1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 1995 Linus Torvalds 4 * Copyright (C) 2001, 2002 Andi Kleen, SuSE Labs. 5 * Copyright (C) 2008-2009, Red Hat Inc., Ingo Molnar 6 */ 7 #include <linux/sched.h> /* test_thread_flag(), ... */ 8 #include <linux/sched/task_stack.h> /* task_stack_*(), ... */ 9 #include <linux/kdebug.h> /* oops_begin/end, ... */ 10 #include <linux/extable.h> /* search_exception_tables */ 11 #include <linux/bootmem.h> /* max_low_pfn */ 12 #include <linux/kprobes.h> /* NOKPROBE_SYMBOL, ... */ 13 #include <linux/mmiotrace.h> /* kmmio_handler, ... */ 14 #include <linux/perf_event.h> /* perf_sw_event */ 15 #include <linux/hugetlb.h> /* hstate_index_to_shift */ 16 #include <linux/prefetch.h> /* prefetchw */ 17 #include <linux/context_tracking.h> /* exception_enter(), ... */ 18 #include <linux/uaccess.h> /* faulthandler_disabled() */ 19 20 #include <asm/cpufeature.h> /* boot_cpu_has, ... */ 21 #include <asm/traps.h> /* dotraplinkage, ... */ 22 #include <asm/pgalloc.h> /* pgd_*(), ... */ 23 #include <asm/fixmap.h> /* VSYSCALL_ADDR */ 24 #include <asm/vsyscall.h> /* emulate_vsyscall */ 25 #include <asm/vm86.h> /* struct vm86 */ 26 #include <asm/mmu_context.h> /* vma_pkey() */ 27 28 #define CREATE_TRACE_POINTS 29 #include <asm/trace/exceptions.h> 30 31 /* 32 * Returns 0 if mmiotrace is disabled, or if the fault is not 33 * handled by mmiotrace: 34 */ 35 static nokprobe_inline int 36 kmmio_fault(struct pt_regs *regs, unsigned long addr) 37 { 38 if (unlikely(is_kmmio_active())) 39 if (kmmio_handler(regs, addr) == 1) 40 return -1; 41 return 0; 42 } 43 44 static nokprobe_inline int kprobes_fault(struct pt_regs *regs) 45 { 46 int ret = 0; 47 48 /* kprobe_running() needs smp_processor_id() */ 49 if (kprobes_built_in() && !user_mode(regs)) { 50 preempt_disable(); 51 if (kprobe_running() && kprobe_fault_handler(regs, 14)) 52 ret = 1; 53 preempt_enable(); 54 } 55 56 return ret; 57 } 58 59 /* 60 * Prefetch quirks: 61 * 62 * 32-bit mode: 63 * 64 * Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch. 65 * Check that here and ignore it. 66 * 67 * 64-bit mode: 68 * 69 * Sometimes the CPU reports invalid exceptions on prefetch. 70 * Check that here and ignore it. 71 * 72 * Opcode checker based on code by Richard Brunner. 73 */ 74 static inline int 75 check_prefetch_opcode(struct pt_regs *regs, unsigned char *instr, 76 unsigned char opcode, int *prefetch) 77 { 78 unsigned char instr_hi = opcode & 0xf0; 79 unsigned char instr_lo = opcode & 0x0f; 80 81 switch (instr_hi) { 82 case 0x20: 83 case 0x30: 84 /* 85 * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes. 86 * In X86_64 long mode, the CPU will signal invalid 87 * opcode if some of these prefixes are present so 88 * X86_64 will never get here anyway 89 */ 90 return ((instr_lo & 7) == 0x6); 91 #ifdef CONFIG_X86_64 92 case 0x40: 93 /* 94 * In AMD64 long mode 0x40..0x4F are valid REX prefixes 95 * Need to figure out under what instruction mode the 96 * instruction was issued. Could check the LDT for lm, 97 * but for now it's good enough to assume that long 98 * mode only uses well known segments or kernel. 99 */ 100 return (!user_mode(regs) || user_64bit_mode(regs)); 101 #endif 102 case 0x60: 103 /* 0x64 thru 0x67 are valid prefixes in all modes. */ 104 return (instr_lo & 0xC) == 0x4; 105 case 0xF0: 106 /* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */ 107 return !instr_lo || (instr_lo>>1) == 1; 108 case 0x00: 109 /* Prefetch instruction is 0x0F0D or 0x0F18 */ 110 if (probe_kernel_address(instr, opcode)) 111 return 0; 112 113 *prefetch = (instr_lo == 0xF) && 114 (opcode == 0x0D || opcode == 0x18); 115 return 0; 116 default: 117 return 0; 118 } 119 } 120 121 static int 122 is_prefetch(struct pt_regs *regs, unsigned long error_code, unsigned long addr) 123 { 124 unsigned char *max_instr; 125 unsigned char *instr; 126 int prefetch = 0; 127 128 /* 129 * If it was a exec (instruction fetch) fault on NX page, then 130 * do not ignore the fault: 131 */ 132 if (error_code & X86_PF_INSTR) 133 return 0; 134 135 instr = (void *)convert_ip_to_linear(current, regs); 136 max_instr = instr + 15; 137 138 if (user_mode(regs) && instr >= (unsigned char *)TASK_SIZE_MAX) 139 return 0; 140 141 while (instr < max_instr) { 142 unsigned char opcode; 143 144 if (probe_kernel_address(instr, opcode)) 145 break; 146 147 instr++; 148 149 if (!check_prefetch_opcode(regs, instr, opcode, &prefetch)) 150 break; 151 } 152 return prefetch; 153 } 154 155 /* 156 * A protection key fault means that the PKRU value did not allow 157 * access to some PTE. Userspace can figure out what PKRU was 158 * from the XSAVE state, and this function fills out a field in 159 * siginfo so userspace can discover which protection key was set 160 * on the PTE. 161 * 162 * If we get here, we know that the hardware signaled a X86_PF_PK 163 * fault and that there was a VMA once we got in the fault 164 * handler. It does *not* guarantee that the VMA we find here 165 * was the one that we faulted on. 166 * 167 * 1. T1 : mprotect_key(foo, PAGE_SIZE, pkey=4); 168 * 2. T1 : set PKRU to deny access to pkey=4, touches page 169 * 3. T1 : faults... 170 * 4. T2: mprotect_key(foo, PAGE_SIZE, pkey=5); 171 * 5. T1 : enters fault handler, takes mmap_sem, etc... 172 * 6. T1 : reaches here, sees vma_pkey(vma)=5, when we really 173 * faulted on a pte with its pkey=4. 174 */ 175 static void fill_sig_info_pkey(int si_signo, int si_code, siginfo_t *info, 176 u32 *pkey) 177 { 178 /* This is effectively an #ifdef */ 179 if (!boot_cpu_has(X86_FEATURE_OSPKE)) 180 return; 181 182 /* Fault not from Protection Keys: nothing to do */ 183 if ((si_code != SEGV_PKUERR) || (si_signo != SIGSEGV)) 184 return; 185 /* 186 * force_sig_info_fault() is called from a number of 187 * contexts, some of which have a VMA and some of which 188 * do not. The X86_PF_PK handing happens after we have a 189 * valid VMA, so we should never reach this without a 190 * valid VMA. 191 */ 192 if (!pkey) { 193 WARN_ONCE(1, "PKU fault with no VMA passed in"); 194 info->si_pkey = 0; 195 return; 196 } 197 /* 198 * si_pkey should be thought of as a strong hint, but not 199 * absolutely guranteed to be 100% accurate because of 200 * the race explained above. 201 */ 202 info->si_pkey = *pkey; 203 } 204 205 static void 206 force_sig_info_fault(int si_signo, int si_code, unsigned long address, 207 struct task_struct *tsk, u32 *pkey, int fault) 208 { 209 unsigned lsb = 0; 210 siginfo_t info; 211 212 info.si_signo = si_signo; 213 info.si_errno = 0; 214 info.si_code = si_code; 215 info.si_addr = (void __user *)address; 216 if (fault & VM_FAULT_HWPOISON_LARGE) 217 lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault)); 218 if (fault & VM_FAULT_HWPOISON) 219 lsb = PAGE_SHIFT; 220 info.si_addr_lsb = lsb; 221 222 fill_sig_info_pkey(si_signo, si_code, &info, pkey); 223 224 force_sig_info(si_signo, &info, tsk); 225 } 226 227 DEFINE_SPINLOCK(pgd_lock); 228 LIST_HEAD(pgd_list); 229 230 #ifdef CONFIG_X86_32 231 static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address) 232 { 233 unsigned index = pgd_index(address); 234 pgd_t *pgd_k; 235 p4d_t *p4d, *p4d_k; 236 pud_t *pud, *pud_k; 237 pmd_t *pmd, *pmd_k; 238 239 pgd += index; 240 pgd_k = init_mm.pgd + index; 241 242 if (!pgd_present(*pgd_k)) 243 return NULL; 244 245 /* 246 * set_pgd(pgd, *pgd_k); here would be useless on PAE 247 * and redundant with the set_pmd() on non-PAE. As would 248 * set_p4d/set_pud. 249 */ 250 p4d = p4d_offset(pgd, address); 251 p4d_k = p4d_offset(pgd_k, address); 252 if (!p4d_present(*p4d_k)) 253 return NULL; 254 255 pud = pud_offset(p4d, address); 256 pud_k = pud_offset(p4d_k, address); 257 if (!pud_present(*pud_k)) 258 return NULL; 259 260 pmd = pmd_offset(pud, address); 261 pmd_k = pmd_offset(pud_k, address); 262 if (!pmd_present(*pmd_k)) 263 return NULL; 264 265 if (!pmd_present(*pmd)) 266 set_pmd(pmd, *pmd_k); 267 else 268 BUG_ON(pmd_page(*pmd) != pmd_page(*pmd_k)); 269 270 return pmd_k; 271 } 272 273 void vmalloc_sync_all(void) 274 { 275 unsigned long address; 276 277 if (SHARED_KERNEL_PMD) 278 return; 279 280 for (address = VMALLOC_START & PMD_MASK; 281 address >= TASK_SIZE_MAX && address < FIXADDR_TOP; 282 address += PMD_SIZE) { 283 struct page *page; 284 285 spin_lock(&pgd_lock); 286 list_for_each_entry(page, &pgd_list, lru) { 287 spinlock_t *pgt_lock; 288 pmd_t *ret; 289 290 /* the pgt_lock only for Xen */ 291 pgt_lock = &pgd_page_get_mm(page)->page_table_lock; 292 293 spin_lock(pgt_lock); 294 ret = vmalloc_sync_one(page_address(page), address); 295 spin_unlock(pgt_lock); 296 297 if (!ret) 298 break; 299 } 300 spin_unlock(&pgd_lock); 301 } 302 } 303 304 /* 305 * 32-bit: 306 * 307 * Handle a fault on the vmalloc or module mapping area 308 */ 309 static noinline int vmalloc_fault(unsigned long address) 310 { 311 unsigned long pgd_paddr; 312 pmd_t *pmd_k; 313 pte_t *pte_k; 314 315 /* Make sure we are in vmalloc area: */ 316 if (!(address >= VMALLOC_START && address < VMALLOC_END)) 317 return -1; 318 319 WARN_ON_ONCE(in_nmi()); 320 321 /* 322 * Synchronize this task's top level page-table 323 * with the 'reference' page table. 324 * 325 * Do _not_ use "current" here. We might be inside 326 * an interrupt in the middle of a task switch.. 327 */ 328 pgd_paddr = read_cr3_pa(); 329 pmd_k = vmalloc_sync_one(__va(pgd_paddr), address); 330 if (!pmd_k) 331 return -1; 332 333 if (pmd_huge(*pmd_k)) 334 return 0; 335 336 pte_k = pte_offset_kernel(pmd_k, address); 337 if (!pte_present(*pte_k)) 338 return -1; 339 340 return 0; 341 } 342 NOKPROBE_SYMBOL(vmalloc_fault); 343 344 /* 345 * Did it hit the DOS screen memory VA from vm86 mode? 346 */ 347 static inline void 348 check_v8086_mode(struct pt_regs *regs, unsigned long address, 349 struct task_struct *tsk) 350 { 351 #ifdef CONFIG_VM86 352 unsigned long bit; 353 354 if (!v8086_mode(regs) || !tsk->thread.vm86) 355 return; 356 357 bit = (address - 0xA0000) >> PAGE_SHIFT; 358 if (bit < 32) 359 tsk->thread.vm86->screen_bitmap |= 1 << bit; 360 #endif 361 } 362 363 static bool low_pfn(unsigned long pfn) 364 { 365 return pfn < max_low_pfn; 366 } 367 368 static void dump_pagetable(unsigned long address) 369 { 370 pgd_t *base = __va(read_cr3_pa()); 371 pgd_t *pgd = &base[pgd_index(address)]; 372 p4d_t *p4d; 373 pud_t *pud; 374 pmd_t *pmd; 375 pte_t *pte; 376 377 #ifdef CONFIG_X86_PAE 378 pr_info("*pdpt = %016Lx ", pgd_val(*pgd)); 379 if (!low_pfn(pgd_val(*pgd) >> PAGE_SHIFT) || !pgd_present(*pgd)) 380 goto out; 381 #define pr_pde pr_cont 382 #else 383 #define pr_pde pr_info 384 #endif 385 p4d = p4d_offset(pgd, address); 386 pud = pud_offset(p4d, address); 387 pmd = pmd_offset(pud, address); 388 pr_pde("*pde = %0*Lx ", sizeof(*pmd) * 2, (u64)pmd_val(*pmd)); 389 #undef pr_pde 390 391 /* 392 * We must not directly access the pte in the highpte 393 * case if the page table is located in highmem. 394 * And let's rather not kmap-atomic the pte, just in case 395 * it's allocated already: 396 */ 397 if (!low_pfn(pmd_pfn(*pmd)) || !pmd_present(*pmd) || pmd_large(*pmd)) 398 goto out; 399 400 pte = pte_offset_kernel(pmd, address); 401 pr_cont("*pte = %0*Lx ", sizeof(*pte) * 2, (u64)pte_val(*pte)); 402 out: 403 pr_cont("\n"); 404 } 405 406 #else /* CONFIG_X86_64: */ 407 408 void vmalloc_sync_all(void) 409 { 410 sync_global_pgds(VMALLOC_START & PGDIR_MASK, VMALLOC_END); 411 } 412 413 /* 414 * 64-bit: 415 * 416 * Handle a fault on the vmalloc area 417 */ 418 static noinline int vmalloc_fault(unsigned long address) 419 { 420 pgd_t *pgd, *pgd_ref; 421 p4d_t *p4d, *p4d_ref; 422 pud_t *pud, *pud_ref; 423 pmd_t *pmd, *pmd_ref; 424 pte_t *pte, *pte_ref; 425 426 /* Make sure we are in vmalloc area: */ 427 if (!(address >= VMALLOC_START && address < VMALLOC_END)) 428 return -1; 429 430 WARN_ON_ONCE(in_nmi()); 431 432 /* 433 * Copy kernel mappings over when needed. This can also 434 * happen within a race in page table update. In the later 435 * case just flush: 436 */ 437 pgd = (pgd_t *)__va(read_cr3_pa()) + pgd_index(address); 438 pgd_ref = pgd_offset_k(address); 439 if (pgd_none(*pgd_ref)) 440 return -1; 441 442 if (CONFIG_PGTABLE_LEVELS > 4) { 443 if (pgd_none(*pgd)) { 444 set_pgd(pgd, *pgd_ref); 445 arch_flush_lazy_mmu_mode(); 446 } else { 447 BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref)); 448 } 449 } 450 451 /* With 4-level paging, copying happens on the p4d level. */ 452 p4d = p4d_offset(pgd, address); 453 p4d_ref = p4d_offset(pgd_ref, address); 454 if (p4d_none(*p4d_ref)) 455 return -1; 456 457 if (p4d_none(*p4d) && CONFIG_PGTABLE_LEVELS == 4) { 458 set_p4d(p4d, *p4d_ref); 459 arch_flush_lazy_mmu_mode(); 460 } else { 461 BUG_ON(p4d_pfn(*p4d) != p4d_pfn(*p4d_ref)); 462 } 463 464 /* 465 * Below here mismatches are bugs because these lower tables 466 * are shared: 467 */ 468 BUILD_BUG_ON(CONFIG_PGTABLE_LEVELS < 4); 469 470 pud = pud_offset(p4d, address); 471 pud_ref = pud_offset(p4d_ref, address); 472 if (pud_none(*pud_ref)) 473 return -1; 474 475 if (pud_none(*pud) || pud_pfn(*pud) != pud_pfn(*pud_ref)) 476 BUG(); 477 478 if (pud_huge(*pud)) 479 return 0; 480 481 pmd = pmd_offset(pud, address); 482 pmd_ref = pmd_offset(pud_ref, address); 483 if (pmd_none(*pmd_ref)) 484 return -1; 485 486 if (pmd_none(*pmd) || pmd_pfn(*pmd) != pmd_pfn(*pmd_ref)) 487 BUG(); 488 489 if (pmd_huge(*pmd)) 490 return 0; 491 492 pte_ref = pte_offset_kernel(pmd_ref, address); 493 if (!pte_present(*pte_ref)) 494 return -1; 495 496 pte = pte_offset_kernel(pmd, address); 497 498 /* 499 * Don't use pte_page here, because the mappings can point 500 * outside mem_map, and the NUMA hash lookup cannot handle 501 * that: 502 */ 503 if (!pte_present(*pte) || pte_pfn(*pte) != pte_pfn(*pte_ref)) 504 BUG(); 505 506 return 0; 507 } 508 NOKPROBE_SYMBOL(vmalloc_fault); 509 510 #ifdef CONFIG_CPU_SUP_AMD 511 static const char errata93_warning[] = 512 KERN_ERR 513 "******* Your BIOS seems to not contain a fix for K8 errata #93\n" 514 "******* Working around it, but it may cause SEGVs or burn power.\n" 515 "******* Please consider a BIOS update.\n" 516 "******* Disabling USB legacy in the BIOS may also help.\n"; 517 #endif 518 519 /* 520 * No vm86 mode in 64-bit mode: 521 */ 522 static inline void 523 check_v8086_mode(struct pt_regs *regs, unsigned long address, 524 struct task_struct *tsk) 525 { 526 } 527 528 static int bad_address(void *p) 529 { 530 unsigned long dummy; 531 532 return probe_kernel_address((unsigned long *)p, dummy); 533 } 534 535 static void dump_pagetable(unsigned long address) 536 { 537 pgd_t *base = __va(read_cr3_pa()); 538 pgd_t *pgd = base + pgd_index(address); 539 p4d_t *p4d; 540 pud_t *pud; 541 pmd_t *pmd; 542 pte_t *pte; 543 544 if (bad_address(pgd)) 545 goto bad; 546 547 pr_info("PGD %lx ", pgd_val(*pgd)); 548 549 if (!pgd_present(*pgd)) 550 goto out; 551 552 p4d = p4d_offset(pgd, address); 553 if (bad_address(p4d)) 554 goto bad; 555 556 pr_cont("P4D %lx ", p4d_val(*p4d)); 557 if (!p4d_present(*p4d) || p4d_large(*p4d)) 558 goto out; 559 560 pud = pud_offset(p4d, address); 561 if (bad_address(pud)) 562 goto bad; 563 564 pr_cont("PUD %lx ", pud_val(*pud)); 565 if (!pud_present(*pud) || pud_large(*pud)) 566 goto out; 567 568 pmd = pmd_offset(pud, address); 569 if (bad_address(pmd)) 570 goto bad; 571 572 pr_cont("PMD %lx ", pmd_val(*pmd)); 573 if (!pmd_present(*pmd) || pmd_large(*pmd)) 574 goto out; 575 576 pte = pte_offset_kernel(pmd, address); 577 if (bad_address(pte)) 578 goto bad; 579 580 pr_cont("PTE %lx", pte_val(*pte)); 581 out: 582 pr_cont("\n"); 583 return; 584 bad: 585 pr_info("BAD\n"); 586 } 587 588 #endif /* CONFIG_X86_64 */ 589 590 /* 591 * Workaround for K8 erratum #93 & buggy BIOS. 592 * 593 * BIOS SMM functions are required to use a specific workaround 594 * to avoid corruption of the 64bit RIP register on C stepping K8. 595 * 596 * A lot of BIOS that didn't get tested properly miss this. 597 * 598 * The OS sees this as a page fault with the upper 32bits of RIP cleared. 599 * Try to work around it here. 600 * 601 * Note we only handle faults in kernel here. 602 * Does nothing on 32-bit. 603 */ 604 static int is_errata93(struct pt_regs *regs, unsigned long address) 605 { 606 #if defined(CONFIG_X86_64) && defined(CONFIG_CPU_SUP_AMD) 607 if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD 608 || boot_cpu_data.x86 != 0xf) 609 return 0; 610 611 if (address != regs->ip) 612 return 0; 613 614 if ((address >> 32) != 0) 615 return 0; 616 617 address |= 0xffffffffUL << 32; 618 if ((address >= (u64)_stext && address <= (u64)_etext) || 619 (address >= MODULES_VADDR && address <= MODULES_END)) { 620 printk_once(errata93_warning); 621 regs->ip = address; 622 return 1; 623 } 624 #endif 625 return 0; 626 } 627 628 /* 629 * Work around K8 erratum #100 K8 in compat mode occasionally jumps 630 * to illegal addresses >4GB. 631 * 632 * We catch this in the page fault handler because these addresses 633 * are not reachable. Just detect this case and return. Any code 634 * segment in LDT is compatibility mode. 635 */ 636 static int is_errata100(struct pt_regs *regs, unsigned long address) 637 { 638 #ifdef CONFIG_X86_64 639 if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) && (address >> 32)) 640 return 1; 641 #endif 642 return 0; 643 } 644 645 static int is_f00f_bug(struct pt_regs *regs, unsigned long address) 646 { 647 #ifdef CONFIG_X86_F00F_BUG 648 unsigned long nr; 649 650 /* 651 * Pentium F0 0F C7 C8 bug workaround: 652 */ 653 if (boot_cpu_has_bug(X86_BUG_F00F)) { 654 nr = (address - idt_descr.address) >> 3; 655 656 if (nr == 6) { 657 do_invalid_op(regs, 0); 658 return 1; 659 } 660 } 661 #endif 662 return 0; 663 } 664 665 static const char nx_warning[] = KERN_CRIT 666 "kernel tried to execute NX-protected page - exploit attempt? (uid: %d)\n"; 667 static const char smep_warning[] = KERN_CRIT 668 "unable to execute userspace code (SMEP?) (uid: %d)\n"; 669 670 static void 671 show_fault_oops(struct pt_regs *regs, unsigned long error_code, 672 unsigned long address) 673 { 674 if (!oops_may_print()) 675 return; 676 677 if (error_code & X86_PF_INSTR) { 678 unsigned int level; 679 pgd_t *pgd; 680 pte_t *pte; 681 682 pgd = __va(read_cr3_pa()); 683 pgd += pgd_index(address); 684 685 pte = lookup_address_in_pgd(pgd, address, &level); 686 687 if (pte && pte_present(*pte) && !pte_exec(*pte)) 688 printk(nx_warning, from_kuid(&init_user_ns, current_uid())); 689 if (pte && pte_present(*pte) && pte_exec(*pte) && 690 (pgd_flags(*pgd) & _PAGE_USER) && 691 (__read_cr4() & X86_CR4_SMEP)) 692 printk(smep_warning, from_kuid(&init_user_ns, current_uid())); 693 } 694 695 printk(KERN_ALERT "BUG: unable to handle kernel "); 696 if (address < PAGE_SIZE) 697 printk(KERN_CONT "NULL pointer dereference"); 698 else 699 printk(KERN_CONT "paging request"); 700 701 printk(KERN_CONT " at %px\n", (void *) address); 702 printk(KERN_ALERT "IP: %pS\n", (void *)regs->ip); 703 704 dump_pagetable(address); 705 } 706 707 static noinline void 708 pgtable_bad(struct pt_regs *regs, unsigned long error_code, 709 unsigned long address) 710 { 711 struct task_struct *tsk; 712 unsigned long flags; 713 int sig; 714 715 flags = oops_begin(); 716 tsk = current; 717 sig = SIGKILL; 718 719 printk(KERN_ALERT "%s: Corrupted page table at address %lx\n", 720 tsk->comm, address); 721 dump_pagetable(address); 722 723 tsk->thread.cr2 = address; 724 tsk->thread.trap_nr = X86_TRAP_PF; 725 tsk->thread.error_code = error_code; 726 727 if (__die("Bad pagetable", regs, error_code)) 728 sig = 0; 729 730 oops_end(flags, regs, sig); 731 } 732 733 static noinline void 734 no_context(struct pt_regs *regs, unsigned long error_code, 735 unsigned long address, int signal, int si_code) 736 { 737 struct task_struct *tsk = current; 738 unsigned long flags; 739 int sig; 740 741 /* Are we prepared to handle this kernel fault? */ 742 if (fixup_exception(regs, X86_TRAP_PF)) { 743 /* 744 * Any interrupt that takes a fault gets the fixup. This makes 745 * the below recursive fault logic only apply to a faults from 746 * task context. 747 */ 748 if (in_interrupt()) 749 return; 750 751 /* 752 * Per the above we're !in_interrupt(), aka. task context. 753 * 754 * In this case we need to make sure we're not recursively 755 * faulting through the emulate_vsyscall() logic. 756 */ 757 if (current->thread.sig_on_uaccess_err && signal) { 758 tsk->thread.trap_nr = X86_TRAP_PF; 759 tsk->thread.error_code = error_code | X86_PF_USER; 760 tsk->thread.cr2 = address; 761 762 /* XXX: hwpoison faults will set the wrong code. */ 763 force_sig_info_fault(signal, si_code, address, 764 tsk, NULL, 0); 765 } 766 767 /* 768 * Barring that, we can do the fixup and be happy. 769 */ 770 return; 771 } 772 773 #ifdef CONFIG_VMAP_STACK 774 /* 775 * Stack overflow? During boot, we can fault near the initial 776 * stack in the direct map, but that's not an overflow -- check 777 * that we're in vmalloc space to avoid this. 778 */ 779 if (is_vmalloc_addr((void *)address) && 780 (((unsigned long)tsk->stack - 1 - address < PAGE_SIZE) || 781 address - ((unsigned long)tsk->stack + THREAD_SIZE) < PAGE_SIZE)) { 782 unsigned long stack = this_cpu_read(orig_ist.ist[DOUBLEFAULT_STACK]) - sizeof(void *); 783 /* 784 * We're likely to be running with very little stack space 785 * left. It's plausible that we'd hit this condition but 786 * double-fault even before we get this far, in which case 787 * we're fine: the double-fault handler will deal with it. 788 * 789 * We don't want to make it all the way into the oops code 790 * and then double-fault, though, because we're likely to 791 * break the console driver and lose most of the stack dump. 792 */ 793 asm volatile ("movq %[stack], %%rsp\n\t" 794 "call handle_stack_overflow\n\t" 795 "1: jmp 1b" 796 : ASM_CALL_CONSTRAINT 797 : "D" ("kernel stack overflow (page fault)"), 798 "S" (regs), "d" (address), 799 [stack] "rm" (stack)); 800 unreachable(); 801 } 802 #endif 803 804 /* 805 * 32-bit: 806 * 807 * Valid to do another page fault here, because if this fault 808 * had been triggered by is_prefetch fixup_exception would have 809 * handled it. 810 * 811 * 64-bit: 812 * 813 * Hall of shame of CPU/BIOS bugs. 814 */ 815 if (is_prefetch(regs, error_code, address)) 816 return; 817 818 if (is_errata93(regs, address)) 819 return; 820 821 /* 822 * Oops. The kernel tried to access some bad page. We'll have to 823 * terminate things with extreme prejudice: 824 */ 825 flags = oops_begin(); 826 827 show_fault_oops(regs, error_code, address); 828 829 if (task_stack_end_corrupted(tsk)) 830 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n"); 831 832 tsk->thread.cr2 = address; 833 tsk->thread.trap_nr = X86_TRAP_PF; 834 tsk->thread.error_code = error_code; 835 836 sig = SIGKILL; 837 if (__die("Oops", regs, error_code)) 838 sig = 0; 839 840 /* Executive summary in case the body of the oops scrolled away */ 841 printk(KERN_DEFAULT "CR2: %016lx\n", address); 842 843 oops_end(flags, regs, sig); 844 } 845 846 /* 847 * Print out info about fatal segfaults, if the show_unhandled_signals 848 * sysctl is set: 849 */ 850 static inline void 851 show_signal_msg(struct pt_regs *regs, unsigned long error_code, 852 unsigned long address, struct task_struct *tsk) 853 { 854 if (!unhandled_signal(tsk, SIGSEGV)) 855 return; 856 857 if (!printk_ratelimit()) 858 return; 859 860 printk("%s%s[%d]: segfault at %lx ip %px sp %px error %lx", 861 task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG, 862 tsk->comm, task_pid_nr(tsk), address, 863 (void *)regs->ip, (void *)regs->sp, error_code); 864 865 print_vma_addr(KERN_CONT " in ", regs->ip); 866 867 printk(KERN_CONT "\n"); 868 } 869 870 static void 871 __bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code, 872 unsigned long address, u32 *pkey, int si_code) 873 { 874 struct task_struct *tsk = current; 875 876 /* User mode accesses just cause a SIGSEGV */ 877 if (error_code & X86_PF_USER) { 878 /* 879 * It's possible to have interrupts off here: 880 */ 881 local_irq_enable(); 882 883 /* 884 * Valid to do another page fault here because this one came 885 * from user space: 886 */ 887 if (is_prefetch(regs, error_code, address)) 888 return; 889 890 if (is_errata100(regs, address)) 891 return; 892 893 #ifdef CONFIG_X86_64 894 /* 895 * Instruction fetch faults in the vsyscall page might need 896 * emulation. 897 */ 898 if (unlikely((error_code & X86_PF_INSTR) && 899 ((address & ~0xfff) == VSYSCALL_ADDR))) { 900 if (emulate_vsyscall(regs, address)) 901 return; 902 } 903 #endif 904 905 /* 906 * To avoid leaking information about the kernel page table 907 * layout, pretend that user-mode accesses to kernel addresses 908 * are always protection faults. 909 */ 910 if (address >= TASK_SIZE_MAX) 911 error_code |= X86_PF_PROT; 912 913 if (likely(show_unhandled_signals)) 914 show_signal_msg(regs, error_code, address, tsk); 915 916 tsk->thread.cr2 = address; 917 tsk->thread.error_code = error_code; 918 tsk->thread.trap_nr = X86_TRAP_PF; 919 920 force_sig_info_fault(SIGSEGV, si_code, address, tsk, pkey, 0); 921 922 return; 923 } 924 925 if (is_f00f_bug(regs, address)) 926 return; 927 928 no_context(regs, error_code, address, SIGSEGV, si_code); 929 } 930 931 static noinline void 932 bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code, 933 unsigned long address, u32 *pkey) 934 { 935 __bad_area_nosemaphore(regs, error_code, address, pkey, SEGV_MAPERR); 936 } 937 938 static void 939 __bad_area(struct pt_regs *regs, unsigned long error_code, 940 unsigned long address, struct vm_area_struct *vma, int si_code) 941 { 942 struct mm_struct *mm = current->mm; 943 u32 pkey; 944 945 if (vma) 946 pkey = vma_pkey(vma); 947 948 /* 949 * Something tried to access memory that isn't in our memory map.. 950 * Fix it, but check if it's kernel or user first.. 951 */ 952 up_read(&mm->mmap_sem); 953 954 __bad_area_nosemaphore(regs, error_code, address, 955 (vma) ? &pkey : NULL, si_code); 956 } 957 958 static noinline void 959 bad_area(struct pt_regs *regs, unsigned long error_code, unsigned long address) 960 { 961 __bad_area(regs, error_code, address, NULL, SEGV_MAPERR); 962 } 963 964 static inline bool bad_area_access_from_pkeys(unsigned long error_code, 965 struct vm_area_struct *vma) 966 { 967 /* This code is always called on the current mm */ 968 bool foreign = false; 969 970 if (!boot_cpu_has(X86_FEATURE_OSPKE)) 971 return false; 972 if (error_code & X86_PF_PK) 973 return true; 974 /* this checks permission keys on the VMA: */ 975 if (!arch_vma_access_permitted(vma, (error_code & X86_PF_WRITE), 976 (error_code & X86_PF_INSTR), foreign)) 977 return true; 978 return false; 979 } 980 981 static noinline void 982 bad_area_access_error(struct pt_regs *regs, unsigned long error_code, 983 unsigned long address, struct vm_area_struct *vma) 984 { 985 /* 986 * This OSPKE check is not strictly necessary at runtime. 987 * But, doing it this way allows compiler optimizations 988 * if pkeys are compiled out. 989 */ 990 if (bad_area_access_from_pkeys(error_code, vma)) 991 __bad_area(regs, error_code, address, vma, SEGV_PKUERR); 992 else 993 __bad_area(regs, error_code, address, vma, SEGV_ACCERR); 994 } 995 996 static void 997 do_sigbus(struct pt_regs *regs, unsigned long error_code, unsigned long address, 998 u32 *pkey, unsigned int fault) 999 { 1000 struct task_struct *tsk = current; 1001 int code = BUS_ADRERR; 1002 1003 /* Kernel mode? Handle exceptions or die: */ 1004 if (!(error_code & X86_PF_USER)) { 1005 no_context(regs, error_code, address, SIGBUS, BUS_ADRERR); 1006 return; 1007 } 1008 1009 /* User-space => ok to do another page fault: */ 1010 if (is_prefetch(regs, error_code, address)) 1011 return; 1012 1013 tsk->thread.cr2 = address; 1014 tsk->thread.error_code = error_code; 1015 tsk->thread.trap_nr = X86_TRAP_PF; 1016 1017 #ifdef CONFIG_MEMORY_FAILURE 1018 if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) { 1019 printk(KERN_ERR 1020 "MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n", 1021 tsk->comm, tsk->pid, address); 1022 code = BUS_MCEERR_AR; 1023 } 1024 #endif 1025 force_sig_info_fault(SIGBUS, code, address, tsk, pkey, fault); 1026 } 1027 1028 static noinline void 1029 mm_fault_error(struct pt_regs *regs, unsigned long error_code, 1030 unsigned long address, u32 *pkey, unsigned int fault) 1031 { 1032 if (fatal_signal_pending(current) && !(error_code & X86_PF_USER)) { 1033 no_context(regs, error_code, address, 0, 0); 1034 return; 1035 } 1036 1037 if (fault & VM_FAULT_OOM) { 1038 /* Kernel mode? Handle exceptions or die: */ 1039 if (!(error_code & X86_PF_USER)) { 1040 no_context(regs, error_code, address, 1041 SIGSEGV, SEGV_MAPERR); 1042 return; 1043 } 1044 1045 /* 1046 * We ran out of memory, call the OOM killer, and return the 1047 * userspace (which will retry the fault, or kill us if we got 1048 * oom-killed): 1049 */ 1050 pagefault_out_of_memory(); 1051 } else { 1052 if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON| 1053 VM_FAULT_HWPOISON_LARGE)) 1054 do_sigbus(regs, error_code, address, pkey, fault); 1055 else if (fault & VM_FAULT_SIGSEGV) 1056 bad_area_nosemaphore(regs, error_code, address, pkey); 1057 else 1058 BUG(); 1059 } 1060 } 1061 1062 static int spurious_fault_check(unsigned long error_code, pte_t *pte) 1063 { 1064 if ((error_code & X86_PF_WRITE) && !pte_write(*pte)) 1065 return 0; 1066 1067 if ((error_code & X86_PF_INSTR) && !pte_exec(*pte)) 1068 return 0; 1069 /* 1070 * Note: We do not do lazy flushing on protection key 1071 * changes, so no spurious fault will ever set X86_PF_PK. 1072 */ 1073 if ((error_code & X86_PF_PK)) 1074 return 1; 1075 1076 return 1; 1077 } 1078 1079 /* 1080 * Handle a spurious fault caused by a stale TLB entry. 1081 * 1082 * This allows us to lazily refresh the TLB when increasing the 1083 * permissions of a kernel page (RO -> RW or NX -> X). Doing it 1084 * eagerly is very expensive since that implies doing a full 1085 * cross-processor TLB flush, even if no stale TLB entries exist 1086 * on other processors. 1087 * 1088 * Spurious faults may only occur if the TLB contains an entry with 1089 * fewer permission than the page table entry. Non-present (P = 0) 1090 * and reserved bit (R = 1) faults are never spurious. 1091 * 1092 * There are no security implications to leaving a stale TLB when 1093 * increasing the permissions on a page. 1094 * 1095 * Returns non-zero if a spurious fault was handled, zero otherwise. 1096 * 1097 * See Intel Developer's Manual Vol 3 Section 4.10.4.3, bullet 3 1098 * (Optional Invalidation). 1099 */ 1100 static noinline int 1101 spurious_fault(unsigned long error_code, unsigned long address) 1102 { 1103 pgd_t *pgd; 1104 p4d_t *p4d; 1105 pud_t *pud; 1106 pmd_t *pmd; 1107 pte_t *pte; 1108 int ret; 1109 1110 /* 1111 * Only writes to RO or instruction fetches from NX may cause 1112 * spurious faults. 1113 * 1114 * These could be from user or supervisor accesses but the TLB 1115 * is only lazily flushed after a kernel mapping protection 1116 * change, so user accesses are not expected to cause spurious 1117 * faults. 1118 */ 1119 if (error_code != (X86_PF_WRITE | X86_PF_PROT) && 1120 error_code != (X86_PF_INSTR | X86_PF_PROT)) 1121 return 0; 1122 1123 pgd = init_mm.pgd + pgd_index(address); 1124 if (!pgd_present(*pgd)) 1125 return 0; 1126 1127 p4d = p4d_offset(pgd, address); 1128 if (!p4d_present(*p4d)) 1129 return 0; 1130 1131 if (p4d_large(*p4d)) 1132 return spurious_fault_check(error_code, (pte_t *) p4d); 1133 1134 pud = pud_offset(p4d, address); 1135 if (!pud_present(*pud)) 1136 return 0; 1137 1138 if (pud_large(*pud)) 1139 return spurious_fault_check(error_code, (pte_t *) pud); 1140 1141 pmd = pmd_offset(pud, address); 1142 if (!pmd_present(*pmd)) 1143 return 0; 1144 1145 if (pmd_large(*pmd)) 1146 return spurious_fault_check(error_code, (pte_t *) pmd); 1147 1148 pte = pte_offset_kernel(pmd, address); 1149 if (!pte_present(*pte)) 1150 return 0; 1151 1152 ret = spurious_fault_check(error_code, pte); 1153 if (!ret) 1154 return 0; 1155 1156 /* 1157 * Make sure we have permissions in PMD. 1158 * If not, then there's a bug in the page tables: 1159 */ 1160 ret = spurious_fault_check(error_code, (pte_t *) pmd); 1161 WARN_ONCE(!ret, "PMD has incorrect permission bits\n"); 1162 1163 return ret; 1164 } 1165 NOKPROBE_SYMBOL(spurious_fault); 1166 1167 int show_unhandled_signals = 1; 1168 1169 static inline int 1170 access_error(unsigned long error_code, struct vm_area_struct *vma) 1171 { 1172 /* This is only called for the current mm, so: */ 1173 bool foreign = false; 1174 1175 /* 1176 * Read or write was blocked by protection keys. This is 1177 * always an unconditional error and can never result in 1178 * a follow-up action to resolve the fault, like a COW. 1179 */ 1180 if (error_code & X86_PF_PK) 1181 return 1; 1182 1183 /* 1184 * Make sure to check the VMA so that we do not perform 1185 * faults just to hit a X86_PF_PK as soon as we fill in a 1186 * page. 1187 */ 1188 if (!arch_vma_access_permitted(vma, (error_code & X86_PF_WRITE), 1189 (error_code & X86_PF_INSTR), foreign)) 1190 return 1; 1191 1192 if (error_code & X86_PF_WRITE) { 1193 /* write, present and write, not present: */ 1194 if (unlikely(!(vma->vm_flags & VM_WRITE))) 1195 return 1; 1196 return 0; 1197 } 1198 1199 /* read, present: */ 1200 if (unlikely(error_code & X86_PF_PROT)) 1201 return 1; 1202 1203 /* read, not present: */ 1204 if (unlikely(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))) 1205 return 1; 1206 1207 return 0; 1208 } 1209 1210 static int fault_in_kernel_space(unsigned long address) 1211 { 1212 return address >= TASK_SIZE_MAX; 1213 } 1214 1215 static inline bool smap_violation(int error_code, struct pt_regs *regs) 1216 { 1217 if (!IS_ENABLED(CONFIG_X86_SMAP)) 1218 return false; 1219 1220 if (!static_cpu_has(X86_FEATURE_SMAP)) 1221 return false; 1222 1223 if (error_code & X86_PF_USER) 1224 return false; 1225 1226 if (!user_mode(regs) && (regs->flags & X86_EFLAGS_AC)) 1227 return false; 1228 1229 return true; 1230 } 1231 1232 /* 1233 * This routine handles page faults. It determines the address, 1234 * and the problem, and then passes it off to one of the appropriate 1235 * routines. 1236 */ 1237 static noinline void 1238 __do_page_fault(struct pt_regs *regs, unsigned long error_code, 1239 unsigned long address) 1240 { 1241 struct vm_area_struct *vma; 1242 struct task_struct *tsk; 1243 struct mm_struct *mm; 1244 int fault, major = 0; 1245 unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE; 1246 u32 pkey; 1247 1248 tsk = current; 1249 mm = tsk->mm; 1250 1251 prefetchw(&mm->mmap_sem); 1252 1253 if (unlikely(kmmio_fault(regs, address))) 1254 return; 1255 1256 /* 1257 * We fault-in kernel-space virtual memory on-demand. The 1258 * 'reference' page table is init_mm.pgd. 1259 * 1260 * NOTE! We MUST NOT take any locks for this case. We may 1261 * be in an interrupt or a critical region, and should 1262 * only copy the information from the master page table, 1263 * nothing more. 1264 * 1265 * This verifies that the fault happens in kernel space 1266 * (error_code & 4) == 0, and that the fault was not a 1267 * protection error (error_code & 9) == 0. 1268 */ 1269 if (unlikely(fault_in_kernel_space(address))) { 1270 if (!(error_code & (X86_PF_RSVD | X86_PF_USER | X86_PF_PROT))) { 1271 if (vmalloc_fault(address) >= 0) 1272 return; 1273 } 1274 1275 /* Can handle a stale RO->RW TLB: */ 1276 if (spurious_fault(error_code, address)) 1277 return; 1278 1279 /* kprobes don't want to hook the spurious faults: */ 1280 if (kprobes_fault(regs)) 1281 return; 1282 /* 1283 * Don't take the mm semaphore here. If we fixup a prefetch 1284 * fault we could otherwise deadlock: 1285 */ 1286 bad_area_nosemaphore(regs, error_code, address, NULL); 1287 1288 return; 1289 } 1290 1291 /* kprobes don't want to hook the spurious faults: */ 1292 if (unlikely(kprobes_fault(regs))) 1293 return; 1294 1295 if (unlikely(error_code & X86_PF_RSVD)) 1296 pgtable_bad(regs, error_code, address); 1297 1298 if (unlikely(smap_violation(error_code, regs))) { 1299 bad_area_nosemaphore(regs, error_code, address, NULL); 1300 return; 1301 } 1302 1303 /* 1304 * If we're in an interrupt, have no user context or are running 1305 * in a region with pagefaults disabled then we must not take the fault 1306 */ 1307 if (unlikely(faulthandler_disabled() || !mm)) { 1308 bad_area_nosemaphore(regs, error_code, address, NULL); 1309 return; 1310 } 1311 1312 /* 1313 * It's safe to allow irq's after cr2 has been saved and the 1314 * vmalloc fault has been handled. 1315 * 1316 * User-mode registers count as a user access even for any 1317 * potential system fault or CPU buglet: 1318 */ 1319 if (user_mode(regs)) { 1320 local_irq_enable(); 1321 error_code |= X86_PF_USER; 1322 flags |= FAULT_FLAG_USER; 1323 } else { 1324 if (regs->flags & X86_EFLAGS_IF) 1325 local_irq_enable(); 1326 } 1327 1328 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address); 1329 1330 if (error_code & X86_PF_WRITE) 1331 flags |= FAULT_FLAG_WRITE; 1332 if (error_code & X86_PF_INSTR) 1333 flags |= FAULT_FLAG_INSTRUCTION; 1334 1335 /* 1336 * When running in the kernel we expect faults to occur only to 1337 * addresses in user space. All other faults represent errors in 1338 * the kernel and should generate an OOPS. Unfortunately, in the 1339 * case of an erroneous fault occurring in a code path which already 1340 * holds mmap_sem we will deadlock attempting to validate the fault 1341 * against the address space. Luckily the kernel only validly 1342 * references user space from well defined areas of code, which are 1343 * listed in the exceptions table. 1344 * 1345 * As the vast majority of faults will be valid we will only perform 1346 * the source reference check when there is a possibility of a 1347 * deadlock. Attempt to lock the address space, if we cannot we then 1348 * validate the source. If this is invalid we can skip the address 1349 * space check, thus avoiding the deadlock: 1350 */ 1351 if (unlikely(!down_read_trylock(&mm->mmap_sem))) { 1352 if (!(error_code & X86_PF_USER) && 1353 !search_exception_tables(regs->ip)) { 1354 bad_area_nosemaphore(regs, error_code, address, NULL); 1355 return; 1356 } 1357 retry: 1358 down_read(&mm->mmap_sem); 1359 } else { 1360 /* 1361 * The above down_read_trylock() might have succeeded in 1362 * which case we'll have missed the might_sleep() from 1363 * down_read(): 1364 */ 1365 might_sleep(); 1366 } 1367 1368 vma = find_vma(mm, address); 1369 if (unlikely(!vma)) { 1370 bad_area(regs, error_code, address); 1371 return; 1372 } 1373 if (likely(vma->vm_start <= address)) 1374 goto good_area; 1375 if (unlikely(!(vma->vm_flags & VM_GROWSDOWN))) { 1376 bad_area(regs, error_code, address); 1377 return; 1378 } 1379 if (error_code & X86_PF_USER) { 1380 /* 1381 * Accessing the stack below %sp is always a bug. 1382 * The large cushion allows instructions like enter 1383 * and pusha to work. ("enter $65535, $31" pushes 1384 * 32 pointers and then decrements %sp by 65535.) 1385 */ 1386 if (unlikely(address + 65536 + 32 * sizeof(unsigned long) < regs->sp)) { 1387 bad_area(regs, error_code, address); 1388 return; 1389 } 1390 } 1391 if (unlikely(expand_stack(vma, address))) { 1392 bad_area(regs, error_code, address); 1393 return; 1394 } 1395 1396 /* 1397 * Ok, we have a good vm_area for this memory access, so 1398 * we can handle it.. 1399 */ 1400 good_area: 1401 if (unlikely(access_error(error_code, vma))) { 1402 bad_area_access_error(regs, error_code, address, vma); 1403 return; 1404 } 1405 1406 /* 1407 * If for any reason at all we couldn't handle the fault, 1408 * make sure we exit gracefully rather than endlessly redo 1409 * the fault. Since we never set FAULT_FLAG_RETRY_NOWAIT, if 1410 * we get VM_FAULT_RETRY back, the mmap_sem has been unlocked. 1411 * 1412 * Note that handle_userfault() may also release and reacquire mmap_sem 1413 * (and not return with VM_FAULT_RETRY), when returning to userland to 1414 * repeat the page fault later with a VM_FAULT_NOPAGE retval 1415 * (potentially after handling any pending signal during the return to 1416 * userland). The return to userland is identified whenever 1417 * FAULT_FLAG_USER|FAULT_FLAG_KILLABLE are both set in flags. 1418 * Thus we have to be careful about not touching vma after handling the 1419 * fault, so we read the pkey beforehand. 1420 */ 1421 pkey = vma_pkey(vma); 1422 fault = handle_mm_fault(vma, address, flags); 1423 major |= fault & VM_FAULT_MAJOR; 1424 1425 /* 1426 * If we need to retry the mmap_sem has already been released, 1427 * and if there is a fatal signal pending there is no guarantee 1428 * that we made any progress. Handle this case first. 1429 */ 1430 if (unlikely(fault & VM_FAULT_RETRY)) { 1431 /* Retry at most once */ 1432 if (flags & FAULT_FLAG_ALLOW_RETRY) { 1433 flags &= ~FAULT_FLAG_ALLOW_RETRY; 1434 flags |= FAULT_FLAG_TRIED; 1435 if (!fatal_signal_pending(tsk)) 1436 goto retry; 1437 } 1438 1439 /* User mode? Just return to handle the fatal exception */ 1440 if (flags & FAULT_FLAG_USER) 1441 return; 1442 1443 /* Not returning to user mode? Handle exceptions or die: */ 1444 no_context(regs, error_code, address, SIGBUS, BUS_ADRERR); 1445 return; 1446 } 1447 1448 up_read(&mm->mmap_sem); 1449 if (unlikely(fault & VM_FAULT_ERROR)) { 1450 mm_fault_error(regs, error_code, address, &pkey, fault); 1451 return; 1452 } 1453 1454 /* 1455 * Major/minor page fault accounting. If any of the events 1456 * returned VM_FAULT_MAJOR, we account it as a major fault. 1457 */ 1458 if (major) { 1459 tsk->maj_flt++; 1460 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address); 1461 } else { 1462 tsk->min_flt++; 1463 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address); 1464 } 1465 1466 check_v8086_mode(regs, address, tsk); 1467 } 1468 NOKPROBE_SYMBOL(__do_page_fault); 1469 1470 static nokprobe_inline void 1471 trace_page_fault_entries(unsigned long address, struct pt_regs *regs, 1472 unsigned long error_code) 1473 { 1474 if (user_mode(regs)) 1475 trace_page_fault_user(address, regs, error_code); 1476 else 1477 trace_page_fault_kernel(address, regs, error_code); 1478 } 1479 1480 /* 1481 * We must have this function blacklisted from kprobes, tagged with notrace 1482 * and call read_cr2() before calling anything else. To avoid calling any 1483 * kind of tracing machinery before we've observed the CR2 value. 1484 * 1485 * exception_{enter,exit}() contains all sorts of tracepoints. 1486 */ 1487 dotraplinkage void notrace 1488 do_page_fault(struct pt_regs *regs, unsigned long error_code) 1489 { 1490 unsigned long address = read_cr2(); /* Get the faulting address */ 1491 enum ctx_state prev_state; 1492 1493 prev_state = exception_enter(); 1494 if (trace_pagefault_enabled()) 1495 trace_page_fault_entries(address, regs, error_code); 1496 1497 __do_page_fault(regs, error_code, address); 1498 exception_exit(prev_state); 1499 } 1500 NOKPROBE_SYMBOL(do_page_fault); 1501