1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 1995 Linus Torvalds 4 * Copyright (C) 2001, 2002 Andi Kleen, SuSE Labs. 5 * Copyright (C) 2008-2009, Red Hat Inc., Ingo Molnar 6 */ 7 #include <linux/sched.h> /* test_thread_flag(), ... */ 8 #include <linux/sched/task_stack.h> /* task_stack_*(), ... */ 9 #include <linux/kdebug.h> /* oops_begin/end, ... */ 10 #include <linux/extable.h> /* search_exception_tables */ 11 #include <linux/memblock.h> /* max_low_pfn */ 12 #include <linux/kprobes.h> /* NOKPROBE_SYMBOL, ... */ 13 #include <linux/mmiotrace.h> /* kmmio_handler, ... */ 14 #include <linux/perf_event.h> /* perf_sw_event */ 15 #include <linux/hugetlb.h> /* hstate_index_to_shift */ 16 #include <linux/prefetch.h> /* prefetchw */ 17 #include <linux/context_tracking.h> /* exception_enter(), ... */ 18 #include <linux/uaccess.h> /* faulthandler_disabled() */ 19 #include <linux/efi.h> /* efi_recover_from_page_fault()*/ 20 #include <linux/mm_types.h> 21 22 #include <asm/cpufeature.h> /* boot_cpu_has, ... */ 23 #include <asm/traps.h> /* dotraplinkage, ... */ 24 #include <asm/pgalloc.h> /* pgd_*(), ... */ 25 #include <asm/fixmap.h> /* VSYSCALL_ADDR */ 26 #include <asm/vsyscall.h> /* emulate_vsyscall */ 27 #include <asm/vm86.h> /* struct vm86 */ 28 #include <asm/mmu_context.h> /* vma_pkey() */ 29 #include <asm/efi.h> /* efi_recover_from_page_fault()*/ 30 #include <asm/desc.h> /* store_idt(), ... */ 31 #include <asm/cpu_entry_area.h> /* exception stack */ 32 #include <asm/pgtable_areas.h> /* VMALLOC_START, ... */ 33 34 #define CREATE_TRACE_POINTS 35 #include <asm/trace/exceptions.h> 36 37 /* 38 * Returns 0 if mmiotrace is disabled, or if the fault is not 39 * handled by mmiotrace: 40 */ 41 static nokprobe_inline int 42 kmmio_fault(struct pt_regs *regs, unsigned long addr) 43 { 44 if (unlikely(is_kmmio_active())) 45 if (kmmio_handler(regs, addr) == 1) 46 return -1; 47 return 0; 48 } 49 50 /* 51 * Prefetch quirks: 52 * 53 * 32-bit mode: 54 * 55 * Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch. 56 * Check that here and ignore it. 57 * 58 * 64-bit mode: 59 * 60 * Sometimes the CPU reports invalid exceptions on prefetch. 61 * Check that here and ignore it. 62 * 63 * Opcode checker based on code by Richard Brunner. 64 */ 65 static inline int 66 check_prefetch_opcode(struct pt_regs *regs, unsigned char *instr, 67 unsigned char opcode, int *prefetch) 68 { 69 unsigned char instr_hi = opcode & 0xf0; 70 unsigned char instr_lo = opcode & 0x0f; 71 72 switch (instr_hi) { 73 case 0x20: 74 case 0x30: 75 /* 76 * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes. 77 * In X86_64 long mode, the CPU will signal invalid 78 * opcode if some of these prefixes are present so 79 * X86_64 will never get here anyway 80 */ 81 return ((instr_lo & 7) == 0x6); 82 #ifdef CONFIG_X86_64 83 case 0x40: 84 /* 85 * In AMD64 long mode 0x40..0x4F are valid REX prefixes 86 * Need to figure out under what instruction mode the 87 * instruction was issued. Could check the LDT for lm, 88 * but for now it's good enough to assume that long 89 * mode only uses well known segments or kernel. 90 */ 91 return (!user_mode(regs) || user_64bit_mode(regs)); 92 #endif 93 case 0x60: 94 /* 0x64 thru 0x67 are valid prefixes in all modes. */ 95 return (instr_lo & 0xC) == 0x4; 96 case 0xF0: 97 /* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */ 98 return !instr_lo || (instr_lo>>1) == 1; 99 case 0x00: 100 /* Prefetch instruction is 0x0F0D or 0x0F18 */ 101 if (probe_kernel_address(instr, opcode)) 102 return 0; 103 104 *prefetch = (instr_lo == 0xF) && 105 (opcode == 0x0D || opcode == 0x18); 106 return 0; 107 default: 108 return 0; 109 } 110 } 111 112 static int 113 is_prefetch(struct pt_regs *regs, unsigned long error_code, unsigned long addr) 114 { 115 unsigned char *max_instr; 116 unsigned char *instr; 117 int prefetch = 0; 118 119 /* 120 * If it was a exec (instruction fetch) fault on NX page, then 121 * do not ignore the fault: 122 */ 123 if (error_code & X86_PF_INSTR) 124 return 0; 125 126 instr = (void *)convert_ip_to_linear(current, regs); 127 max_instr = instr + 15; 128 129 if (user_mode(regs) && instr >= (unsigned char *)TASK_SIZE_MAX) 130 return 0; 131 132 while (instr < max_instr) { 133 unsigned char opcode; 134 135 if (probe_kernel_address(instr, opcode)) 136 break; 137 138 instr++; 139 140 if (!check_prefetch_opcode(regs, instr, opcode, &prefetch)) 141 break; 142 } 143 return prefetch; 144 } 145 146 DEFINE_SPINLOCK(pgd_lock); 147 LIST_HEAD(pgd_list); 148 149 #ifdef CONFIG_X86_32 150 static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address) 151 { 152 unsigned index = pgd_index(address); 153 pgd_t *pgd_k; 154 p4d_t *p4d, *p4d_k; 155 pud_t *pud, *pud_k; 156 pmd_t *pmd, *pmd_k; 157 158 pgd += index; 159 pgd_k = init_mm.pgd + index; 160 161 if (!pgd_present(*pgd_k)) 162 return NULL; 163 164 /* 165 * set_pgd(pgd, *pgd_k); here would be useless on PAE 166 * and redundant with the set_pmd() on non-PAE. As would 167 * set_p4d/set_pud. 168 */ 169 p4d = p4d_offset(pgd, address); 170 p4d_k = p4d_offset(pgd_k, address); 171 if (!p4d_present(*p4d_k)) 172 return NULL; 173 174 pud = pud_offset(p4d, address); 175 pud_k = pud_offset(p4d_k, address); 176 if (!pud_present(*pud_k)) 177 return NULL; 178 179 pmd = pmd_offset(pud, address); 180 pmd_k = pmd_offset(pud_k, address); 181 182 if (pmd_present(*pmd) != pmd_present(*pmd_k)) 183 set_pmd(pmd, *pmd_k); 184 185 if (!pmd_present(*pmd_k)) 186 return NULL; 187 else 188 BUG_ON(pmd_pfn(*pmd) != pmd_pfn(*pmd_k)); 189 190 return pmd_k; 191 } 192 193 void arch_sync_kernel_mappings(unsigned long start, unsigned long end) 194 { 195 unsigned long addr; 196 197 for (addr = start & PMD_MASK; 198 addr >= TASK_SIZE_MAX && addr < VMALLOC_END; 199 addr += PMD_SIZE) { 200 struct page *page; 201 202 spin_lock(&pgd_lock); 203 list_for_each_entry(page, &pgd_list, lru) { 204 spinlock_t *pgt_lock; 205 206 /* the pgt_lock only for Xen */ 207 pgt_lock = &pgd_page_get_mm(page)->page_table_lock; 208 209 spin_lock(pgt_lock); 210 vmalloc_sync_one(page_address(page), addr); 211 spin_unlock(pgt_lock); 212 } 213 spin_unlock(&pgd_lock); 214 } 215 } 216 217 /* 218 * Did it hit the DOS screen memory VA from vm86 mode? 219 */ 220 static inline void 221 check_v8086_mode(struct pt_regs *regs, unsigned long address, 222 struct task_struct *tsk) 223 { 224 #ifdef CONFIG_VM86 225 unsigned long bit; 226 227 if (!v8086_mode(regs) || !tsk->thread.vm86) 228 return; 229 230 bit = (address - 0xA0000) >> PAGE_SHIFT; 231 if (bit < 32) 232 tsk->thread.vm86->screen_bitmap |= 1 << bit; 233 #endif 234 } 235 236 static bool low_pfn(unsigned long pfn) 237 { 238 return pfn < max_low_pfn; 239 } 240 241 static void dump_pagetable(unsigned long address) 242 { 243 pgd_t *base = __va(read_cr3_pa()); 244 pgd_t *pgd = &base[pgd_index(address)]; 245 p4d_t *p4d; 246 pud_t *pud; 247 pmd_t *pmd; 248 pte_t *pte; 249 250 #ifdef CONFIG_X86_PAE 251 pr_info("*pdpt = %016Lx ", pgd_val(*pgd)); 252 if (!low_pfn(pgd_val(*pgd) >> PAGE_SHIFT) || !pgd_present(*pgd)) 253 goto out; 254 #define pr_pde pr_cont 255 #else 256 #define pr_pde pr_info 257 #endif 258 p4d = p4d_offset(pgd, address); 259 pud = pud_offset(p4d, address); 260 pmd = pmd_offset(pud, address); 261 pr_pde("*pde = %0*Lx ", sizeof(*pmd) * 2, (u64)pmd_val(*pmd)); 262 #undef pr_pde 263 264 /* 265 * We must not directly access the pte in the highpte 266 * case if the page table is located in highmem. 267 * And let's rather not kmap-atomic the pte, just in case 268 * it's allocated already: 269 */ 270 if (!low_pfn(pmd_pfn(*pmd)) || !pmd_present(*pmd) || pmd_large(*pmd)) 271 goto out; 272 273 pte = pte_offset_kernel(pmd, address); 274 pr_cont("*pte = %0*Lx ", sizeof(*pte) * 2, (u64)pte_val(*pte)); 275 out: 276 pr_cont("\n"); 277 } 278 279 #else /* CONFIG_X86_64: */ 280 281 #ifdef CONFIG_CPU_SUP_AMD 282 static const char errata93_warning[] = 283 KERN_ERR 284 "******* Your BIOS seems to not contain a fix for K8 errata #93\n" 285 "******* Working around it, but it may cause SEGVs or burn power.\n" 286 "******* Please consider a BIOS update.\n" 287 "******* Disabling USB legacy in the BIOS may also help.\n"; 288 #endif 289 290 /* 291 * No vm86 mode in 64-bit mode: 292 */ 293 static inline void 294 check_v8086_mode(struct pt_regs *regs, unsigned long address, 295 struct task_struct *tsk) 296 { 297 } 298 299 static int bad_address(void *p) 300 { 301 unsigned long dummy; 302 303 return probe_kernel_address((unsigned long *)p, dummy); 304 } 305 306 static void dump_pagetable(unsigned long address) 307 { 308 pgd_t *base = __va(read_cr3_pa()); 309 pgd_t *pgd = base + pgd_index(address); 310 p4d_t *p4d; 311 pud_t *pud; 312 pmd_t *pmd; 313 pte_t *pte; 314 315 if (bad_address(pgd)) 316 goto bad; 317 318 pr_info("PGD %lx ", pgd_val(*pgd)); 319 320 if (!pgd_present(*pgd)) 321 goto out; 322 323 p4d = p4d_offset(pgd, address); 324 if (bad_address(p4d)) 325 goto bad; 326 327 pr_cont("P4D %lx ", p4d_val(*p4d)); 328 if (!p4d_present(*p4d) || p4d_large(*p4d)) 329 goto out; 330 331 pud = pud_offset(p4d, address); 332 if (bad_address(pud)) 333 goto bad; 334 335 pr_cont("PUD %lx ", pud_val(*pud)); 336 if (!pud_present(*pud) || pud_large(*pud)) 337 goto out; 338 339 pmd = pmd_offset(pud, address); 340 if (bad_address(pmd)) 341 goto bad; 342 343 pr_cont("PMD %lx ", pmd_val(*pmd)); 344 if (!pmd_present(*pmd) || pmd_large(*pmd)) 345 goto out; 346 347 pte = pte_offset_kernel(pmd, address); 348 if (bad_address(pte)) 349 goto bad; 350 351 pr_cont("PTE %lx", pte_val(*pte)); 352 out: 353 pr_cont("\n"); 354 return; 355 bad: 356 pr_info("BAD\n"); 357 } 358 359 #endif /* CONFIG_X86_64 */ 360 361 /* 362 * Workaround for K8 erratum #93 & buggy BIOS. 363 * 364 * BIOS SMM functions are required to use a specific workaround 365 * to avoid corruption of the 64bit RIP register on C stepping K8. 366 * 367 * A lot of BIOS that didn't get tested properly miss this. 368 * 369 * The OS sees this as a page fault with the upper 32bits of RIP cleared. 370 * Try to work around it here. 371 * 372 * Note we only handle faults in kernel here. 373 * Does nothing on 32-bit. 374 */ 375 static int is_errata93(struct pt_regs *regs, unsigned long address) 376 { 377 #if defined(CONFIG_X86_64) && defined(CONFIG_CPU_SUP_AMD) 378 if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD 379 || boot_cpu_data.x86 != 0xf) 380 return 0; 381 382 if (address != regs->ip) 383 return 0; 384 385 if ((address >> 32) != 0) 386 return 0; 387 388 address |= 0xffffffffUL << 32; 389 if ((address >= (u64)_stext && address <= (u64)_etext) || 390 (address >= MODULES_VADDR && address <= MODULES_END)) { 391 printk_once(errata93_warning); 392 regs->ip = address; 393 return 1; 394 } 395 #endif 396 return 0; 397 } 398 399 /* 400 * Work around K8 erratum #100 K8 in compat mode occasionally jumps 401 * to illegal addresses >4GB. 402 * 403 * We catch this in the page fault handler because these addresses 404 * are not reachable. Just detect this case and return. Any code 405 * segment in LDT is compatibility mode. 406 */ 407 static int is_errata100(struct pt_regs *regs, unsigned long address) 408 { 409 #ifdef CONFIG_X86_64 410 if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) && (address >> 32)) 411 return 1; 412 #endif 413 return 0; 414 } 415 416 static int is_f00f_bug(struct pt_regs *regs, unsigned long address) 417 { 418 #ifdef CONFIG_X86_F00F_BUG 419 unsigned long nr; 420 421 /* 422 * Pentium F0 0F C7 C8 bug workaround: 423 */ 424 if (boot_cpu_has_bug(X86_BUG_F00F)) { 425 nr = (address - idt_descr.address) >> 3; 426 427 if (nr == 6) { 428 do_invalid_op(regs, 0); 429 return 1; 430 } 431 } 432 #endif 433 return 0; 434 } 435 436 static void show_ldttss(const struct desc_ptr *gdt, const char *name, u16 index) 437 { 438 u32 offset = (index >> 3) * sizeof(struct desc_struct); 439 unsigned long addr; 440 struct ldttss_desc desc; 441 442 if (index == 0) { 443 pr_alert("%s: NULL\n", name); 444 return; 445 } 446 447 if (offset + sizeof(struct ldttss_desc) >= gdt->size) { 448 pr_alert("%s: 0x%hx -- out of bounds\n", name, index); 449 return; 450 } 451 452 if (probe_kernel_read(&desc, (void *)(gdt->address + offset), 453 sizeof(struct ldttss_desc))) { 454 pr_alert("%s: 0x%hx -- GDT entry is not readable\n", 455 name, index); 456 return; 457 } 458 459 addr = desc.base0 | (desc.base1 << 16) | ((unsigned long)desc.base2 << 24); 460 #ifdef CONFIG_X86_64 461 addr |= ((u64)desc.base3 << 32); 462 #endif 463 pr_alert("%s: 0x%hx -- base=0x%lx limit=0x%x\n", 464 name, index, addr, (desc.limit0 | (desc.limit1 << 16))); 465 } 466 467 static void 468 show_fault_oops(struct pt_regs *regs, unsigned long error_code, unsigned long address) 469 { 470 if (!oops_may_print()) 471 return; 472 473 if (error_code & X86_PF_INSTR) { 474 unsigned int level; 475 pgd_t *pgd; 476 pte_t *pte; 477 478 pgd = __va(read_cr3_pa()); 479 pgd += pgd_index(address); 480 481 pte = lookup_address_in_pgd(pgd, address, &level); 482 483 if (pte && pte_present(*pte) && !pte_exec(*pte)) 484 pr_crit("kernel tried to execute NX-protected page - exploit attempt? (uid: %d)\n", 485 from_kuid(&init_user_ns, current_uid())); 486 if (pte && pte_present(*pte) && pte_exec(*pte) && 487 (pgd_flags(*pgd) & _PAGE_USER) && 488 (__read_cr4() & X86_CR4_SMEP)) 489 pr_crit("unable to execute userspace code (SMEP?) (uid: %d)\n", 490 from_kuid(&init_user_ns, current_uid())); 491 } 492 493 if (address < PAGE_SIZE && !user_mode(regs)) 494 pr_alert("BUG: kernel NULL pointer dereference, address: %px\n", 495 (void *)address); 496 else 497 pr_alert("BUG: unable to handle page fault for address: %px\n", 498 (void *)address); 499 500 pr_alert("#PF: %s %s in %s mode\n", 501 (error_code & X86_PF_USER) ? "user" : "supervisor", 502 (error_code & X86_PF_INSTR) ? "instruction fetch" : 503 (error_code & X86_PF_WRITE) ? "write access" : 504 "read access", 505 user_mode(regs) ? "user" : "kernel"); 506 pr_alert("#PF: error_code(0x%04lx) - %s\n", error_code, 507 !(error_code & X86_PF_PROT) ? "not-present page" : 508 (error_code & X86_PF_RSVD) ? "reserved bit violation" : 509 (error_code & X86_PF_PK) ? "protection keys violation" : 510 "permissions violation"); 511 512 if (!(error_code & X86_PF_USER) && user_mode(regs)) { 513 struct desc_ptr idt, gdt; 514 u16 ldtr, tr; 515 516 /* 517 * This can happen for quite a few reasons. The more obvious 518 * ones are faults accessing the GDT, or LDT. Perhaps 519 * surprisingly, if the CPU tries to deliver a benign or 520 * contributory exception from user code and gets a page fault 521 * during delivery, the page fault can be delivered as though 522 * it originated directly from user code. This could happen 523 * due to wrong permissions on the IDT, GDT, LDT, TSS, or 524 * kernel or IST stack. 525 */ 526 store_idt(&idt); 527 528 /* Usable even on Xen PV -- it's just slow. */ 529 native_store_gdt(&gdt); 530 531 pr_alert("IDT: 0x%lx (limit=0x%hx) GDT: 0x%lx (limit=0x%hx)\n", 532 idt.address, idt.size, gdt.address, gdt.size); 533 534 store_ldt(ldtr); 535 show_ldttss(&gdt, "LDTR", ldtr); 536 537 store_tr(tr); 538 show_ldttss(&gdt, "TR", tr); 539 } 540 541 dump_pagetable(address); 542 } 543 544 static noinline void 545 pgtable_bad(struct pt_regs *regs, unsigned long error_code, 546 unsigned long address) 547 { 548 struct task_struct *tsk; 549 unsigned long flags; 550 int sig; 551 552 flags = oops_begin(); 553 tsk = current; 554 sig = SIGKILL; 555 556 printk(KERN_ALERT "%s: Corrupted page table at address %lx\n", 557 tsk->comm, address); 558 dump_pagetable(address); 559 560 if (__die("Bad pagetable", regs, error_code)) 561 sig = 0; 562 563 oops_end(flags, regs, sig); 564 } 565 566 static void set_signal_archinfo(unsigned long address, 567 unsigned long error_code) 568 { 569 struct task_struct *tsk = current; 570 571 /* 572 * To avoid leaking information about the kernel page 573 * table layout, pretend that user-mode accesses to 574 * kernel addresses are always protection faults. 575 * 576 * NB: This means that failed vsyscalls with vsyscall=none 577 * will have the PROT bit. This doesn't leak any 578 * information and does not appear to cause any problems. 579 */ 580 if (address >= TASK_SIZE_MAX) 581 error_code |= X86_PF_PROT; 582 583 tsk->thread.trap_nr = X86_TRAP_PF; 584 tsk->thread.error_code = error_code | X86_PF_USER; 585 tsk->thread.cr2 = address; 586 } 587 588 static noinline void 589 no_context(struct pt_regs *regs, unsigned long error_code, 590 unsigned long address, int signal, int si_code) 591 { 592 struct task_struct *tsk = current; 593 unsigned long flags; 594 int sig; 595 596 if (user_mode(regs)) { 597 /* 598 * This is an implicit supervisor-mode access from user 599 * mode. Bypass all the kernel-mode recovery code and just 600 * OOPS. 601 */ 602 goto oops; 603 } 604 605 /* Are we prepared to handle this kernel fault? */ 606 if (fixup_exception(regs, X86_TRAP_PF, error_code, address)) { 607 /* 608 * Any interrupt that takes a fault gets the fixup. This makes 609 * the below recursive fault logic only apply to a faults from 610 * task context. 611 */ 612 if (in_interrupt()) 613 return; 614 615 /* 616 * Per the above we're !in_interrupt(), aka. task context. 617 * 618 * In this case we need to make sure we're not recursively 619 * faulting through the emulate_vsyscall() logic. 620 */ 621 if (current->thread.sig_on_uaccess_err && signal) { 622 set_signal_archinfo(address, error_code); 623 624 /* XXX: hwpoison faults will set the wrong code. */ 625 force_sig_fault(signal, si_code, (void __user *)address); 626 } 627 628 /* 629 * Barring that, we can do the fixup and be happy. 630 */ 631 return; 632 } 633 634 #ifdef CONFIG_VMAP_STACK 635 /* 636 * Stack overflow? During boot, we can fault near the initial 637 * stack in the direct map, but that's not an overflow -- check 638 * that we're in vmalloc space to avoid this. 639 */ 640 if (is_vmalloc_addr((void *)address) && 641 (((unsigned long)tsk->stack - 1 - address < PAGE_SIZE) || 642 address - ((unsigned long)tsk->stack + THREAD_SIZE) < PAGE_SIZE)) { 643 unsigned long stack = __this_cpu_ist_top_va(DF) - sizeof(void *); 644 /* 645 * We're likely to be running with very little stack space 646 * left. It's plausible that we'd hit this condition but 647 * double-fault even before we get this far, in which case 648 * we're fine: the double-fault handler will deal with it. 649 * 650 * We don't want to make it all the way into the oops code 651 * and then double-fault, though, because we're likely to 652 * break the console driver and lose most of the stack dump. 653 */ 654 asm volatile ("movq %[stack], %%rsp\n\t" 655 "call handle_stack_overflow\n\t" 656 "1: jmp 1b" 657 : ASM_CALL_CONSTRAINT 658 : "D" ("kernel stack overflow (page fault)"), 659 "S" (regs), "d" (address), 660 [stack] "rm" (stack)); 661 unreachable(); 662 } 663 #endif 664 665 /* 666 * 32-bit: 667 * 668 * Valid to do another page fault here, because if this fault 669 * had been triggered by is_prefetch fixup_exception would have 670 * handled it. 671 * 672 * 64-bit: 673 * 674 * Hall of shame of CPU/BIOS bugs. 675 */ 676 if (is_prefetch(regs, error_code, address)) 677 return; 678 679 if (is_errata93(regs, address)) 680 return; 681 682 /* 683 * Buggy firmware could access regions which might page fault, try to 684 * recover from such faults. 685 */ 686 if (IS_ENABLED(CONFIG_EFI)) 687 efi_recover_from_page_fault(address); 688 689 oops: 690 /* 691 * Oops. The kernel tried to access some bad page. We'll have to 692 * terminate things with extreme prejudice: 693 */ 694 flags = oops_begin(); 695 696 show_fault_oops(regs, error_code, address); 697 698 if (task_stack_end_corrupted(tsk)) 699 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n"); 700 701 sig = SIGKILL; 702 if (__die("Oops", regs, error_code)) 703 sig = 0; 704 705 /* Executive summary in case the body of the oops scrolled away */ 706 printk(KERN_DEFAULT "CR2: %016lx\n", address); 707 708 oops_end(flags, regs, sig); 709 } 710 711 /* 712 * Print out info about fatal segfaults, if the show_unhandled_signals 713 * sysctl is set: 714 */ 715 static inline void 716 show_signal_msg(struct pt_regs *regs, unsigned long error_code, 717 unsigned long address, struct task_struct *tsk) 718 { 719 const char *loglvl = task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG; 720 721 if (!unhandled_signal(tsk, SIGSEGV)) 722 return; 723 724 if (!printk_ratelimit()) 725 return; 726 727 printk("%s%s[%d]: segfault at %lx ip %px sp %px error %lx", 728 loglvl, tsk->comm, task_pid_nr(tsk), address, 729 (void *)regs->ip, (void *)regs->sp, error_code); 730 731 print_vma_addr(KERN_CONT " in ", regs->ip); 732 733 printk(KERN_CONT "\n"); 734 735 show_opcodes(regs, loglvl); 736 } 737 738 /* 739 * The (legacy) vsyscall page is the long page in the kernel portion 740 * of the address space that has user-accessible permissions. 741 */ 742 static bool is_vsyscall_vaddr(unsigned long vaddr) 743 { 744 return unlikely((vaddr & PAGE_MASK) == VSYSCALL_ADDR); 745 } 746 747 static void 748 __bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code, 749 unsigned long address, u32 pkey, int si_code) 750 { 751 struct task_struct *tsk = current; 752 753 /* User mode accesses just cause a SIGSEGV */ 754 if (user_mode(regs) && (error_code & X86_PF_USER)) { 755 /* 756 * It's possible to have interrupts off here: 757 */ 758 local_irq_enable(); 759 760 /* 761 * Valid to do another page fault here because this one came 762 * from user space: 763 */ 764 if (is_prefetch(regs, error_code, address)) 765 return; 766 767 if (is_errata100(regs, address)) 768 return; 769 770 /* 771 * To avoid leaking information about the kernel page table 772 * layout, pretend that user-mode accesses to kernel addresses 773 * are always protection faults. 774 */ 775 if (address >= TASK_SIZE_MAX) 776 error_code |= X86_PF_PROT; 777 778 if (likely(show_unhandled_signals)) 779 show_signal_msg(regs, error_code, address, tsk); 780 781 set_signal_archinfo(address, error_code); 782 783 if (si_code == SEGV_PKUERR) 784 force_sig_pkuerr((void __user *)address, pkey); 785 786 force_sig_fault(SIGSEGV, si_code, (void __user *)address); 787 788 return; 789 } 790 791 if (is_f00f_bug(regs, address)) 792 return; 793 794 no_context(regs, error_code, address, SIGSEGV, si_code); 795 } 796 797 static noinline void 798 bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code, 799 unsigned long address) 800 { 801 __bad_area_nosemaphore(regs, error_code, address, 0, SEGV_MAPERR); 802 } 803 804 static void 805 __bad_area(struct pt_regs *regs, unsigned long error_code, 806 unsigned long address, u32 pkey, int si_code) 807 { 808 struct mm_struct *mm = current->mm; 809 /* 810 * Something tried to access memory that isn't in our memory map.. 811 * Fix it, but check if it's kernel or user first.. 812 */ 813 up_read(&mm->mmap_sem); 814 815 __bad_area_nosemaphore(regs, error_code, address, pkey, si_code); 816 } 817 818 static noinline void 819 bad_area(struct pt_regs *regs, unsigned long error_code, unsigned long address) 820 { 821 __bad_area(regs, error_code, address, 0, SEGV_MAPERR); 822 } 823 824 static inline bool bad_area_access_from_pkeys(unsigned long error_code, 825 struct vm_area_struct *vma) 826 { 827 /* This code is always called on the current mm */ 828 bool foreign = false; 829 830 if (!boot_cpu_has(X86_FEATURE_OSPKE)) 831 return false; 832 if (error_code & X86_PF_PK) 833 return true; 834 /* this checks permission keys on the VMA: */ 835 if (!arch_vma_access_permitted(vma, (error_code & X86_PF_WRITE), 836 (error_code & X86_PF_INSTR), foreign)) 837 return true; 838 return false; 839 } 840 841 static noinline void 842 bad_area_access_error(struct pt_regs *regs, unsigned long error_code, 843 unsigned long address, struct vm_area_struct *vma) 844 { 845 /* 846 * This OSPKE check is not strictly necessary at runtime. 847 * But, doing it this way allows compiler optimizations 848 * if pkeys are compiled out. 849 */ 850 if (bad_area_access_from_pkeys(error_code, vma)) { 851 /* 852 * A protection key fault means that the PKRU value did not allow 853 * access to some PTE. Userspace can figure out what PKRU was 854 * from the XSAVE state. This function captures the pkey from 855 * the vma and passes it to userspace so userspace can discover 856 * which protection key was set on the PTE. 857 * 858 * If we get here, we know that the hardware signaled a X86_PF_PK 859 * fault and that there was a VMA once we got in the fault 860 * handler. It does *not* guarantee that the VMA we find here 861 * was the one that we faulted on. 862 * 863 * 1. T1 : mprotect_key(foo, PAGE_SIZE, pkey=4); 864 * 2. T1 : set PKRU to deny access to pkey=4, touches page 865 * 3. T1 : faults... 866 * 4. T2: mprotect_key(foo, PAGE_SIZE, pkey=5); 867 * 5. T1 : enters fault handler, takes mmap_sem, etc... 868 * 6. T1 : reaches here, sees vma_pkey(vma)=5, when we really 869 * faulted on a pte with its pkey=4. 870 */ 871 u32 pkey = vma_pkey(vma); 872 873 __bad_area(regs, error_code, address, pkey, SEGV_PKUERR); 874 } else { 875 __bad_area(regs, error_code, address, 0, SEGV_ACCERR); 876 } 877 } 878 879 static void 880 do_sigbus(struct pt_regs *regs, unsigned long error_code, unsigned long address, 881 vm_fault_t fault) 882 { 883 /* Kernel mode? Handle exceptions or die: */ 884 if (!(error_code & X86_PF_USER)) { 885 no_context(regs, error_code, address, SIGBUS, BUS_ADRERR); 886 return; 887 } 888 889 /* User-space => ok to do another page fault: */ 890 if (is_prefetch(regs, error_code, address)) 891 return; 892 893 set_signal_archinfo(address, error_code); 894 895 #ifdef CONFIG_MEMORY_FAILURE 896 if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) { 897 struct task_struct *tsk = current; 898 unsigned lsb = 0; 899 900 pr_err( 901 "MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n", 902 tsk->comm, tsk->pid, address); 903 if (fault & VM_FAULT_HWPOISON_LARGE) 904 lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault)); 905 if (fault & VM_FAULT_HWPOISON) 906 lsb = PAGE_SHIFT; 907 force_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, lsb); 908 return; 909 } 910 #endif 911 force_sig_fault(SIGBUS, BUS_ADRERR, (void __user *)address); 912 } 913 914 static noinline void 915 mm_fault_error(struct pt_regs *regs, unsigned long error_code, 916 unsigned long address, vm_fault_t fault) 917 { 918 if (fatal_signal_pending(current) && !(error_code & X86_PF_USER)) { 919 no_context(regs, error_code, address, 0, 0); 920 return; 921 } 922 923 if (fault & VM_FAULT_OOM) { 924 /* Kernel mode? Handle exceptions or die: */ 925 if (!(error_code & X86_PF_USER)) { 926 no_context(regs, error_code, address, 927 SIGSEGV, SEGV_MAPERR); 928 return; 929 } 930 931 /* 932 * We ran out of memory, call the OOM killer, and return the 933 * userspace (which will retry the fault, or kill us if we got 934 * oom-killed): 935 */ 936 pagefault_out_of_memory(); 937 } else { 938 if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON| 939 VM_FAULT_HWPOISON_LARGE)) 940 do_sigbus(regs, error_code, address, fault); 941 else if (fault & VM_FAULT_SIGSEGV) 942 bad_area_nosemaphore(regs, error_code, address); 943 else 944 BUG(); 945 } 946 } 947 948 static int spurious_kernel_fault_check(unsigned long error_code, pte_t *pte) 949 { 950 if ((error_code & X86_PF_WRITE) && !pte_write(*pte)) 951 return 0; 952 953 if ((error_code & X86_PF_INSTR) && !pte_exec(*pte)) 954 return 0; 955 956 return 1; 957 } 958 959 /* 960 * Handle a spurious fault caused by a stale TLB entry. 961 * 962 * This allows us to lazily refresh the TLB when increasing the 963 * permissions of a kernel page (RO -> RW or NX -> X). Doing it 964 * eagerly is very expensive since that implies doing a full 965 * cross-processor TLB flush, even if no stale TLB entries exist 966 * on other processors. 967 * 968 * Spurious faults may only occur if the TLB contains an entry with 969 * fewer permission than the page table entry. Non-present (P = 0) 970 * and reserved bit (R = 1) faults are never spurious. 971 * 972 * There are no security implications to leaving a stale TLB when 973 * increasing the permissions on a page. 974 * 975 * Returns non-zero if a spurious fault was handled, zero otherwise. 976 * 977 * See Intel Developer's Manual Vol 3 Section 4.10.4.3, bullet 3 978 * (Optional Invalidation). 979 */ 980 static noinline int 981 spurious_kernel_fault(unsigned long error_code, unsigned long address) 982 { 983 pgd_t *pgd; 984 p4d_t *p4d; 985 pud_t *pud; 986 pmd_t *pmd; 987 pte_t *pte; 988 int ret; 989 990 /* 991 * Only writes to RO or instruction fetches from NX may cause 992 * spurious faults. 993 * 994 * These could be from user or supervisor accesses but the TLB 995 * is only lazily flushed after a kernel mapping protection 996 * change, so user accesses are not expected to cause spurious 997 * faults. 998 */ 999 if (error_code != (X86_PF_WRITE | X86_PF_PROT) && 1000 error_code != (X86_PF_INSTR | X86_PF_PROT)) 1001 return 0; 1002 1003 pgd = init_mm.pgd + pgd_index(address); 1004 if (!pgd_present(*pgd)) 1005 return 0; 1006 1007 p4d = p4d_offset(pgd, address); 1008 if (!p4d_present(*p4d)) 1009 return 0; 1010 1011 if (p4d_large(*p4d)) 1012 return spurious_kernel_fault_check(error_code, (pte_t *) p4d); 1013 1014 pud = pud_offset(p4d, address); 1015 if (!pud_present(*pud)) 1016 return 0; 1017 1018 if (pud_large(*pud)) 1019 return spurious_kernel_fault_check(error_code, (pte_t *) pud); 1020 1021 pmd = pmd_offset(pud, address); 1022 if (!pmd_present(*pmd)) 1023 return 0; 1024 1025 if (pmd_large(*pmd)) 1026 return spurious_kernel_fault_check(error_code, (pte_t *) pmd); 1027 1028 pte = pte_offset_kernel(pmd, address); 1029 if (!pte_present(*pte)) 1030 return 0; 1031 1032 ret = spurious_kernel_fault_check(error_code, pte); 1033 if (!ret) 1034 return 0; 1035 1036 /* 1037 * Make sure we have permissions in PMD. 1038 * If not, then there's a bug in the page tables: 1039 */ 1040 ret = spurious_kernel_fault_check(error_code, (pte_t *) pmd); 1041 WARN_ONCE(!ret, "PMD has incorrect permission bits\n"); 1042 1043 return ret; 1044 } 1045 NOKPROBE_SYMBOL(spurious_kernel_fault); 1046 1047 int show_unhandled_signals = 1; 1048 1049 static inline int 1050 access_error(unsigned long error_code, struct vm_area_struct *vma) 1051 { 1052 /* This is only called for the current mm, so: */ 1053 bool foreign = false; 1054 1055 /* 1056 * Read or write was blocked by protection keys. This is 1057 * always an unconditional error and can never result in 1058 * a follow-up action to resolve the fault, like a COW. 1059 */ 1060 if (error_code & X86_PF_PK) 1061 return 1; 1062 1063 /* 1064 * Make sure to check the VMA so that we do not perform 1065 * faults just to hit a X86_PF_PK as soon as we fill in a 1066 * page. 1067 */ 1068 if (!arch_vma_access_permitted(vma, (error_code & X86_PF_WRITE), 1069 (error_code & X86_PF_INSTR), foreign)) 1070 return 1; 1071 1072 if (error_code & X86_PF_WRITE) { 1073 /* write, present and write, not present: */ 1074 if (unlikely(!(vma->vm_flags & VM_WRITE))) 1075 return 1; 1076 return 0; 1077 } 1078 1079 /* read, present: */ 1080 if (unlikely(error_code & X86_PF_PROT)) 1081 return 1; 1082 1083 /* read, not present: */ 1084 if (unlikely(!vma_is_accessible(vma))) 1085 return 1; 1086 1087 return 0; 1088 } 1089 1090 static int fault_in_kernel_space(unsigned long address) 1091 { 1092 /* 1093 * On 64-bit systems, the vsyscall page is at an address above 1094 * TASK_SIZE_MAX, but is not considered part of the kernel 1095 * address space. 1096 */ 1097 if (IS_ENABLED(CONFIG_X86_64) && is_vsyscall_vaddr(address)) 1098 return false; 1099 1100 return address >= TASK_SIZE_MAX; 1101 } 1102 1103 /* 1104 * Called for all faults where 'address' is part of the kernel address 1105 * space. Might get called for faults that originate from *code* that 1106 * ran in userspace or the kernel. 1107 */ 1108 static void 1109 do_kern_addr_fault(struct pt_regs *regs, unsigned long hw_error_code, 1110 unsigned long address) 1111 { 1112 /* 1113 * Protection keys exceptions only happen on user pages. We 1114 * have no user pages in the kernel portion of the address 1115 * space, so do not expect them here. 1116 */ 1117 WARN_ON_ONCE(hw_error_code & X86_PF_PK); 1118 1119 /* Was the fault spurious, caused by lazy TLB invalidation? */ 1120 if (spurious_kernel_fault(hw_error_code, address)) 1121 return; 1122 1123 /* kprobes don't want to hook the spurious faults: */ 1124 if (kprobe_page_fault(regs, X86_TRAP_PF)) 1125 return; 1126 1127 /* 1128 * Note, despite being a "bad area", there are quite a few 1129 * acceptable reasons to get here, such as erratum fixups 1130 * and handling kernel code that can fault, like get_user(). 1131 * 1132 * Don't take the mm semaphore here. If we fixup a prefetch 1133 * fault we could otherwise deadlock: 1134 */ 1135 bad_area_nosemaphore(regs, hw_error_code, address); 1136 } 1137 NOKPROBE_SYMBOL(do_kern_addr_fault); 1138 1139 /* Handle faults in the user portion of the address space */ 1140 static inline 1141 void do_user_addr_fault(struct pt_regs *regs, 1142 unsigned long hw_error_code, 1143 unsigned long address) 1144 { 1145 struct vm_area_struct *vma; 1146 struct task_struct *tsk; 1147 struct mm_struct *mm; 1148 vm_fault_t fault, major = 0; 1149 unsigned int flags = FAULT_FLAG_DEFAULT; 1150 1151 tsk = current; 1152 mm = tsk->mm; 1153 1154 /* kprobes don't want to hook the spurious faults: */ 1155 if (unlikely(kprobe_page_fault(regs, X86_TRAP_PF))) 1156 return; 1157 1158 /* 1159 * Reserved bits are never expected to be set on 1160 * entries in the user portion of the page tables. 1161 */ 1162 if (unlikely(hw_error_code & X86_PF_RSVD)) 1163 pgtable_bad(regs, hw_error_code, address); 1164 1165 /* 1166 * If SMAP is on, check for invalid kernel (supervisor) access to user 1167 * pages in the user address space. The odd case here is WRUSS, 1168 * which, according to the preliminary documentation, does not respect 1169 * SMAP and will have the USER bit set so, in all cases, SMAP 1170 * enforcement appears to be consistent with the USER bit. 1171 */ 1172 if (unlikely(cpu_feature_enabled(X86_FEATURE_SMAP) && 1173 !(hw_error_code & X86_PF_USER) && 1174 !(regs->flags & X86_EFLAGS_AC))) 1175 { 1176 bad_area_nosemaphore(regs, hw_error_code, address); 1177 return; 1178 } 1179 1180 /* 1181 * If we're in an interrupt, have no user context or are running 1182 * in a region with pagefaults disabled then we must not take the fault 1183 */ 1184 if (unlikely(faulthandler_disabled() || !mm)) { 1185 bad_area_nosemaphore(regs, hw_error_code, address); 1186 return; 1187 } 1188 1189 /* 1190 * It's safe to allow irq's after cr2 has been saved and the 1191 * vmalloc fault has been handled. 1192 * 1193 * User-mode registers count as a user access even for any 1194 * potential system fault or CPU buglet: 1195 */ 1196 if (user_mode(regs)) { 1197 local_irq_enable(); 1198 flags |= FAULT_FLAG_USER; 1199 } else { 1200 if (regs->flags & X86_EFLAGS_IF) 1201 local_irq_enable(); 1202 } 1203 1204 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address); 1205 1206 if (hw_error_code & X86_PF_WRITE) 1207 flags |= FAULT_FLAG_WRITE; 1208 if (hw_error_code & X86_PF_INSTR) 1209 flags |= FAULT_FLAG_INSTRUCTION; 1210 1211 #ifdef CONFIG_X86_64 1212 /* 1213 * Faults in the vsyscall page might need emulation. The 1214 * vsyscall page is at a high address (>PAGE_OFFSET), but is 1215 * considered to be part of the user address space. 1216 * 1217 * The vsyscall page does not have a "real" VMA, so do this 1218 * emulation before we go searching for VMAs. 1219 * 1220 * PKRU never rejects instruction fetches, so we don't need 1221 * to consider the PF_PK bit. 1222 */ 1223 if (is_vsyscall_vaddr(address)) { 1224 if (emulate_vsyscall(hw_error_code, regs, address)) 1225 return; 1226 } 1227 #endif 1228 1229 /* 1230 * Kernel-mode access to the user address space should only occur 1231 * on well-defined single instructions listed in the exception 1232 * tables. But, an erroneous kernel fault occurring outside one of 1233 * those areas which also holds mmap_sem might deadlock attempting 1234 * to validate the fault against the address space. 1235 * 1236 * Only do the expensive exception table search when we might be at 1237 * risk of a deadlock. This happens if we 1238 * 1. Failed to acquire mmap_sem, and 1239 * 2. The access did not originate in userspace. 1240 */ 1241 if (unlikely(!down_read_trylock(&mm->mmap_sem))) { 1242 if (!user_mode(regs) && !search_exception_tables(regs->ip)) { 1243 /* 1244 * Fault from code in kernel from 1245 * which we do not expect faults. 1246 */ 1247 bad_area_nosemaphore(regs, hw_error_code, address); 1248 return; 1249 } 1250 retry: 1251 down_read(&mm->mmap_sem); 1252 } else { 1253 /* 1254 * The above down_read_trylock() might have succeeded in 1255 * which case we'll have missed the might_sleep() from 1256 * down_read(): 1257 */ 1258 might_sleep(); 1259 } 1260 1261 vma = find_vma(mm, address); 1262 if (unlikely(!vma)) { 1263 bad_area(regs, hw_error_code, address); 1264 return; 1265 } 1266 if (likely(vma->vm_start <= address)) 1267 goto good_area; 1268 if (unlikely(!(vma->vm_flags & VM_GROWSDOWN))) { 1269 bad_area(regs, hw_error_code, address); 1270 return; 1271 } 1272 if (unlikely(expand_stack(vma, address))) { 1273 bad_area(regs, hw_error_code, address); 1274 return; 1275 } 1276 1277 /* 1278 * Ok, we have a good vm_area for this memory access, so 1279 * we can handle it.. 1280 */ 1281 good_area: 1282 if (unlikely(access_error(hw_error_code, vma))) { 1283 bad_area_access_error(regs, hw_error_code, address, vma); 1284 return; 1285 } 1286 1287 /* 1288 * If for any reason at all we couldn't handle the fault, 1289 * make sure we exit gracefully rather than endlessly redo 1290 * the fault. Since we never set FAULT_FLAG_RETRY_NOWAIT, if 1291 * we get VM_FAULT_RETRY back, the mmap_sem has been unlocked. 1292 * 1293 * Note that handle_userfault() may also release and reacquire mmap_sem 1294 * (and not return with VM_FAULT_RETRY), when returning to userland to 1295 * repeat the page fault later with a VM_FAULT_NOPAGE retval 1296 * (potentially after handling any pending signal during the return to 1297 * userland). The return to userland is identified whenever 1298 * FAULT_FLAG_USER|FAULT_FLAG_KILLABLE are both set in flags. 1299 */ 1300 fault = handle_mm_fault(vma, address, flags); 1301 major |= fault & VM_FAULT_MAJOR; 1302 1303 /* Quick path to respond to signals */ 1304 if (fault_signal_pending(fault, regs)) { 1305 if (!user_mode(regs)) 1306 no_context(regs, hw_error_code, address, SIGBUS, 1307 BUS_ADRERR); 1308 return; 1309 } 1310 1311 /* 1312 * If we need to retry the mmap_sem has already been released, 1313 * and if there is a fatal signal pending there is no guarantee 1314 * that we made any progress. Handle this case first. 1315 */ 1316 if (unlikely((fault & VM_FAULT_RETRY) && 1317 (flags & FAULT_FLAG_ALLOW_RETRY))) { 1318 flags |= FAULT_FLAG_TRIED; 1319 goto retry; 1320 } 1321 1322 up_read(&mm->mmap_sem); 1323 if (unlikely(fault & VM_FAULT_ERROR)) { 1324 mm_fault_error(regs, hw_error_code, address, fault); 1325 return; 1326 } 1327 1328 /* 1329 * Major/minor page fault accounting. If any of the events 1330 * returned VM_FAULT_MAJOR, we account it as a major fault. 1331 */ 1332 if (major) { 1333 tsk->maj_flt++; 1334 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address); 1335 } else { 1336 tsk->min_flt++; 1337 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address); 1338 } 1339 1340 check_v8086_mode(regs, address, tsk); 1341 } 1342 NOKPROBE_SYMBOL(do_user_addr_fault); 1343 1344 static __always_inline void 1345 trace_page_fault_entries(struct pt_regs *regs, unsigned long error_code, 1346 unsigned long address) 1347 { 1348 if (!trace_pagefault_enabled()) 1349 return; 1350 1351 if (user_mode(regs)) 1352 trace_page_fault_user(address, regs, error_code); 1353 else 1354 trace_page_fault_kernel(address, regs, error_code); 1355 } 1356 1357 dotraplinkage void 1358 do_page_fault(struct pt_regs *regs, unsigned long hw_error_code, 1359 unsigned long address) 1360 { 1361 prefetchw(¤t->mm->mmap_sem); 1362 trace_page_fault_entries(regs, hw_error_code, address); 1363 1364 if (unlikely(kmmio_fault(regs, address))) 1365 return; 1366 1367 /* Was the fault on kernel-controlled part of the address space? */ 1368 if (unlikely(fault_in_kernel_space(address))) 1369 do_kern_addr_fault(regs, hw_error_code, address); 1370 else 1371 do_user_addr_fault(regs, hw_error_code, address); 1372 } 1373 NOKPROBE_SYMBOL(do_page_fault); 1374