist as the vmalloc mappings don't need to be synchronized
1196 	 * there.
1197 	 */
1198 	if (!(hw_error_code & (X86_PF_RSVD | X86_PF_USER | X86_PF_PROT))) {
1199 		if (vmalloc_fault(address) >= 0)
1200 			return;
1201 	}
1202 #endif
1203 
1204 	if (is_f00f_bug(regs, hw_error_code, address))
1205 		return;
1206 
1207 	/* Was the fault spurious, caused by lazy TLB invalidation? */
1208 	if (spurious_kernel_fault(hw_error_code, address))
1209 		return;
1210 
1211 	/* kprobes don't want to hook the spurious faults: */
1212 	if (WARN_ON_ONCE(kprobe_page_fault(regs, X86_TRAP_PF)))
1213 		return;
1214 
1215 	/*
1216 	 * Note, despite being a "bad area", there are quite a few
1217 	 * acceptable reasons to get here, such as erratum fixups
1218 	 * and handling kernel code that can fault, like get_user().
1219 	 *
1220 	 * Don't take the mm semaphore here. If we fixup a prefetch
1221 	 * fault we could otherwise deadlock:
1222 	 */
1223 	bad_area_nosemaphore(regs, hw_error_code, address);
1224 }
1225 NOKPROBE_SYMBOL(do_kern_addr_fault);
1226 
1227 /*
1228  * Handle faults in the user portion of the address space.  Nothing in here
1229  * should check X86_PF_USER without a specific justification: for almost
1230  * all purposes, we should treat a normal kernel access to user memory
1231  * (e.g. get_user(), put_user(), etc.) the same as the WRUSS instruction.
1232  * The one exception is AC flag handling, which is, per the x86
1233  * architecture, special for WRUSS.
1234  */
1235 static inline
1236 void do_user_addr_fault(struct pt_regs *regs,
1237 			unsigned long error_code,
1238 			unsigned long address)
1239 {
1240 	struct vm_area_struct *vma;
1241 	struct task_struct *tsk;
1242 	struct mm_struct *mm;
1243 	vm_fault_t fault;
1244 	unsigned int flags = FAULT_FLAG_DEFAULT;
1245 
1246 	tsk = current;
1247 	mm = tsk->mm;
1248 
1249 	if (unlikely((error_code & (X86_PF_USER | X86_PF_INSTR)) == X86_PF_INSTR)) {
1250 		/*
1251 		 * Whoops, this is kernel mode code trying to execute from
1252 		 * user memory.  Unless this is AMD erratum #93, which
1253 		 * corrupts RIP such that it looks like a user address,
1254 		 * this is unrecoverable.  Don't even try to look up the
1255 		 * VMA or look for extable entries.
1256 		 */
1257 		if (is_errata93(regs, address))
1258 			return;
1259 
1260 		page_fault_oops(regs, error_code, address);
1261 		return;
1262 	}
1263 
1264 	/* kprobes don't want to hook the spurious faults: */
1265 	if (WARN_ON_ONCE(kprobe_page_fault(regs, X86_TRAP_PF)))
1266 		return;
1267 
1268 	/*
1269 	 * Reserved bits are never expected to be set on
1270 	 * entries in the user portion of the page tables.
1271 	 */
1272 	if (unlikely(error_code & X86_PF_RSVD))
1273 		pgtable_bad(regs, error_code, address);
1274 
1275 	/*
1276 	 * If SMAP is on, check for invalid kernel (supervisor) access to user
1277 	 * pages in the user address space.  The odd case here is WRUSS,
1278 	 * which, according to the preliminary documentation, does not respect
1279 	 * SMAP and will have the USER bit set so, in all cases, SMAP
1280 	 * enforcement appears to be consistent with the USER bit.
1281 	 */
1282 	if (unlikely(cpu_feature_enabled(X86_FEATURE_SMAP) &&
1283 		     !(error_code & X86_PF_USER) &&
1284 		     !(regs->flags & X86_EFLAGS_AC))) {
1285 		/*
1286 		 * No extable entry here.  This was a kernel access to an
1287 		 * invalid pointer.  get_kernel_nofault() will not get here.
1288 		 */
1289 		page_fault_oops(regs, error_code, address);
1290 		return;
1291 	}
1292 
1293 	/*
1294 	 * If we're in an interrupt, have no user context or are running
1295 	 * in a region with pagefaults disabled then we must not take the fault
1296 	 */
1297 	if (unlikely(faulthandler_disabled() || !mm)) {
1298 		bad_area_nosemaphore(regs, error_code, address);
1299 		return;
1300 	}
1301 
1302 	/* Legacy check - remove this after verifying that it doesn't trigger */
1303 	if (WARN_ON_ONCE(!(regs->flags & X86_EFLAGS_IF))) {
1304 		bad_area_nosemaphore(regs, error_code, address);
1305 		return;
1306 	}
1307 
1308 	local_irq_enable();
1309 
1310 	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
1311 
1312 	/*
1313 	 * Read-only permissions can not be expressed in shadow stack PTEs.
1314 	 * Treat all shadow stack accesses as WRITE faults. This ensures
1315 	 * that the MM will prepare everything (e.g., break COW) such that
1316 	 * maybe_mkwrite() can create a proper shadow stack PTE.
1317 	 */
1318 	if (error_code & X86_PF_SHSTK)
1319 		flags |= FAULT_FLAG_WRITE;
1320 	if (error_code & X86_PF_WRITE)
1321 		flags |= FAULT_FLAG_WRITE;
1322 	if (error_code & X86_PF_INSTR)
1323 		flags |= FAULT_FLAG_INSTRUCTION;
1324 
1325 	/*
1326 	 * We set FAULT_FLAG_USER based on the register state, not
1327 	 * based on X86_PF_USER. User space accesses that cause
1328 	 * system page faults are still user accesses.
1329 	 */
1330 	if (user_mode(regs))
1331 		flags |= FAULT_FLAG_USER;
1332 
1333 #ifdef CONFIG_X86_64
1334 	/*
1335 	 * Faults in the vsyscall page might need emulation.  The
1336 	 * vsyscall page is at a high address (>PAGE_OFFSET), but is
1337 	 * considered to be part of the user address space.
1338 	 *
1339 	 * The vsyscall page does not have a "real" VMA, so do this
1340 	 * emulation before we go searching for VMAs.
1341 	 *
1342 	 * PKRU never rejects instruction fetches, so we don't need
1343 	 * to consider the PF_PK bit.
1344 	 */
1345 	if (is_vsyscall_vaddr(address)) {
1346 		if (emulate_vsyscall(error_code, regs, address))
1347 			return;
1348 	}
1349 #endif
1350 
1351 	if (!(flags & FAULT_FLAG_USER))
1352 		goto lock_mmap;
1353 
1354 	vma = lock_vma_under_rcu(mm, address);
1355 	if (!vma)
1356 		goto lock_mmap;
1357 
1358 	if (unlikely(access_error(error_code, vma))) {
1359 		vma_end_read(vma);
1360 		goto lock_mmap;
1361 	}
1362 	fault = handle_mm_fault(vma, address, flags | FAULT_FLAG_VMA_LOCK, regs);
1363 	if (!(fault & (VM_FAULT_RETRY | VM_FAULT_COMPLETED)))
1364 		vma_end_read(vma);
1365 
1366 	if (!(fault & VM_FAULT_RETRY)) {
1367 		count_vm_vma_lock_event(VMA_LOCK_SUCCESS);
1368 		goto done;
1369 	}
1370 	count_vm_vma_lock_event(VMA_LOCK_RETRY);
1371 	if (fault & VM_FAULT_MAJOR)
1372 		flags |= FAULT_FLAG_TRIED;
1373 
1374 	/* Quick path to respond to signals */
1375 	if (fault_signal_pending(fault, regs)) {
1376 		if (!user_mode(regs))
1377 			kernelmode_fixup_or_oops(regs, error_code, address,
1378 						 SIGBUS, BUS_ADRERR,
1379 						 ARCH_DEFAULT_PKEY);
1380 		return;
1381 	}
1382 lock_mmap:
1383 
1384 retry:
1385 	vma = lock_mm_and_find_vma(mm, address, regs);
1386 	if (unlikely(!vma)) {
1387 		bad_area_nosemaphore(regs, error_code, address);
1388 		return;
1389 	}
1390 
1391 	/*
1392 	 * Ok, we have a good vm_area for this memory access, so
1393 	 * we can handle it..
1394 	 */
1395 	if (unlikely(access_error(error_code, vma))) {
1396 		bad_area_access_error(regs, error_code, address, vma);
1397 		return;
1398 	}
1399 
1400 	/*
1401 	 * If for any reason at all we couldn't handle the fault,
1402 	 * make sure we exit gracefully rather than endlessly redo
1403 	 * the fault.  Since we never set FAULT_FLAG_RETRY_NOWAIT, if
1404 	 * we get VM_FAULT_RETRY back, the mmap_lock has been unlocked.
1405 	 *
1406 	 * Note that handle_userfault() may also release and reacquire mmap_lock
1407 	 * (and not return with VM_FAULT_RETRY), when returning to userland to
1408 	 * repeat the page fault later with a VM_FAULT_NOPAGE retval
1409 	 * (potentially after handling any pending signal during the return to
1410 	 * userland). The return to userland is identified whenever
1411 	 * FAULT_FLAG_USER|FAULT_FLAG_KILLABLE are both set in flags.
1412 	 */
1413 	fault = handle_mm_fault(vma, address, flags, regs);
1414 
1415 	if (fault_signal_pending(fault, regs)) {
1416 		/*
1417 		 * Quick path to respond to signals.  The core mm code
1418 		 * has unlocked the mm for us if we get here.
1419 		 */
1420 		if (!user_mode(regs))
1421 			kernelmode_fixup_or_oops(regs, error_code, address,
1422 						 SIGBUS, BUS_ADRERR,
1423 						 ARCH_DEFAULT_PKEY);
1424 		return;
1425 	}
1426 
1427 	/* The fault is fully completed (including releasing mmap lock) */
1428 	if (fault & VM_FAULT_COMPLETED)
1429 		return;
1430 
1431 	/*
1432 	 * If we need to retry the mmap_lock has already been released,
1433 	 * and if there is a fatal signal pending there is no guarantee
1434 	 * that we made any progress. Handle this case first.
1435 	 */
1436 	if (unlikely(fault & VM_FAULT_RETRY)) {
1437 		flags |= FAULT_FLAG_TRIED;
1438 		goto retry;
1439 	}
1440 
1441 	mmap_read_unlock(mm);
1442 done:
1443 	if (likely(!(fault & VM_FAULT_ERROR)))
1444 		return;
1445 
1446 	if (fatal_signal_pending(current) && !user_mode(regs)) {
1447 		kernelmode_fixup_or_oops(regs, error_code, address,
1448 					 0, 0, ARCH_DEFAULT_PKEY);
1449 		return;
1450 	}
1451 
1452 	if (fault & VM_FAULT_OOM) {
1453 		/* Kernel mode? Handle exceptions or die: */
1454 		if (!user_mode(regs)) {
1455 			kernelmode_fixup_or_oops(regs, error_code, address,
1456 						 SIGSEGV, SEGV_MAPERR,
1457 						 ARCH_DEFAULT_PKEY);
1458 			return;
1459 		}
1460 
1461 		/*
1462 		 * We ran out of memory, call the OOM killer, and return the
1463 		 * userspace (which will retry the fault, or kill us if we got
1464 		 * oom-killed):
1465 		 */
1466 		pagefault_out_of_memory();
1467 	} else {
1468 		if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
1469 			     VM_FAULT_HWPOISON_LARGE))
1470 			do_sigbus(regs, error_code, address, fault);
1471 		else if (fault & VM_FAULT_SIGSEGV)
1472 			bad_area_nosemaphore(regs, error_code, address);
1473 		else
1474 			BUG();
1475 	}
1476 }
1477 NOKPROBE_SYMBOL(do_user_addr_fault);
1478 
1479 static __always_inline void
1480 trace_page_fault_entries(struct pt_regs *regs, unsigned long error_code,
1481 			 unsigned long address)
1482 {
1483 	if (!trace_pagefault_enabled())
1484 		return;
1485 
1486 	if (user_mode(regs))
1487 		trace_page_fault_user(address, regs, error_code);
1488 	else
1489 		trace_page_fault_kernel(address, regs, error_code);
1490 }
1491 
1492 static __always_inline void
1493 handle_page_fault(struct pt_regs *regs, unsigned long error_code,
1494 			      unsigned long address)
1495 {
1496 	trace_page_fault_entries(regs, error_code, address);
1497 
1498 	if (unlikely(kmmio_fault(regs, address)))
1499 		return;
1500 
1501 	/* Was the fault on kernel-controlled part of the address space? */
1502 	if (unlikely(fault_in_kernel_space(address))) {
1503 		do_kern_addr_fault(regs, error_code, address);
1504 	} else {
1505 		do_user_addr_fault(regs, error_code, address);
1506 		/*
1507 		 * User address page fault handling might have reenabled
1508 		 * interrupts. Fixing up all potential exit points of
1509 		 * do_user_addr_fault() and its leaf functions is just not
1510 		 * doable w/o creating an unholy mess or turning the code
1511 		 * upside down.
1512 		 */
1513 		local_irq_disable();
1514 	}
1515 }
1516 
1517 DEFINE_IDTENTRY_RAW_ERRORCODE(exc_page_fault)
1518 {
1519 	irqentry_state_t state;
1520 	unsigned long address;
1521 
1522 	address = cpu_feature_enabled(X86_FEATURE_FRED) ? fred_event_data(regs) : read_cr2();
1523 
1524 	prefetchw(&current->mm->mmap_lock);
1525 
1526 	/*
1527 	 * KVM uses #PF vector to deliver 'page not present' events to guests
1528 	 * (asynchronous page fault mechanism). The event happens when a
1529 	 * userspace task is trying to access some valid (from guest's point of
1530 	 * view) memory which is not currently mapped by the host (e.g. the
1531 	 * memory is swapped out). Note, the corresponding "page ready" event
1532 	 * which is injected when the memory becomes available, is delivered via
1533 	 * an interrupt mechanism and not a #PF exception
1534 	 * (see arch/x86/kernel/kvm.c: sysvec_kvm_asyncpf_interrupt()).
1535 	 *
1536 	 * We are relying on the interrupted context being sane (valid RSP,
1537 	 * relevant locks not held, etc.), which is fine as long as the
1538 	 * interrupted context had IF=1.  We are also relying on the KVM
1539 	 * async pf type field and CR2 being read consistently instead of
1540 	 * getting values from real and async page faults mixed up.
1541 	 *
1542 	 * Fingers crossed.
1543 	 *
1544 	 * The async #PF handling code takes care of idtentry handling
1545 	 * itself.
1546 	 */
1547 	if (kvm_handle_async_pf(regs, (u32)address))
1548 		return;
1549 
1550 	/*
1551 	 * Entry handling for valid #PF from kernel mode is slightly
1552 	 * different: RCU is already watching and ct_irq_enter() must not
1553 	 * be invoked because a kernel fault on a user space address might
1554 	 * sleep.
1555 	 *
1556 	 * In case the fault hit a RCU idle region the conditional entry
1557 	 * code reenabled RCU to avoid subsequent wreckage which helps
1558 	 * debuggability.
1559 	 */
1560 	state = irqentry_enter(regs);
1561 
1562 	instrumentation_begin();
1563 	handle_page_fault(regs, error_code, address);
1564 	instrumentation_end();
1565 
1566 	irqentry_exit(regs, state);
1567 }
1568