xref: /linux/arch/x86/mm/fault.c (revision d9afbb3509900a953f5cf90bc57e793ee80c1108)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  Copyright (C) 1995  Linus Torvalds
4  *  Copyright (C) 2001, 2002 Andi Kleen, SuSE Labs.
5  *  Copyright (C) 2008-2009, Red Hat Inc., Ingo Molnar
6  */
7 #include <linux/sched.h>		/* test_thread_flag(), ...	*/
8 #include <linux/sched/task_stack.h>	/* task_stack_*(), ...		*/
9 #include <linux/kdebug.h>		/* oops_begin/end, ...		*/
10 #include <linux/extable.h>		/* search_exception_tables	*/
11 #include <linux/memblock.h>		/* max_low_pfn			*/
12 #include <linux/kprobes.h>		/* NOKPROBE_SYMBOL, ...		*/
13 #include <linux/mmiotrace.h>		/* kmmio_handler, ...		*/
14 #include <linux/perf_event.h>		/* perf_sw_event		*/
15 #include <linux/hugetlb.h>		/* hstate_index_to_shift	*/
16 #include <linux/prefetch.h>		/* prefetchw			*/
17 #include <linux/context_tracking.h>	/* exception_enter(), ...	*/
18 #include <linux/uaccess.h>		/* faulthandler_disabled()	*/
19 #include <linux/efi.h>			/* efi_recover_from_page_fault()*/
20 #include <linux/mm_types.h>
21 
22 #include <asm/cpufeature.h>		/* boot_cpu_has, ...		*/
23 #include <asm/traps.h>			/* dotraplinkage, ...		*/
24 #include <asm/pgalloc.h>		/* pgd_*(), ...			*/
25 #include <asm/fixmap.h>			/* VSYSCALL_ADDR		*/
26 #include <asm/vsyscall.h>		/* emulate_vsyscall		*/
27 #include <asm/vm86.h>			/* struct vm86			*/
28 #include <asm/mmu_context.h>		/* vma_pkey()			*/
29 #include <asm/efi.h>			/* efi_recover_from_page_fault()*/
30 #include <asm/desc.h>			/* store_idt(), ...		*/
31 #include <asm/cpu_entry_area.h>		/* exception stack		*/
32 #include <asm/pgtable_areas.h>		/* VMALLOC_START, ...		*/
33 
34 #define CREATE_TRACE_POINTS
35 #include <asm/trace/exceptions.h>
36 
37 /*
38  * Returns 0 if mmiotrace is disabled, or if the fault is not
39  * handled by mmiotrace:
40  */
41 static nokprobe_inline int
42 kmmio_fault(struct pt_regs *regs, unsigned long addr)
43 {
44 	if (unlikely(is_kmmio_active()))
45 		if (kmmio_handler(regs, addr) == 1)
46 			return -1;
47 	return 0;
48 }
49 
50 /*
51  * Prefetch quirks:
52  *
53  * 32-bit mode:
54  *
55  *   Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
56  *   Check that here and ignore it.
57  *
58  * 64-bit mode:
59  *
60  *   Sometimes the CPU reports invalid exceptions on prefetch.
61  *   Check that here and ignore it.
62  *
63  * Opcode checker based on code by Richard Brunner.
64  */
65 static inline int
66 check_prefetch_opcode(struct pt_regs *regs, unsigned char *instr,
67 		      unsigned char opcode, int *prefetch)
68 {
69 	unsigned char instr_hi = opcode & 0xf0;
70 	unsigned char instr_lo = opcode & 0x0f;
71 
72 	switch (instr_hi) {
73 	case 0x20:
74 	case 0x30:
75 		/*
76 		 * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes.
77 		 * In X86_64 long mode, the CPU will signal invalid
78 		 * opcode if some of these prefixes are present so
79 		 * X86_64 will never get here anyway
80 		 */
81 		return ((instr_lo & 7) == 0x6);
82 #ifdef CONFIG_X86_64
83 	case 0x40:
84 		/*
85 		 * In AMD64 long mode 0x40..0x4F are valid REX prefixes
86 		 * Need to figure out under what instruction mode the
87 		 * instruction was issued. Could check the LDT for lm,
88 		 * but for now it's good enough to assume that long
89 		 * mode only uses well known segments or kernel.
90 		 */
91 		return (!user_mode(regs) || user_64bit_mode(regs));
92 #endif
93 	case 0x60:
94 		/* 0x64 thru 0x67 are valid prefixes in all modes. */
95 		return (instr_lo & 0xC) == 0x4;
96 	case 0xF0:
97 		/* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */
98 		return !instr_lo || (instr_lo>>1) == 1;
99 	case 0x00:
100 		/* Prefetch instruction is 0x0F0D or 0x0F18 */
101 		if (probe_kernel_address(instr, opcode))
102 			return 0;
103 
104 		*prefetch = (instr_lo == 0xF) &&
105 			(opcode == 0x0D || opcode == 0x18);
106 		return 0;
107 	default:
108 		return 0;
109 	}
110 }
111 
112 static int
113 is_prefetch(struct pt_regs *regs, unsigned long error_code, unsigned long addr)
114 {
115 	unsigned char *max_instr;
116 	unsigned char *instr;
117 	int prefetch = 0;
118 
119 	/*
120 	 * If it was a exec (instruction fetch) fault on NX page, then
121 	 * do not ignore the fault:
122 	 */
123 	if (error_code & X86_PF_INSTR)
124 		return 0;
125 
126 	instr = (void *)convert_ip_to_linear(current, regs);
127 	max_instr = instr + 15;
128 
129 	if (user_mode(regs) && instr >= (unsigned char *)TASK_SIZE_MAX)
130 		return 0;
131 
132 	while (instr < max_instr) {
133 		unsigned char opcode;
134 
135 		if (probe_kernel_address(instr, opcode))
136 			break;
137 
138 		instr++;
139 
140 		if (!check_prefetch_opcode(regs, instr, opcode, &prefetch))
141 			break;
142 	}
143 	return prefetch;
144 }
145 
146 DEFINE_SPINLOCK(pgd_lock);
147 LIST_HEAD(pgd_list);
148 
149 #ifdef CONFIG_X86_32
150 static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
151 {
152 	unsigned index = pgd_index(address);
153 	pgd_t *pgd_k;
154 	p4d_t *p4d, *p4d_k;
155 	pud_t *pud, *pud_k;
156 	pmd_t *pmd, *pmd_k;
157 
158 	pgd += index;
159 	pgd_k = init_mm.pgd + index;
160 
161 	if (!pgd_present(*pgd_k))
162 		return NULL;
163 
164 	/*
165 	 * set_pgd(pgd, *pgd_k); here would be useless on PAE
166 	 * and redundant with the set_pmd() on non-PAE. As would
167 	 * set_p4d/set_pud.
168 	 */
169 	p4d = p4d_offset(pgd, address);
170 	p4d_k = p4d_offset(pgd_k, address);
171 	if (!p4d_present(*p4d_k))
172 		return NULL;
173 
174 	pud = pud_offset(p4d, address);
175 	pud_k = pud_offset(p4d_k, address);
176 	if (!pud_present(*pud_k))
177 		return NULL;
178 
179 	pmd = pmd_offset(pud, address);
180 	pmd_k = pmd_offset(pud_k, address);
181 
182 	if (pmd_present(*pmd) != pmd_present(*pmd_k))
183 		set_pmd(pmd, *pmd_k);
184 
185 	if (!pmd_present(*pmd_k))
186 		return NULL;
187 	else
188 		BUG_ON(pmd_pfn(*pmd) != pmd_pfn(*pmd_k));
189 
190 	return pmd_k;
191 }
192 
193 void arch_sync_kernel_mappings(unsigned long start, unsigned long end)
194 {
195 	unsigned long addr;
196 
197 	for (addr = start & PMD_MASK;
198 	     addr >= TASK_SIZE_MAX && addr < VMALLOC_END;
199 	     addr += PMD_SIZE) {
200 		struct page *page;
201 
202 		spin_lock(&pgd_lock);
203 		list_for_each_entry(page, &pgd_list, lru) {
204 			spinlock_t *pgt_lock;
205 
206 			/* the pgt_lock only for Xen */
207 			pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
208 
209 			spin_lock(pgt_lock);
210 			vmalloc_sync_one(page_address(page), addr);
211 			spin_unlock(pgt_lock);
212 		}
213 		spin_unlock(&pgd_lock);
214 	}
215 }
216 
217 /*
218  * Did it hit the DOS screen memory VA from vm86 mode?
219  */
220 static inline void
221 check_v8086_mode(struct pt_regs *regs, unsigned long address,
222 		 struct task_struct *tsk)
223 {
224 #ifdef CONFIG_VM86
225 	unsigned long bit;
226 
227 	if (!v8086_mode(regs) || !tsk->thread.vm86)
228 		return;
229 
230 	bit = (address - 0xA0000) >> PAGE_SHIFT;
231 	if (bit < 32)
232 		tsk->thread.vm86->screen_bitmap |= 1 << bit;
233 #endif
234 }
235 
236 static bool low_pfn(unsigned long pfn)
237 {
238 	return pfn < max_low_pfn;
239 }
240 
241 static void dump_pagetable(unsigned long address)
242 {
243 	pgd_t *base = __va(read_cr3_pa());
244 	pgd_t *pgd = &base[pgd_index(address)];
245 	p4d_t *p4d;
246 	pud_t *pud;
247 	pmd_t *pmd;
248 	pte_t *pte;
249 
250 #ifdef CONFIG_X86_PAE
251 	pr_info("*pdpt = %016Lx ", pgd_val(*pgd));
252 	if (!low_pfn(pgd_val(*pgd) >> PAGE_SHIFT) || !pgd_present(*pgd))
253 		goto out;
254 #define pr_pde pr_cont
255 #else
256 #define pr_pde pr_info
257 #endif
258 	p4d = p4d_offset(pgd, address);
259 	pud = pud_offset(p4d, address);
260 	pmd = pmd_offset(pud, address);
261 	pr_pde("*pde = %0*Lx ", sizeof(*pmd) * 2, (u64)pmd_val(*pmd));
262 #undef pr_pde
263 
264 	/*
265 	 * We must not directly access the pte in the highpte
266 	 * case if the page table is located in highmem.
267 	 * And let's rather not kmap-atomic the pte, just in case
268 	 * it's allocated already:
269 	 */
270 	if (!low_pfn(pmd_pfn(*pmd)) || !pmd_present(*pmd) || pmd_large(*pmd))
271 		goto out;
272 
273 	pte = pte_offset_kernel(pmd, address);
274 	pr_cont("*pte = %0*Lx ", sizeof(*pte) * 2, (u64)pte_val(*pte));
275 out:
276 	pr_cont("\n");
277 }
278 
279 #else /* CONFIG_X86_64: */
280 
281 #ifdef CONFIG_CPU_SUP_AMD
282 static const char errata93_warning[] =
283 KERN_ERR
284 "******* Your BIOS seems to not contain a fix for K8 errata #93\n"
285 "******* Working around it, but it may cause SEGVs or burn power.\n"
286 "******* Please consider a BIOS update.\n"
287 "******* Disabling USB legacy in the BIOS may also help.\n";
288 #endif
289 
290 /*
291  * No vm86 mode in 64-bit mode:
292  */
293 static inline void
294 check_v8086_mode(struct pt_regs *regs, unsigned long address,
295 		 struct task_struct *tsk)
296 {
297 }
298 
299 static int bad_address(void *p)
300 {
301 	unsigned long dummy;
302 
303 	return probe_kernel_address((unsigned long *)p, dummy);
304 }
305 
306 static void dump_pagetable(unsigned long address)
307 {
308 	pgd_t *base = __va(read_cr3_pa());
309 	pgd_t *pgd = base + pgd_index(address);
310 	p4d_t *p4d;
311 	pud_t *pud;
312 	pmd_t *pmd;
313 	pte_t *pte;
314 
315 	if (bad_address(pgd))
316 		goto bad;
317 
318 	pr_info("PGD %lx ", pgd_val(*pgd));
319 
320 	if (!pgd_present(*pgd))
321 		goto out;
322 
323 	p4d = p4d_offset(pgd, address);
324 	if (bad_address(p4d))
325 		goto bad;
326 
327 	pr_cont("P4D %lx ", p4d_val(*p4d));
328 	if (!p4d_present(*p4d) || p4d_large(*p4d))
329 		goto out;
330 
331 	pud = pud_offset(p4d, address);
332 	if (bad_address(pud))
333 		goto bad;
334 
335 	pr_cont("PUD %lx ", pud_val(*pud));
336 	if (!pud_present(*pud) || pud_large(*pud))
337 		goto out;
338 
339 	pmd = pmd_offset(pud, address);
340 	if (bad_address(pmd))
341 		goto bad;
342 
343 	pr_cont("PMD %lx ", pmd_val(*pmd));
344 	if (!pmd_present(*pmd) || pmd_large(*pmd))
345 		goto out;
346 
347 	pte = pte_offset_kernel(pmd, address);
348 	if (bad_address(pte))
349 		goto bad;
350 
351 	pr_cont("PTE %lx", pte_val(*pte));
352 out:
353 	pr_cont("\n");
354 	return;
355 bad:
356 	pr_info("BAD\n");
357 }
358 
359 #endif /* CONFIG_X86_64 */
360 
361 /*
362  * Workaround for K8 erratum #93 & buggy BIOS.
363  *
364  * BIOS SMM functions are required to use a specific workaround
365  * to avoid corruption of the 64bit RIP register on C stepping K8.
366  *
367  * A lot of BIOS that didn't get tested properly miss this.
368  *
369  * The OS sees this as a page fault with the upper 32bits of RIP cleared.
370  * Try to work around it here.
371  *
372  * Note we only handle faults in kernel here.
373  * Does nothing on 32-bit.
374  */
375 static int is_errata93(struct pt_regs *regs, unsigned long address)
376 {
377 #if defined(CONFIG_X86_64) && defined(CONFIG_CPU_SUP_AMD)
378 	if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD
379 	    || boot_cpu_data.x86 != 0xf)
380 		return 0;
381 
382 	if (address != regs->ip)
383 		return 0;
384 
385 	if ((address >> 32) != 0)
386 		return 0;
387 
388 	address |= 0xffffffffUL << 32;
389 	if ((address >= (u64)_stext && address <= (u64)_etext) ||
390 	    (address >= MODULES_VADDR && address <= MODULES_END)) {
391 		printk_once(errata93_warning);
392 		regs->ip = address;
393 		return 1;
394 	}
395 #endif
396 	return 0;
397 }
398 
399 /*
400  * Work around K8 erratum #100 K8 in compat mode occasionally jumps
401  * to illegal addresses >4GB.
402  *
403  * We catch this in the page fault handler because these addresses
404  * are not reachable. Just detect this case and return.  Any code
405  * segment in LDT is compatibility mode.
406  */
407 static int is_errata100(struct pt_regs *regs, unsigned long address)
408 {
409 #ifdef CONFIG_X86_64
410 	if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) && (address >> 32))
411 		return 1;
412 #endif
413 	return 0;
414 }
415 
416 static int is_f00f_bug(struct pt_regs *regs, unsigned long address)
417 {
418 #ifdef CONFIG_X86_F00F_BUG
419 	unsigned long nr;
420 
421 	/*
422 	 * Pentium F0 0F C7 C8 bug workaround:
423 	 */
424 	if (boot_cpu_has_bug(X86_BUG_F00F)) {
425 		nr = (address - idt_descr.address) >> 3;
426 
427 		if (nr == 6) {
428 			do_invalid_op(regs, 0);
429 			return 1;
430 		}
431 	}
432 #endif
433 	return 0;
434 }
435 
436 static void show_ldttss(const struct desc_ptr *gdt, const char *name, u16 index)
437 {
438 	u32 offset = (index >> 3) * sizeof(struct desc_struct);
439 	unsigned long addr;
440 	struct ldttss_desc desc;
441 
442 	if (index == 0) {
443 		pr_alert("%s: NULL\n", name);
444 		return;
445 	}
446 
447 	if (offset + sizeof(struct ldttss_desc) >= gdt->size) {
448 		pr_alert("%s: 0x%hx -- out of bounds\n", name, index);
449 		return;
450 	}
451 
452 	if (probe_kernel_read(&desc, (void *)(gdt->address + offset),
453 			      sizeof(struct ldttss_desc))) {
454 		pr_alert("%s: 0x%hx -- GDT entry is not readable\n",
455 			 name, index);
456 		return;
457 	}
458 
459 	addr = desc.base0 | (desc.base1 << 16) | ((unsigned long)desc.base2 << 24);
460 #ifdef CONFIG_X86_64
461 	addr |= ((u64)desc.base3 << 32);
462 #endif
463 	pr_alert("%s: 0x%hx -- base=0x%lx limit=0x%x\n",
464 		 name, index, addr, (desc.limit0 | (desc.limit1 << 16)));
465 }
466 
467 static void
468 show_fault_oops(struct pt_regs *regs, unsigned long error_code, unsigned long address)
469 {
470 	if (!oops_may_print())
471 		return;
472 
473 	if (error_code & X86_PF_INSTR) {
474 		unsigned int level;
475 		pgd_t *pgd;
476 		pte_t *pte;
477 
478 		pgd = __va(read_cr3_pa());
479 		pgd += pgd_index(address);
480 
481 		pte = lookup_address_in_pgd(pgd, address, &level);
482 
483 		if (pte && pte_present(*pte) && !pte_exec(*pte))
484 			pr_crit("kernel tried to execute NX-protected page - exploit attempt? (uid: %d)\n",
485 				from_kuid(&init_user_ns, current_uid()));
486 		if (pte && pte_present(*pte) && pte_exec(*pte) &&
487 				(pgd_flags(*pgd) & _PAGE_USER) &&
488 				(__read_cr4() & X86_CR4_SMEP))
489 			pr_crit("unable to execute userspace code (SMEP?) (uid: %d)\n",
490 				from_kuid(&init_user_ns, current_uid()));
491 	}
492 
493 	if (address < PAGE_SIZE && !user_mode(regs))
494 		pr_alert("BUG: kernel NULL pointer dereference, address: %px\n",
495 			(void *)address);
496 	else
497 		pr_alert("BUG: unable to handle page fault for address: %px\n",
498 			(void *)address);
499 
500 	pr_alert("#PF: %s %s in %s mode\n",
501 		 (error_code & X86_PF_USER)  ? "user" : "supervisor",
502 		 (error_code & X86_PF_INSTR) ? "instruction fetch" :
503 		 (error_code & X86_PF_WRITE) ? "write access" :
504 					       "read access",
505 			     user_mode(regs) ? "user" : "kernel");
506 	pr_alert("#PF: error_code(0x%04lx) - %s\n", error_code,
507 		 !(error_code & X86_PF_PROT) ? "not-present page" :
508 		 (error_code & X86_PF_RSVD)  ? "reserved bit violation" :
509 		 (error_code & X86_PF_PK)    ? "protection keys violation" :
510 					       "permissions violation");
511 
512 	if (!(error_code & X86_PF_USER) && user_mode(regs)) {
513 		struct desc_ptr idt, gdt;
514 		u16 ldtr, tr;
515 
516 		/*
517 		 * This can happen for quite a few reasons.  The more obvious
518 		 * ones are faults accessing the GDT, or LDT.  Perhaps
519 		 * surprisingly, if the CPU tries to deliver a benign or
520 		 * contributory exception from user code and gets a page fault
521 		 * during delivery, the page fault can be delivered as though
522 		 * it originated directly from user code.  This could happen
523 		 * due to wrong permissions on the IDT, GDT, LDT, TSS, or
524 		 * kernel or IST stack.
525 		 */
526 		store_idt(&idt);
527 
528 		/* Usable even on Xen PV -- it's just slow. */
529 		native_store_gdt(&gdt);
530 
531 		pr_alert("IDT: 0x%lx (limit=0x%hx) GDT: 0x%lx (limit=0x%hx)\n",
532 			 idt.address, idt.size, gdt.address, gdt.size);
533 
534 		store_ldt(ldtr);
535 		show_ldttss(&gdt, "LDTR", ldtr);
536 
537 		store_tr(tr);
538 		show_ldttss(&gdt, "TR", tr);
539 	}
540 
541 	dump_pagetable(address);
542 }
543 
544 static noinline void
545 pgtable_bad(struct pt_regs *regs, unsigned long error_code,
546 	    unsigned long address)
547 {
548 	struct task_struct *tsk;
549 	unsigned long flags;
550 	int sig;
551 
552 	flags = oops_begin();
553 	tsk = current;
554 	sig = SIGKILL;
555 
556 	printk(KERN_ALERT "%s: Corrupted page table at address %lx\n",
557 	       tsk->comm, address);
558 	dump_pagetable(address);
559 
560 	if (__die("Bad pagetable", regs, error_code))
561 		sig = 0;
562 
563 	oops_end(flags, regs, sig);
564 }
565 
566 static void set_signal_archinfo(unsigned long address,
567 				unsigned long error_code)
568 {
569 	struct task_struct *tsk = current;
570 
571 	/*
572 	 * To avoid leaking information about the kernel page
573 	 * table layout, pretend that user-mode accesses to
574 	 * kernel addresses are always protection faults.
575 	 *
576 	 * NB: This means that failed vsyscalls with vsyscall=none
577 	 * will have the PROT bit.  This doesn't leak any
578 	 * information and does not appear to cause any problems.
579 	 */
580 	if (address >= TASK_SIZE_MAX)
581 		error_code |= X86_PF_PROT;
582 
583 	tsk->thread.trap_nr = X86_TRAP_PF;
584 	tsk->thread.error_code = error_code | X86_PF_USER;
585 	tsk->thread.cr2 = address;
586 }
587 
588 static noinline void
589 no_context(struct pt_regs *regs, unsigned long error_code,
590 	   unsigned long address, int signal, int si_code)
591 {
592 	struct task_struct *tsk = current;
593 	unsigned long flags;
594 	int sig;
595 
596 	if (user_mode(regs)) {
597 		/*
598 		 * This is an implicit supervisor-mode access from user
599 		 * mode.  Bypass all the kernel-mode recovery code and just
600 		 * OOPS.
601 		 */
602 		goto oops;
603 	}
604 
605 	/* Are we prepared to handle this kernel fault? */
606 	if (fixup_exception(regs, X86_TRAP_PF, error_code, address)) {
607 		/*
608 		 * Any interrupt that takes a fault gets the fixup. This makes
609 		 * the below recursive fault logic only apply to a faults from
610 		 * task context.
611 		 */
612 		if (in_interrupt())
613 			return;
614 
615 		/*
616 		 * Per the above we're !in_interrupt(), aka. task context.
617 		 *
618 		 * In this case we need to make sure we're not recursively
619 		 * faulting through the emulate_vsyscall() logic.
620 		 */
621 		if (current->thread.sig_on_uaccess_err && signal) {
622 			set_signal_archinfo(address, error_code);
623 
624 			/* XXX: hwpoison faults will set the wrong code. */
625 			force_sig_fault(signal, si_code, (void __user *)address);
626 		}
627 
628 		/*
629 		 * Barring that, we can do the fixup and be happy.
630 		 */
631 		return;
632 	}
633 
634 #ifdef CONFIG_VMAP_STACK
635 	/*
636 	 * Stack overflow?  During boot, we can fault near the initial
637 	 * stack in the direct map, but that's not an overflow -- check
638 	 * that we're in vmalloc space to avoid this.
639 	 */
640 	if (is_vmalloc_addr((void *)address) &&
641 	    (((unsigned long)tsk->stack - 1 - address < PAGE_SIZE) ||
642 	     address - ((unsigned long)tsk->stack + THREAD_SIZE) < PAGE_SIZE)) {
643 		unsigned long stack = __this_cpu_ist_top_va(DF) - sizeof(void *);
644 		/*
645 		 * We're likely to be running with very little stack space
646 		 * left.  It's plausible that we'd hit this condition but
647 		 * double-fault even before we get this far, in which case
648 		 * we're fine: the double-fault handler will deal with it.
649 		 *
650 		 * We don't want to make it all the way into the oops code
651 		 * and then double-fault, though, because we're likely to
652 		 * break the console driver and lose most of the stack dump.
653 		 */
654 		asm volatile ("movq %[stack], %%rsp\n\t"
655 			      "call handle_stack_overflow\n\t"
656 			      "1: jmp 1b"
657 			      : ASM_CALL_CONSTRAINT
658 			      : "D" ("kernel stack overflow (page fault)"),
659 				"S" (regs), "d" (address),
660 				[stack] "rm" (stack));
661 		unreachable();
662 	}
663 #endif
664 
665 	/*
666 	 * 32-bit:
667 	 *
668 	 *   Valid to do another page fault here, because if this fault
669 	 *   had been triggered by is_prefetch fixup_exception would have
670 	 *   handled it.
671 	 *
672 	 * 64-bit:
673 	 *
674 	 *   Hall of shame of CPU/BIOS bugs.
675 	 */
676 	if (is_prefetch(regs, error_code, address))
677 		return;
678 
679 	if (is_errata93(regs, address))
680 		return;
681 
682 	/*
683 	 * Buggy firmware could access regions which might page fault, try to
684 	 * recover from such faults.
685 	 */
686 	if (IS_ENABLED(CONFIG_EFI))
687 		efi_recover_from_page_fault(address);
688 
689 oops:
690 	/*
691 	 * Oops. The kernel tried to access some bad page. We'll have to
692 	 * terminate things with extreme prejudice:
693 	 */
694 	flags = oops_begin();
695 
696 	show_fault_oops(regs, error_code, address);
697 
698 	if (task_stack_end_corrupted(tsk))
699 		printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
700 
701 	sig = SIGKILL;
702 	if (__die("Oops", regs, error_code))
703 		sig = 0;
704 
705 	/* Executive summary in case the body of the oops scrolled away */
706 	printk(KERN_DEFAULT "CR2: %016lx\n", address);
707 
708 	oops_end(flags, regs, sig);
709 }
710 
711 /*
712  * Print out info about fatal segfaults, if the show_unhandled_signals
713  * sysctl is set:
714  */
715 static inline void
716 show_signal_msg(struct pt_regs *regs, unsigned long error_code,
717 		unsigned long address, struct task_struct *tsk)
718 {
719 	const char *loglvl = task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG;
720 
721 	if (!unhandled_signal(tsk, SIGSEGV))
722 		return;
723 
724 	if (!printk_ratelimit())
725 		return;
726 
727 	printk("%s%s[%d]: segfault at %lx ip %px sp %px error %lx",
728 		loglvl, tsk->comm, task_pid_nr(tsk), address,
729 		(void *)regs->ip, (void *)regs->sp, error_code);
730 
731 	print_vma_addr(KERN_CONT " in ", regs->ip);
732 
733 	printk(KERN_CONT "\n");
734 
735 	show_opcodes(regs, loglvl);
736 }
737 
738 /*
739  * The (legacy) vsyscall page is the long page in the kernel portion
740  * of the address space that has user-accessible permissions.
741  */
742 static bool is_vsyscall_vaddr(unsigned long vaddr)
743 {
744 	return unlikely((vaddr & PAGE_MASK) == VSYSCALL_ADDR);
745 }
746 
747 static void
748 __bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
749 		       unsigned long address, u32 pkey, int si_code)
750 {
751 	struct task_struct *tsk = current;
752 
753 	/* User mode accesses just cause a SIGSEGV */
754 	if (user_mode(regs) && (error_code & X86_PF_USER)) {
755 		/*
756 		 * It's possible to have interrupts off here:
757 		 */
758 		local_irq_enable();
759 
760 		/*
761 		 * Valid to do another page fault here because this one came
762 		 * from user space:
763 		 */
764 		if (is_prefetch(regs, error_code, address))
765 			return;
766 
767 		if (is_errata100(regs, address))
768 			return;
769 
770 		/*
771 		 * To avoid leaking information about the kernel page table
772 		 * layout, pretend that user-mode accesses to kernel addresses
773 		 * are always protection faults.
774 		 */
775 		if (address >= TASK_SIZE_MAX)
776 			error_code |= X86_PF_PROT;
777 
778 		if (likely(show_unhandled_signals))
779 			show_signal_msg(regs, error_code, address, tsk);
780 
781 		set_signal_archinfo(address, error_code);
782 
783 		if (si_code == SEGV_PKUERR)
784 			force_sig_pkuerr((void __user *)address, pkey);
785 
786 		force_sig_fault(SIGSEGV, si_code, (void __user *)address);
787 
788 		return;
789 	}
790 
791 	if (is_f00f_bug(regs, address))
792 		return;
793 
794 	no_context(regs, error_code, address, SIGSEGV, si_code);
795 }
796 
797 static noinline void
798 bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
799 		     unsigned long address)
800 {
801 	__bad_area_nosemaphore(regs, error_code, address, 0, SEGV_MAPERR);
802 }
803 
804 static void
805 __bad_area(struct pt_regs *regs, unsigned long error_code,
806 	   unsigned long address, u32 pkey, int si_code)
807 {
808 	struct mm_struct *mm = current->mm;
809 	/*
810 	 * Something tried to access memory that isn't in our memory map..
811 	 * Fix it, but check if it's kernel or user first..
812 	 */
813 	up_read(&mm->mmap_sem);
814 
815 	__bad_area_nosemaphore(regs, error_code, address, pkey, si_code);
816 }
817 
818 static noinline void
819 bad_area(struct pt_regs *regs, unsigned long error_code, unsigned long address)
820 {
821 	__bad_area(regs, error_code, address, 0, SEGV_MAPERR);
822 }
823 
824 static inline bool bad_area_access_from_pkeys(unsigned long error_code,
825 		struct vm_area_struct *vma)
826 {
827 	/* This code is always called on the current mm */
828 	bool foreign = false;
829 
830 	if (!boot_cpu_has(X86_FEATURE_OSPKE))
831 		return false;
832 	if (error_code & X86_PF_PK)
833 		return true;
834 	/* this checks permission keys on the VMA: */
835 	if (!arch_vma_access_permitted(vma, (error_code & X86_PF_WRITE),
836 				       (error_code & X86_PF_INSTR), foreign))
837 		return true;
838 	return false;
839 }
840 
841 static noinline void
842 bad_area_access_error(struct pt_regs *regs, unsigned long error_code,
843 		      unsigned long address, struct vm_area_struct *vma)
844 {
845 	/*
846 	 * This OSPKE check is not strictly necessary at runtime.
847 	 * But, doing it this way allows compiler optimizations
848 	 * if pkeys are compiled out.
849 	 */
850 	if (bad_area_access_from_pkeys(error_code, vma)) {
851 		/*
852 		 * A protection key fault means that the PKRU value did not allow
853 		 * access to some PTE.  Userspace can figure out what PKRU was
854 		 * from the XSAVE state.  This function captures the pkey from
855 		 * the vma and passes it to userspace so userspace can discover
856 		 * which protection key was set on the PTE.
857 		 *
858 		 * If we get here, we know that the hardware signaled a X86_PF_PK
859 		 * fault and that there was a VMA once we got in the fault
860 		 * handler.  It does *not* guarantee that the VMA we find here
861 		 * was the one that we faulted on.
862 		 *
863 		 * 1. T1   : mprotect_key(foo, PAGE_SIZE, pkey=4);
864 		 * 2. T1   : set PKRU to deny access to pkey=4, touches page
865 		 * 3. T1   : faults...
866 		 * 4.    T2: mprotect_key(foo, PAGE_SIZE, pkey=5);
867 		 * 5. T1   : enters fault handler, takes mmap_sem, etc...
868 		 * 6. T1   : reaches here, sees vma_pkey(vma)=5, when we really
869 		 *	     faulted on a pte with its pkey=4.
870 		 */
871 		u32 pkey = vma_pkey(vma);
872 
873 		__bad_area(regs, error_code, address, pkey, SEGV_PKUERR);
874 	} else {
875 		__bad_area(regs, error_code, address, 0, SEGV_ACCERR);
876 	}
877 }
878 
879 static void
880 do_sigbus(struct pt_regs *regs, unsigned long error_code, unsigned long address,
881 	  vm_fault_t fault)
882 {
883 	/* Kernel mode? Handle exceptions or die: */
884 	if (!(error_code & X86_PF_USER)) {
885 		no_context(regs, error_code, address, SIGBUS, BUS_ADRERR);
886 		return;
887 	}
888 
889 	/* User-space => ok to do another page fault: */
890 	if (is_prefetch(regs, error_code, address))
891 		return;
892 
893 	set_signal_archinfo(address, error_code);
894 
895 #ifdef CONFIG_MEMORY_FAILURE
896 	if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
897 		struct task_struct *tsk = current;
898 		unsigned lsb = 0;
899 
900 		pr_err(
901 	"MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
902 			tsk->comm, tsk->pid, address);
903 		if (fault & VM_FAULT_HWPOISON_LARGE)
904 			lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
905 		if (fault & VM_FAULT_HWPOISON)
906 			lsb = PAGE_SHIFT;
907 		force_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, lsb);
908 		return;
909 	}
910 #endif
911 	force_sig_fault(SIGBUS, BUS_ADRERR, (void __user *)address);
912 }
913 
914 static noinline void
915 mm_fault_error(struct pt_regs *regs, unsigned long error_code,
916 	       unsigned long address, vm_fault_t fault)
917 {
918 	if (fatal_signal_pending(current) && !(error_code & X86_PF_USER)) {
919 		no_context(regs, error_code, address, 0, 0);
920 		return;
921 	}
922 
923 	if (fault & VM_FAULT_OOM) {
924 		/* Kernel mode? Handle exceptions or die: */
925 		if (!(error_code & X86_PF_USER)) {
926 			no_context(regs, error_code, address,
927 				   SIGSEGV, SEGV_MAPERR);
928 			return;
929 		}
930 
931 		/*
932 		 * We ran out of memory, call the OOM killer, and return the
933 		 * userspace (which will retry the fault, or kill us if we got
934 		 * oom-killed):
935 		 */
936 		pagefault_out_of_memory();
937 	} else {
938 		if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
939 			     VM_FAULT_HWPOISON_LARGE))
940 			do_sigbus(regs, error_code, address, fault);
941 		else if (fault & VM_FAULT_SIGSEGV)
942 			bad_area_nosemaphore(regs, error_code, address);
943 		else
944 			BUG();
945 	}
946 }
947 
948 static int spurious_kernel_fault_check(unsigned long error_code, pte_t *pte)
949 {
950 	if ((error_code & X86_PF_WRITE) && !pte_write(*pte))
951 		return 0;
952 
953 	if ((error_code & X86_PF_INSTR) && !pte_exec(*pte))
954 		return 0;
955 
956 	return 1;
957 }
958 
959 /*
960  * Handle a spurious fault caused by a stale TLB entry.
961  *
962  * This allows us to lazily refresh the TLB when increasing the
963  * permissions of a kernel page (RO -> RW or NX -> X).  Doing it
964  * eagerly is very expensive since that implies doing a full
965  * cross-processor TLB flush, even if no stale TLB entries exist
966  * on other processors.
967  *
968  * Spurious faults may only occur if the TLB contains an entry with
969  * fewer permission than the page table entry.  Non-present (P = 0)
970  * and reserved bit (R = 1) faults are never spurious.
971  *
972  * There are no security implications to leaving a stale TLB when
973  * increasing the permissions on a page.
974  *
975  * Returns non-zero if a spurious fault was handled, zero otherwise.
976  *
977  * See Intel Developer's Manual Vol 3 Section 4.10.4.3, bullet 3
978  * (Optional Invalidation).
979  */
980 static noinline int
981 spurious_kernel_fault(unsigned long error_code, unsigned long address)
982 {
983 	pgd_t *pgd;
984 	p4d_t *p4d;
985 	pud_t *pud;
986 	pmd_t *pmd;
987 	pte_t *pte;
988 	int ret;
989 
990 	/*
991 	 * Only writes to RO or instruction fetches from NX may cause
992 	 * spurious faults.
993 	 *
994 	 * These could be from user or supervisor accesses but the TLB
995 	 * is only lazily flushed after a kernel mapping protection
996 	 * change, so user accesses are not expected to cause spurious
997 	 * faults.
998 	 */
999 	if (error_code != (X86_PF_WRITE | X86_PF_PROT) &&
1000 	    error_code != (X86_PF_INSTR | X86_PF_PROT))
1001 		return 0;
1002 
1003 	pgd = init_mm.pgd + pgd_index(address);
1004 	if (!pgd_present(*pgd))
1005 		return 0;
1006 
1007 	p4d = p4d_offset(pgd, address);
1008 	if (!p4d_present(*p4d))
1009 		return 0;
1010 
1011 	if (p4d_large(*p4d))
1012 		return spurious_kernel_fault_check(error_code, (pte_t *) p4d);
1013 
1014 	pud = pud_offset(p4d, address);
1015 	if (!pud_present(*pud))
1016 		return 0;
1017 
1018 	if (pud_large(*pud))
1019 		return spurious_kernel_fault_check(error_code, (pte_t *) pud);
1020 
1021 	pmd = pmd_offset(pud, address);
1022 	if (!pmd_present(*pmd))
1023 		return 0;
1024 
1025 	if (pmd_large(*pmd))
1026 		return spurious_kernel_fault_check(error_code, (pte_t *) pmd);
1027 
1028 	pte = pte_offset_kernel(pmd, address);
1029 	if (!pte_present(*pte))
1030 		return 0;
1031 
1032 	ret = spurious_kernel_fault_check(error_code, pte);
1033 	if (!ret)
1034 		return 0;
1035 
1036 	/*
1037 	 * Make sure we have permissions in PMD.
1038 	 * If not, then there's a bug in the page tables:
1039 	 */
1040 	ret = spurious_kernel_fault_check(error_code, (pte_t *) pmd);
1041 	WARN_ONCE(!ret, "PMD has incorrect permission bits\n");
1042 
1043 	return ret;
1044 }
1045 NOKPROBE_SYMBOL(spurious_kernel_fault);
1046 
1047 int show_unhandled_signals = 1;
1048 
1049 static inline int
1050 access_error(unsigned long error_code, struct vm_area_struct *vma)
1051 {
1052 	/* This is only called for the current mm, so: */
1053 	bool foreign = false;
1054 
1055 	/*
1056 	 * Read or write was blocked by protection keys.  This is
1057 	 * always an unconditional error and can never result in
1058 	 * a follow-up action to resolve the fault, like a COW.
1059 	 */
1060 	if (error_code & X86_PF_PK)
1061 		return 1;
1062 
1063 	/*
1064 	 * Make sure to check the VMA so that we do not perform
1065 	 * faults just to hit a X86_PF_PK as soon as we fill in a
1066 	 * page.
1067 	 */
1068 	if (!arch_vma_access_permitted(vma, (error_code & X86_PF_WRITE),
1069 				       (error_code & X86_PF_INSTR), foreign))
1070 		return 1;
1071 
1072 	if (error_code & X86_PF_WRITE) {
1073 		/* write, present and write, not present: */
1074 		if (unlikely(!(vma->vm_flags & VM_WRITE)))
1075 			return 1;
1076 		return 0;
1077 	}
1078 
1079 	/* read, present: */
1080 	if (unlikely(error_code & X86_PF_PROT))
1081 		return 1;
1082 
1083 	/* read, not present: */
1084 	if (unlikely(!vma_is_accessible(vma)))
1085 		return 1;
1086 
1087 	return 0;
1088 }
1089 
1090 static int fault_in_kernel_space(unsigned long address)
1091 {
1092 	/*
1093 	 * On 64-bit systems, the vsyscall page is at an address above
1094 	 * TASK_SIZE_MAX, but is not considered part of the kernel
1095 	 * address space.
1096 	 */
1097 	if (IS_ENABLED(CONFIG_X86_64) && is_vsyscall_vaddr(address))
1098 		return false;
1099 
1100 	return address >= TASK_SIZE_MAX;
1101 }
1102 
1103 /*
1104  * Called for all faults where 'address' is part of the kernel address
1105  * space.  Might get called for faults that originate from *code* that
1106  * ran in userspace or the kernel.
1107  */
1108 static void
1109 do_kern_addr_fault(struct pt_regs *regs, unsigned long hw_error_code,
1110 		   unsigned long address)
1111 {
1112 	/*
1113 	 * Protection keys exceptions only happen on user pages.  We
1114 	 * have no user pages in the kernel portion of the address
1115 	 * space, so do not expect them here.
1116 	 */
1117 	WARN_ON_ONCE(hw_error_code & X86_PF_PK);
1118 
1119 	/* Was the fault spurious, caused by lazy TLB invalidation? */
1120 	if (spurious_kernel_fault(hw_error_code, address))
1121 		return;
1122 
1123 	/* kprobes don't want to hook the spurious faults: */
1124 	if (kprobe_page_fault(regs, X86_TRAP_PF))
1125 		return;
1126 
1127 	/*
1128 	 * Note, despite being a "bad area", there are quite a few
1129 	 * acceptable reasons to get here, such as erratum fixups
1130 	 * and handling kernel code that can fault, like get_user().
1131 	 *
1132 	 * Don't take the mm semaphore here. If we fixup a prefetch
1133 	 * fault we could otherwise deadlock:
1134 	 */
1135 	bad_area_nosemaphore(regs, hw_error_code, address);
1136 }
1137 NOKPROBE_SYMBOL(do_kern_addr_fault);
1138 
1139 /* Handle faults in the user portion of the address space */
1140 static inline
1141 void do_user_addr_fault(struct pt_regs *regs,
1142 			unsigned long hw_error_code,
1143 			unsigned long address)
1144 {
1145 	struct vm_area_struct *vma;
1146 	struct task_struct *tsk;
1147 	struct mm_struct *mm;
1148 	vm_fault_t fault, major = 0;
1149 	unsigned int flags = FAULT_FLAG_DEFAULT;
1150 
1151 	tsk = current;
1152 	mm = tsk->mm;
1153 
1154 	/* kprobes don't want to hook the spurious faults: */
1155 	if (unlikely(kprobe_page_fault(regs, X86_TRAP_PF)))
1156 		return;
1157 
1158 	/*
1159 	 * Reserved bits are never expected to be set on
1160 	 * entries in the user portion of the page tables.
1161 	 */
1162 	if (unlikely(hw_error_code & X86_PF_RSVD))
1163 		pgtable_bad(regs, hw_error_code, address);
1164 
1165 	/*
1166 	 * If SMAP is on, check for invalid kernel (supervisor) access to user
1167 	 * pages in the user address space.  The odd case here is WRUSS,
1168 	 * which, according to the preliminary documentation, does not respect
1169 	 * SMAP and will have the USER bit set so, in all cases, SMAP
1170 	 * enforcement appears to be consistent with the USER bit.
1171 	 */
1172 	if (unlikely(cpu_feature_enabled(X86_FEATURE_SMAP) &&
1173 		     !(hw_error_code & X86_PF_USER) &&
1174 		     !(regs->flags & X86_EFLAGS_AC)))
1175 	{
1176 		bad_area_nosemaphore(regs, hw_error_code, address);
1177 		return;
1178 	}
1179 
1180 	/*
1181 	 * If we're in an interrupt, have no user context or are running
1182 	 * in a region with pagefaults disabled then we must not take the fault
1183 	 */
1184 	if (unlikely(faulthandler_disabled() || !mm)) {
1185 		bad_area_nosemaphore(regs, hw_error_code, address);
1186 		return;
1187 	}
1188 
1189 	/*
1190 	 * It's safe to allow irq's after cr2 has been saved and the
1191 	 * vmalloc fault has been handled.
1192 	 *
1193 	 * User-mode registers count as a user access even for any
1194 	 * potential system fault or CPU buglet:
1195 	 */
1196 	if (user_mode(regs)) {
1197 		local_irq_enable();
1198 		flags |= FAULT_FLAG_USER;
1199 	} else {
1200 		if (regs->flags & X86_EFLAGS_IF)
1201 			local_irq_enable();
1202 	}
1203 
1204 	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
1205 
1206 	if (hw_error_code & X86_PF_WRITE)
1207 		flags |= FAULT_FLAG_WRITE;
1208 	if (hw_error_code & X86_PF_INSTR)
1209 		flags |= FAULT_FLAG_INSTRUCTION;
1210 
1211 #ifdef CONFIG_X86_64
1212 	/*
1213 	 * Faults in the vsyscall page might need emulation.  The
1214 	 * vsyscall page is at a high address (>PAGE_OFFSET), but is
1215 	 * considered to be part of the user address space.
1216 	 *
1217 	 * The vsyscall page does not have a "real" VMA, so do this
1218 	 * emulation before we go searching for VMAs.
1219 	 *
1220 	 * PKRU never rejects instruction fetches, so we don't need
1221 	 * to consider the PF_PK bit.
1222 	 */
1223 	if (is_vsyscall_vaddr(address)) {
1224 		if (emulate_vsyscall(hw_error_code, regs, address))
1225 			return;
1226 	}
1227 #endif
1228 
1229 	/*
1230 	 * Kernel-mode access to the user address space should only occur
1231 	 * on well-defined single instructions listed in the exception
1232 	 * tables.  But, an erroneous kernel fault occurring outside one of
1233 	 * those areas which also holds mmap_sem might deadlock attempting
1234 	 * to validate the fault against the address space.
1235 	 *
1236 	 * Only do the expensive exception table search when we might be at
1237 	 * risk of a deadlock.  This happens if we
1238 	 * 1. Failed to acquire mmap_sem, and
1239 	 * 2. The access did not originate in userspace.
1240 	 */
1241 	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
1242 		if (!user_mode(regs) && !search_exception_tables(regs->ip)) {
1243 			/*
1244 			 * Fault from code in kernel from
1245 			 * which we do not expect faults.
1246 			 */
1247 			bad_area_nosemaphore(regs, hw_error_code, address);
1248 			return;
1249 		}
1250 retry:
1251 		down_read(&mm->mmap_sem);
1252 	} else {
1253 		/*
1254 		 * The above down_read_trylock() might have succeeded in
1255 		 * which case we'll have missed the might_sleep() from
1256 		 * down_read():
1257 		 */
1258 		might_sleep();
1259 	}
1260 
1261 	vma = find_vma(mm, address);
1262 	if (unlikely(!vma)) {
1263 		bad_area(regs, hw_error_code, address);
1264 		return;
1265 	}
1266 	if (likely(vma->vm_start <= address))
1267 		goto good_area;
1268 	if (unlikely(!(vma->vm_flags & VM_GROWSDOWN))) {
1269 		bad_area(regs, hw_error_code, address);
1270 		return;
1271 	}
1272 	if (unlikely(expand_stack(vma, address))) {
1273 		bad_area(regs, hw_error_code, address);
1274 		return;
1275 	}
1276 
1277 	/*
1278 	 * Ok, we have a good vm_area for this memory access, so
1279 	 * we can handle it..
1280 	 */
1281 good_area:
1282 	if (unlikely(access_error(hw_error_code, vma))) {
1283 		bad_area_access_error(regs, hw_error_code, address, vma);
1284 		return;
1285 	}
1286 
1287 	/*
1288 	 * If for any reason at all we couldn't handle the fault,
1289 	 * make sure we exit gracefully rather than endlessly redo
1290 	 * the fault.  Since we never set FAULT_FLAG_RETRY_NOWAIT, if
1291 	 * we get VM_FAULT_RETRY back, the mmap_sem has been unlocked.
1292 	 *
1293 	 * Note that handle_userfault() may also release and reacquire mmap_sem
1294 	 * (and not return with VM_FAULT_RETRY), when returning to userland to
1295 	 * repeat the page fault later with a VM_FAULT_NOPAGE retval
1296 	 * (potentially after handling any pending signal during the return to
1297 	 * userland). The return to userland is identified whenever
1298 	 * FAULT_FLAG_USER|FAULT_FLAG_KILLABLE are both set in flags.
1299 	 */
1300 	fault = handle_mm_fault(vma, address, flags);
1301 	major |= fault & VM_FAULT_MAJOR;
1302 
1303 	/* Quick path to respond to signals */
1304 	if (fault_signal_pending(fault, regs)) {
1305 		if (!user_mode(regs))
1306 			no_context(regs, hw_error_code, address, SIGBUS,
1307 				   BUS_ADRERR);
1308 		return;
1309 	}
1310 
1311 	/*
1312 	 * If we need to retry the mmap_sem has already been released,
1313 	 * and if there is a fatal signal pending there is no guarantee
1314 	 * that we made any progress. Handle this case first.
1315 	 */
1316 	if (unlikely((fault & VM_FAULT_RETRY) &&
1317 		     (flags & FAULT_FLAG_ALLOW_RETRY))) {
1318 		flags |= FAULT_FLAG_TRIED;
1319 		goto retry;
1320 	}
1321 
1322 	up_read(&mm->mmap_sem);
1323 	if (unlikely(fault & VM_FAULT_ERROR)) {
1324 		mm_fault_error(regs, hw_error_code, address, fault);
1325 		return;
1326 	}
1327 
1328 	/*
1329 	 * Major/minor page fault accounting. If any of the events
1330 	 * returned VM_FAULT_MAJOR, we account it as a major fault.
1331 	 */
1332 	if (major) {
1333 		tsk->maj_flt++;
1334 		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
1335 	} else {
1336 		tsk->min_flt++;
1337 		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
1338 	}
1339 
1340 	check_v8086_mode(regs, address, tsk);
1341 }
1342 NOKPROBE_SYMBOL(do_user_addr_fault);
1343 
1344 static __always_inline void
1345 trace_page_fault_entries(struct pt_regs *regs, unsigned long error_code,
1346 			 unsigned long address)
1347 {
1348 	if (!trace_pagefault_enabled())
1349 		return;
1350 
1351 	if (user_mode(regs))
1352 		trace_page_fault_user(address, regs, error_code);
1353 	else
1354 		trace_page_fault_kernel(address, regs, error_code);
1355 }
1356 
1357 dotraplinkage void
1358 do_page_fault(struct pt_regs *regs, unsigned long hw_error_code,
1359 		unsigned long address)
1360 {
1361 	prefetchw(&current->mm->mmap_sem);
1362 	trace_page_fault_entries(regs, hw_error_code, address);
1363 
1364 	if (unlikely(kmmio_fault(regs, address)))
1365 		return;
1366 
1367 	/* Was the fault on kernel-controlled part of the address space? */
1368 	if (unlikely(fault_in_kernel_space(address)))
1369 		do_kern_addr_fault(regs, hw_error_code, address);
1370 	else
1371 		do_user_addr_fault(regs, hw_error_code, address);
1372 }
1373 NOKPROBE_SYMBOL(do_page_fault);
1374