xref: /linux/arch/x86/mm/fault.c (revision d2eba640a4b96bc1bdc0f4a500b8b8d5e16725c8)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  Copyright (C) 1995  Linus Torvalds
4  *  Copyright (C) 2001, 2002 Andi Kleen, SuSE Labs.
5  *  Copyright (C) 2008-2009, Red Hat Inc., Ingo Molnar
6  */
7 #include <linux/sched.h>		/* test_thread_flag(), ...	*/
8 #include <linux/sched/task_stack.h>	/* task_stack_*(), ...		*/
9 #include <linux/kdebug.h>		/* oops_begin/end, ...		*/
10 #include <linux/extable.h>		/* search_exception_tables	*/
11 #include <linux/memblock.h>		/* max_low_pfn			*/
12 #include <linux/kprobes.h>		/* NOKPROBE_SYMBOL, ...		*/
13 #include <linux/mmiotrace.h>		/* kmmio_handler, ...		*/
14 #include <linux/perf_event.h>		/* perf_sw_event		*/
15 #include <linux/hugetlb.h>		/* hstate_index_to_shift	*/
16 #include <linux/prefetch.h>		/* prefetchw			*/
17 #include <linux/context_tracking.h>	/* exception_enter(), ...	*/
18 #include <linux/uaccess.h>		/* faulthandler_disabled()	*/
19 #include <linux/efi.h>			/* efi_recover_from_page_fault()*/
20 #include <linux/mm_types.h>
21 
22 #include <asm/cpufeature.h>		/* boot_cpu_has, ...		*/
23 #include <asm/traps.h>			/* dotraplinkage, ...		*/
24 #include <asm/pgalloc.h>		/* pgd_*(), ...			*/
25 #include <asm/fixmap.h>			/* VSYSCALL_ADDR		*/
26 #include <asm/vsyscall.h>		/* emulate_vsyscall		*/
27 #include <asm/vm86.h>			/* struct vm86			*/
28 #include <asm/mmu_context.h>		/* vma_pkey()			*/
29 #include <asm/efi.h>			/* efi_recover_from_page_fault()*/
30 #include <asm/desc.h>			/* store_idt(), ...		*/
31 #include <asm/cpu_entry_area.h>		/* exception stack		*/
32 
33 #define CREATE_TRACE_POINTS
34 #include <asm/trace/exceptions.h>
35 
36 /*
37  * Returns 0 if mmiotrace is disabled, or if the fault is not
38  * handled by mmiotrace:
39  */
40 static nokprobe_inline int
41 kmmio_fault(struct pt_regs *regs, unsigned long addr)
42 {
43 	if (unlikely(is_kmmio_active()))
44 		if (kmmio_handler(regs, addr) == 1)
45 			return -1;
46 	return 0;
47 }
48 
49 /*
50  * Prefetch quirks:
51  *
52  * 32-bit mode:
53  *
54  *   Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
55  *   Check that here and ignore it.
56  *
57  * 64-bit mode:
58  *
59  *   Sometimes the CPU reports invalid exceptions on prefetch.
60  *   Check that here and ignore it.
61  *
62  * Opcode checker based on code by Richard Brunner.
63  */
64 static inline int
65 check_prefetch_opcode(struct pt_regs *regs, unsigned char *instr,
66 		      unsigned char opcode, int *prefetch)
67 {
68 	unsigned char instr_hi = opcode & 0xf0;
69 	unsigned char instr_lo = opcode & 0x0f;
70 
71 	switch (instr_hi) {
72 	case 0x20:
73 	case 0x30:
74 		/*
75 		 * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes.
76 		 * In X86_64 long mode, the CPU will signal invalid
77 		 * opcode if some of these prefixes are present so
78 		 * X86_64 will never get here anyway
79 		 */
80 		return ((instr_lo & 7) == 0x6);
81 #ifdef CONFIG_X86_64
82 	case 0x40:
83 		/*
84 		 * In AMD64 long mode 0x40..0x4F are valid REX prefixes
85 		 * Need to figure out under what instruction mode the
86 		 * instruction was issued. Could check the LDT for lm,
87 		 * but for now it's good enough to assume that long
88 		 * mode only uses well known segments or kernel.
89 		 */
90 		return (!user_mode(regs) || user_64bit_mode(regs));
91 #endif
92 	case 0x60:
93 		/* 0x64 thru 0x67 are valid prefixes in all modes. */
94 		return (instr_lo & 0xC) == 0x4;
95 	case 0xF0:
96 		/* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */
97 		return !instr_lo || (instr_lo>>1) == 1;
98 	case 0x00:
99 		/* Prefetch instruction is 0x0F0D or 0x0F18 */
100 		if (probe_kernel_address(instr, opcode))
101 			return 0;
102 
103 		*prefetch = (instr_lo == 0xF) &&
104 			(opcode == 0x0D || opcode == 0x18);
105 		return 0;
106 	default:
107 		return 0;
108 	}
109 }
110 
111 static int
112 is_prefetch(struct pt_regs *regs, unsigned long error_code, unsigned long addr)
113 {
114 	unsigned char *max_instr;
115 	unsigned char *instr;
116 	int prefetch = 0;
117 
118 	/*
119 	 * If it was a exec (instruction fetch) fault on NX page, then
120 	 * do not ignore the fault:
121 	 */
122 	if (error_code & X86_PF_INSTR)
123 		return 0;
124 
125 	instr = (void *)convert_ip_to_linear(current, regs);
126 	max_instr = instr + 15;
127 
128 	if (user_mode(regs) && instr >= (unsigned char *)TASK_SIZE_MAX)
129 		return 0;
130 
131 	while (instr < max_instr) {
132 		unsigned char opcode;
133 
134 		if (probe_kernel_address(instr, opcode))
135 			break;
136 
137 		instr++;
138 
139 		if (!check_prefetch_opcode(regs, instr, opcode, &prefetch))
140 			break;
141 	}
142 	return prefetch;
143 }
144 
145 DEFINE_SPINLOCK(pgd_lock);
146 LIST_HEAD(pgd_list);
147 
148 #ifdef CONFIG_X86_32
149 static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
150 {
151 	unsigned index = pgd_index(address);
152 	pgd_t *pgd_k;
153 	p4d_t *p4d, *p4d_k;
154 	pud_t *pud, *pud_k;
155 	pmd_t *pmd, *pmd_k;
156 
157 	pgd += index;
158 	pgd_k = init_mm.pgd + index;
159 
160 	if (!pgd_present(*pgd_k))
161 		return NULL;
162 
163 	/*
164 	 * set_pgd(pgd, *pgd_k); here would be useless on PAE
165 	 * and redundant with the set_pmd() on non-PAE. As would
166 	 * set_p4d/set_pud.
167 	 */
168 	p4d = p4d_offset(pgd, address);
169 	p4d_k = p4d_offset(pgd_k, address);
170 	if (!p4d_present(*p4d_k))
171 		return NULL;
172 
173 	pud = pud_offset(p4d, address);
174 	pud_k = pud_offset(p4d_k, address);
175 	if (!pud_present(*pud_k))
176 		return NULL;
177 
178 	pmd = pmd_offset(pud, address);
179 	pmd_k = pmd_offset(pud_k, address);
180 	if (!pmd_present(*pmd_k))
181 		return NULL;
182 
183 	if (!pmd_present(*pmd))
184 		set_pmd(pmd, *pmd_k);
185 	else
186 		BUG_ON(pmd_page(*pmd) != pmd_page(*pmd_k));
187 
188 	return pmd_k;
189 }
190 
191 void vmalloc_sync_all(void)
192 {
193 	unsigned long address;
194 
195 	if (SHARED_KERNEL_PMD)
196 		return;
197 
198 	for (address = VMALLOC_START & PMD_MASK;
199 	     address >= TASK_SIZE_MAX && address < FIXADDR_TOP;
200 	     address += PMD_SIZE) {
201 		struct page *page;
202 
203 		spin_lock(&pgd_lock);
204 		list_for_each_entry(page, &pgd_list, lru) {
205 			spinlock_t *pgt_lock;
206 			pmd_t *ret;
207 
208 			/* the pgt_lock only for Xen */
209 			pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
210 
211 			spin_lock(pgt_lock);
212 			ret = vmalloc_sync_one(page_address(page), address);
213 			spin_unlock(pgt_lock);
214 
215 			if (!ret)
216 				break;
217 		}
218 		spin_unlock(&pgd_lock);
219 	}
220 }
221 
222 /*
223  * 32-bit:
224  *
225  *   Handle a fault on the vmalloc or module mapping area
226  */
227 static noinline int vmalloc_fault(unsigned long address)
228 {
229 	unsigned long pgd_paddr;
230 	pmd_t *pmd_k;
231 	pte_t *pte_k;
232 
233 	/* Make sure we are in vmalloc area: */
234 	if (!(address >= VMALLOC_START && address < VMALLOC_END))
235 		return -1;
236 
237 	/*
238 	 * Synchronize this task's top level page-table
239 	 * with the 'reference' page table.
240 	 *
241 	 * Do _not_ use "current" here. We might be inside
242 	 * an interrupt in the middle of a task switch..
243 	 */
244 	pgd_paddr = read_cr3_pa();
245 	pmd_k = vmalloc_sync_one(__va(pgd_paddr), address);
246 	if (!pmd_k)
247 		return -1;
248 
249 	if (pmd_large(*pmd_k))
250 		return 0;
251 
252 	pte_k = pte_offset_kernel(pmd_k, address);
253 	if (!pte_present(*pte_k))
254 		return -1;
255 
256 	return 0;
257 }
258 NOKPROBE_SYMBOL(vmalloc_fault);
259 
260 /*
261  * Did it hit the DOS screen memory VA from vm86 mode?
262  */
263 static inline void
264 check_v8086_mode(struct pt_regs *regs, unsigned long address,
265 		 struct task_struct *tsk)
266 {
267 #ifdef CONFIG_VM86
268 	unsigned long bit;
269 
270 	if (!v8086_mode(regs) || !tsk->thread.vm86)
271 		return;
272 
273 	bit = (address - 0xA0000) >> PAGE_SHIFT;
274 	if (bit < 32)
275 		tsk->thread.vm86->screen_bitmap |= 1 << bit;
276 #endif
277 }
278 
279 static bool low_pfn(unsigned long pfn)
280 {
281 	return pfn < max_low_pfn;
282 }
283 
284 static void dump_pagetable(unsigned long address)
285 {
286 	pgd_t *base = __va(read_cr3_pa());
287 	pgd_t *pgd = &base[pgd_index(address)];
288 	p4d_t *p4d;
289 	pud_t *pud;
290 	pmd_t *pmd;
291 	pte_t *pte;
292 
293 #ifdef CONFIG_X86_PAE
294 	pr_info("*pdpt = %016Lx ", pgd_val(*pgd));
295 	if (!low_pfn(pgd_val(*pgd) >> PAGE_SHIFT) || !pgd_present(*pgd))
296 		goto out;
297 #define pr_pde pr_cont
298 #else
299 #define pr_pde pr_info
300 #endif
301 	p4d = p4d_offset(pgd, address);
302 	pud = pud_offset(p4d, address);
303 	pmd = pmd_offset(pud, address);
304 	pr_pde("*pde = %0*Lx ", sizeof(*pmd) * 2, (u64)pmd_val(*pmd));
305 #undef pr_pde
306 
307 	/*
308 	 * We must not directly access the pte in the highpte
309 	 * case if the page table is located in highmem.
310 	 * And let's rather not kmap-atomic the pte, just in case
311 	 * it's allocated already:
312 	 */
313 	if (!low_pfn(pmd_pfn(*pmd)) || !pmd_present(*pmd) || pmd_large(*pmd))
314 		goto out;
315 
316 	pte = pte_offset_kernel(pmd, address);
317 	pr_cont("*pte = %0*Lx ", sizeof(*pte) * 2, (u64)pte_val(*pte));
318 out:
319 	pr_cont("\n");
320 }
321 
322 #else /* CONFIG_X86_64: */
323 
324 void vmalloc_sync_all(void)
325 {
326 	sync_global_pgds(VMALLOC_START & PGDIR_MASK, VMALLOC_END);
327 }
328 
329 /*
330  * 64-bit:
331  *
332  *   Handle a fault on the vmalloc area
333  */
334 static noinline int vmalloc_fault(unsigned long address)
335 {
336 	pgd_t *pgd, *pgd_k;
337 	p4d_t *p4d, *p4d_k;
338 	pud_t *pud;
339 	pmd_t *pmd;
340 	pte_t *pte;
341 
342 	/* Make sure we are in vmalloc area: */
343 	if (!(address >= VMALLOC_START && address < VMALLOC_END))
344 		return -1;
345 
346 	/*
347 	 * Copy kernel mappings over when needed. This can also
348 	 * happen within a race in page table update. In the later
349 	 * case just flush:
350 	 */
351 	pgd = (pgd_t *)__va(read_cr3_pa()) + pgd_index(address);
352 	pgd_k = pgd_offset_k(address);
353 	if (pgd_none(*pgd_k))
354 		return -1;
355 
356 	if (pgtable_l5_enabled()) {
357 		if (pgd_none(*pgd)) {
358 			set_pgd(pgd, *pgd_k);
359 			arch_flush_lazy_mmu_mode();
360 		} else {
361 			BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_k));
362 		}
363 	}
364 
365 	/* With 4-level paging, copying happens on the p4d level. */
366 	p4d = p4d_offset(pgd, address);
367 	p4d_k = p4d_offset(pgd_k, address);
368 	if (p4d_none(*p4d_k))
369 		return -1;
370 
371 	if (p4d_none(*p4d) && !pgtable_l5_enabled()) {
372 		set_p4d(p4d, *p4d_k);
373 		arch_flush_lazy_mmu_mode();
374 	} else {
375 		BUG_ON(p4d_pfn(*p4d) != p4d_pfn(*p4d_k));
376 	}
377 
378 	BUILD_BUG_ON(CONFIG_PGTABLE_LEVELS < 4);
379 
380 	pud = pud_offset(p4d, address);
381 	if (pud_none(*pud))
382 		return -1;
383 
384 	if (pud_large(*pud))
385 		return 0;
386 
387 	pmd = pmd_offset(pud, address);
388 	if (pmd_none(*pmd))
389 		return -1;
390 
391 	if (pmd_large(*pmd))
392 		return 0;
393 
394 	pte = pte_offset_kernel(pmd, address);
395 	if (!pte_present(*pte))
396 		return -1;
397 
398 	return 0;
399 }
400 NOKPROBE_SYMBOL(vmalloc_fault);
401 
402 #ifdef CONFIG_CPU_SUP_AMD
403 static const char errata93_warning[] =
404 KERN_ERR
405 "******* Your BIOS seems to not contain a fix for K8 errata #93\n"
406 "******* Working around it, but it may cause SEGVs or burn power.\n"
407 "******* Please consider a BIOS update.\n"
408 "******* Disabling USB legacy in the BIOS may also help.\n";
409 #endif
410 
411 /*
412  * No vm86 mode in 64-bit mode:
413  */
414 static inline void
415 check_v8086_mode(struct pt_regs *regs, unsigned long address,
416 		 struct task_struct *tsk)
417 {
418 }
419 
420 static int bad_address(void *p)
421 {
422 	unsigned long dummy;
423 
424 	return probe_kernel_address((unsigned long *)p, dummy);
425 }
426 
427 static void dump_pagetable(unsigned long address)
428 {
429 	pgd_t *base = __va(read_cr3_pa());
430 	pgd_t *pgd = base + pgd_index(address);
431 	p4d_t *p4d;
432 	pud_t *pud;
433 	pmd_t *pmd;
434 	pte_t *pte;
435 
436 	if (bad_address(pgd))
437 		goto bad;
438 
439 	pr_info("PGD %lx ", pgd_val(*pgd));
440 
441 	if (!pgd_present(*pgd))
442 		goto out;
443 
444 	p4d = p4d_offset(pgd, address);
445 	if (bad_address(p4d))
446 		goto bad;
447 
448 	pr_cont("P4D %lx ", p4d_val(*p4d));
449 	if (!p4d_present(*p4d) || p4d_large(*p4d))
450 		goto out;
451 
452 	pud = pud_offset(p4d, address);
453 	if (bad_address(pud))
454 		goto bad;
455 
456 	pr_cont("PUD %lx ", pud_val(*pud));
457 	if (!pud_present(*pud) || pud_large(*pud))
458 		goto out;
459 
460 	pmd = pmd_offset(pud, address);
461 	if (bad_address(pmd))
462 		goto bad;
463 
464 	pr_cont("PMD %lx ", pmd_val(*pmd));
465 	if (!pmd_present(*pmd) || pmd_large(*pmd))
466 		goto out;
467 
468 	pte = pte_offset_kernel(pmd, address);
469 	if (bad_address(pte))
470 		goto bad;
471 
472 	pr_cont("PTE %lx", pte_val(*pte));
473 out:
474 	pr_cont("\n");
475 	return;
476 bad:
477 	pr_info("BAD\n");
478 }
479 
480 #endif /* CONFIG_X86_64 */
481 
482 /*
483  * Workaround for K8 erratum #93 & buggy BIOS.
484  *
485  * BIOS SMM functions are required to use a specific workaround
486  * to avoid corruption of the 64bit RIP register on C stepping K8.
487  *
488  * A lot of BIOS that didn't get tested properly miss this.
489  *
490  * The OS sees this as a page fault with the upper 32bits of RIP cleared.
491  * Try to work around it here.
492  *
493  * Note we only handle faults in kernel here.
494  * Does nothing on 32-bit.
495  */
496 static int is_errata93(struct pt_regs *regs, unsigned long address)
497 {
498 #if defined(CONFIG_X86_64) && defined(CONFIG_CPU_SUP_AMD)
499 	if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD
500 	    || boot_cpu_data.x86 != 0xf)
501 		return 0;
502 
503 	if (address != regs->ip)
504 		return 0;
505 
506 	if ((address >> 32) != 0)
507 		return 0;
508 
509 	address |= 0xffffffffUL << 32;
510 	if ((address >= (u64)_stext && address <= (u64)_etext) ||
511 	    (address >= MODULES_VADDR && address <= MODULES_END)) {
512 		printk_once(errata93_warning);
513 		regs->ip = address;
514 		return 1;
515 	}
516 #endif
517 	return 0;
518 }
519 
520 /*
521  * Work around K8 erratum #100 K8 in compat mode occasionally jumps
522  * to illegal addresses >4GB.
523  *
524  * We catch this in the page fault handler because these addresses
525  * are not reachable. Just detect this case and return.  Any code
526  * segment in LDT is compatibility mode.
527  */
528 static int is_errata100(struct pt_regs *regs, unsigned long address)
529 {
530 #ifdef CONFIG_X86_64
531 	if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) && (address >> 32))
532 		return 1;
533 #endif
534 	return 0;
535 }
536 
537 static int is_f00f_bug(struct pt_regs *regs, unsigned long address)
538 {
539 #ifdef CONFIG_X86_F00F_BUG
540 	unsigned long nr;
541 
542 	/*
543 	 * Pentium F0 0F C7 C8 bug workaround:
544 	 */
545 	if (boot_cpu_has_bug(X86_BUG_F00F)) {
546 		nr = (address - idt_descr.address) >> 3;
547 
548 		if (nr == 6) {
549 			do_invalid_op(regs, 0);
550 			return 1;
551 		}
552 	}
553 #endif
554 	return 0;
555 }
556 
557 static void show_ldttss(const struct desc_ptr *gdt, const char *name, u16 index)
558 {
559 	u32 offset = (index >> 3) * sizeof(struct desc_struct);
560 	unsigned long addr;
561 	struct ldttss_desc desc;
562 
563 	if (index == 0) {
564 		pr_alert("%s: NULL\n", name);
565 		return;
566 	}
567 
568 	if (offset + sizeof(struct ldttss_desc) >= gdt->size) {
569 		pr_alert("%s: 0x%hx -- out of bounds\n", name, index);
570 		return;
571 	}
572 
573 	if (probe_kernel_read(&desc, (void *)(gdt->address + offset),
574 			      sizeof(struct ldttss_desc))) {
575 		pr_alert("%s: 0x%hx -- GDT entry is not readable\n",
576 			 name, index);
577 		return;
578 	}
579 
580 	addr = desc.base0 | (desc.base1 << 16) | ((unsigned long)desc.base2 << 24);
581 #ifdef CONFIG_X86_64
582 	addr |= ((u64)desc.base3 << 32);
583 #endif
584 	pr_alert("%s: 0x%hx -- base=0x%lx limit=0x%x\n",
585 		 name, index, addr, (desc.limit0 | (desc.limit1 << 16)));
586 }
587 
588 static void
589 show_fault_oops(struct pt_regs *regs, unsigned long error_code, unsigned long address)
590 {
591 	if (!oops_may_print())
592 		return;
593 
594 	if (error_code & X86_PF_INSTR) {
595 		unsigned int level;
596 		pgd_t *pgd;
597 		pte_t *pte;
598 
599 		pgd = __va(read_cr3_pa());
600 		pgd += pgd_index(address);
601 
602 		pte = lookup_address_in_pgd(pgd, address, &level);
603 
604 		if (pte && pte_present(*pte) && !pte_exec(*pte))
605 			pr_crit("kernel tried to execute NX-protected page - exploit attempt? (uid: %d)\n",
606 				from_kuid(&init_user_ns, current_uid()));
607 		if (pte && pte_present(*pte) && pte_exec(*pte) &&
608 				(pgd_flags(*pgd) & _PAGE_USER) &&
609 				(__read_cr4() & X86_CR4_SMEP))
610 			pr_crit("unable to execute userspace code (SMEP?) (uid: %d)\n",
611 				from_kuid(&init_user_ns, current_uid()));
612 	}
613 
614 	if (address < PAGE_SIZE && !user_mode(regs))
615 		pr_alert("BUG: kernel NULL pointer dereference, address: %px\n",
616 			(void *)address);
617 	else
618 		pr_alert("BUG: unable to handle page fault for address: %px\n",
619 			(void *)address);
620 
621 	pr_alert("#PF: %s %s in %s mode\n",
622 		 (error_code & X86_PF_USER)  ? "user" : "supervisor",
623 		 (error_code & X86_PF_INSTR) ? "instruction fetch" :
624 		 (error_code & X86_PF_WRITE) ? "write access" :
625 					       "read access",
626 			     user_mode(regs) ? "user" : "kernel");
627 	pr_alert("#PF: error_code(0x%04lx) - %s\n", error_code,
628 		 !(error_code & X86_PF_PROT) ? "not-present page" :
629 		 (error_code & X86_PF_RSVD)  ? "reserved bit violation" :
630 		 (error_code & X86_PF_PK)    ? "protection keys violation" :
631 					       "permissions violation");
632 
633 	if (!(error_code & X86_PF_USER) && user_mode(regs)) {
634 		struct desc_ptr idt, gdt;
635 		u16 ldtr, tr;
636 
637 		/*
638 		 * This can happen for quite a few reasons.  The more obvious
639 		 * ones are faults accessing the GDT, or LDT.  Perhaps
640 		 * surprisingly, if the CPU tries to deliver a benign or
641 		 * contributory exception from user code and gets a page fault
642 		 * during delivery, the page fault can be delivered as though
643 		 * it originated directly from user code.  This could happen
644 		 * due to wrong permissions on the IDT, GDT, LDT, TSS, or
645 		 * kernel or IST stack.
646 		 */
647 		store_idt(&idt);
648 
649 		/* Usable even on Xen PV -- it's just slow. */
650 		native_store_gdt(&gdt);
651 
652 		pr_alert("IDT: 0x%lx (limit=0x%hx) GDT: 0x%lx (limit=0x%hx)\n",
653 			 idt.address, idt.size, gdt.address, gdt.size);
654 
655 		store_ldt(ldtr);
656 		show_ldttss(&gdt, "LDTR", ldtr);
657 
658 		store_tr(tr);
659 		show_ldttss(&gdt, "TR", tr);
660 	}
661 
662 	dump_pagetable(address);
663 }
664 
665 static noinline void
666 pgtable_bad(struct pt_regs *regs, unsigned long error_code,
667 	    unsigned long address)
668 {
669 	struct task_struct *tsk;
670 	unsigned long flags;
671 	int sig;
672 
673 	flags = oops_begin();
674 	tsk = current;
675 	sig = SIGKILL;
676 
677 	printk(KERN_ALERT "%s: Corrupted page table at address %lx\n",
678 	       tsk->comm, address);
679 	dump_pagetable(address);
680 
681 	if (__die("Bad pagetable", regs, error_code))
682 		sig = 0;
683 
684 	oops_end(flags, regs, sig);
685 }
686 
687 static void set_signal_archinfo(unsigned long address,
688 				unsigned long error_code)
689 {
690 	struct task_struct *tsk = current;
691 
692 	/*
693 	 * To avoid leaking information about the kernel page
694 	 * table layout, pretend that user-mode accesses to
695 	 * kernel addresses are always protection faults.
696 	 *
697 	 * NB: This means that failed vsyscalls with vsyscall=none
698 	 * will have the PROT bit.  This doesn't leak any
699 	 * information and does not appear to cause any problems.
700 	 */
701 	if (address >= TASK_SIZE_MAX)
702 		error_code |= X86_PF_PROT;
703 
704 	tsk->thread.trap_nr = X86_TRAP_PF;
705 	tsk->thread.error_code = error_code | X86_PF_USER;
706 	tsk->thread.cr2 = address;
707 }
708 
709 static noinline void
710 no_context(struct pt_regs *regs, unsigned long error_code,
711 	   unsigned long address, int signal, int si_code)
712 {
713 	struct task_struct *tsk = current;
714 	unsigned long flags;
715 	int sig;
716 
717 	if (user_mode(regs)) {
718 		/*
719 		 * This is an implicit supervisor-mode access from user
720 		 * mode.  Bypass all the kernel-mode recovery code and just
721 		 * OOPS.
722 		 */
723 		goto oops;
724 	}
725 
726 	/* Are we prepared to handle this kernel fault? */
727 	if (fixup_exception(regs, X86_TRAP_PF, error_code, address)) {
728 		/*
729 		 * Any interrupt that takes a fault gets the fixup. This makes
730 		 * the below recursive fault logic only apply to a faults from
731 		 * task context.
732 		 */
733 		if (in_interrupt())
734 			return;
735 
736 		/*
737 		 * Per the above we're !in_interrupt(), aka. task context.
738 		 *
739 		 * In this case we need to make sure we're not recursively
740 		 * faulting through the emulate_vsyscall() logic.
741 		 */
742 		if (current->thread.sig_on_uaccess_err && signal) {
743 			set_signal_archinfo(address, error_code);
744 
745 			/* XXX: hwpoison faults will set the wrong code. */
746 			force_sig_fault(signal, si_code, (void __user *)address);
747 		}
748 
749 		/*
750 		 * Barring that, we can do the fixup and be happy.
751 		 */
752 		return;
753 	}
754 
755 #ifdef CONFIG_VMAP_STACK
756 	/*
757 	 * Stack overflow?  During boot, we can fault near the initial
758 	 * stack in the direct map, but that's not an overflow -- check
759 	 * that we're in vmalloc space to avoid this.
760 	 */
761 	if (is_vmalloc_addr((void *)address) &&
762 	    (((unsigned long)tsk->stack - 1 - address < PAGE_SIZE) ||
763 	     address - ((unsigned long)tsk->stack + THREAD_SIZE) < PAGE_SIZE)) {
764 		unsigned long stack = __this_cpu_ist_top_va(DF) - sizeof(void *);
765 		/*
766 		 * We're likely to be running with very little stack space
767 		 * left.  It's plausible that we'd hit this condition but
768 		 * double-fault even before we get this far, in which case
769 		 * we're fine: the double-fault handler will deal with it.
770 		 *
771 		 * We don't want to make it all the way into the oops code
772 		 * and then double-fault, though, because we're likely to
773 		 * break the console driver and lose most of the stack dump.
774 		 */
775 		asm volatile ("movq %[stack], %%rsp\n\t"
776 			      "call handle_stack_overflow\n\t"
777 			      "1: jmp 1b"
778 			      : ASM_CALL_CONSTRAINT
779 			      : "D" ("kernel stack overflow (page fault)"),
780 				"S" (regs), "d" (address),
781 				[stack] "rm" (stack));
782 		unreachable();
783 	}
784 #endif
785 
786 	/*
787 	 * 32-bit:
788 	 *
789 	 *   Valid to do another page fault here, because if this fault
790 	 *   had been triggered by is_prefetch fixup_exception would have
791 	 *   handled it.
792 	 *
793 	 * 64-bit:
794 	 *
795 	 *   Hall of shame of CPU/BIOS bugs.
796 	 */
797 	if (is_prefetch(regs, error_code, address))
798 		return;
799 
800 	if (is_errata93(regs, address))
801 		return;
802 
803 	/*
804 	 * Buggy firmware could access regions which might page fault, try to
805 	 * recover from such faults.
806 	 */
807 	if (IS_ENABLED(CONFIG_EFI))
808 		efi_recover_from_page_fault(address);
809 
810 oops:
811 	/*
812 	 * Oops. The kernel tried to access some bad page. We'll have to
813 	 * terminate things with extreme prejudice:
814 	 */
815 	flags = oops_begin();
816 
817 	show_fault_oops(regs, error_code, address);
818 
819 	if (task_stack_end_corrupted(tsk))
820 		printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
821 
822 	sig = SIGKILL;
823 	if (__die("Oops", regs, error_code))
824 		sig = 0;
825 
826 	/* Executive summary in case the body of the oops scrolled away */
827 	printk(KERN_DEFAULT "CR2: %016lx\n", address);
828 
829 	oops_end(flags, regs, sig);
830 }
831 
832 /*
833  * Print out info about fatal segfaults, if the show_unhandled_signals
834  * sysctl is set:
835  */
836 static inline void
837 show_signal_msg(struct pt_regs *regs, unsigned long error_code,
838 		unsigned long address, struct task_struct *tsk)
839 {
840 	const char *loglvl = task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG;
841 
842 	if (!unhandled_signal(tsk, SIGSEGV))
843 		return;
844 
845 	if (!printk_ratelimit())
846 		return;
847 
848 	printk("%s%s[%d]: segfault at %lx ip %px sp %px error %lx",
849 		loglvl, tsk->comm, task_pid_nr(tsk), address,
850 		(void *)regs->ip, (void *)regs->sp, error_code);
851 
852 	print_vma_addr(KERN_CONT " in ", regs->ip);
853 
854 	printk(KERN_CONT "\n");
855 
856 	show_opcodes(regs, loglvl);
857 }
858 
859 /*
860  * The (legacy) vsyscall page is the long page in the kernel portion
861  * of the address space that has user-accessible permissions.
862  */
863 static bool is_vsyscall_vaddr(unsigned long vaddr)
864 {
865 	return unlikely((vaddr & PAGE_MASK) == VSYSCALL_ADDR);
866 }
867 
868 static void
869 __bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
870 		       unsigned long address, u32 pkey, int si_code)
871 {
872 	struct task_struct *tsk = current;
873 
874 	/* User mode accesses just cause a SIGSEGV */
875 	if (user_mode(regs) && (error_code & X86_PF_USER)) {
876 		/*
877 		 * It's possible to have interrupts off here:
878 		 */
879 		local_irq_enable();
880 
881 		/*
882 		 * Valid to do another page fault here because this one came
883 		 * from user space:
884 		 */
885 		if (is_prefetch(regs, error_code, address))
886 			return;
887 
888 		if (is_errata100(regs, address))
889 			return;
890 
891 		/*
892 		 * To avoid leaking information about the kernel page table
893 		 * layout, pretend that user-mode accesses to kernel addresses
894 		 * are always protection faults.
895 		 */
896 		if (address >= TASK_SIZE_MAX)
897 			error_code |= X86_PF_PROT;
898 
899 		if (likely(show_unhandled_signals))
900 			show_signal_msg(regs, error_code, address, tsk);
901 
902 		set_signal_archinfo(address, error_code);
903 
904 		if (si_code == SEGV_PKUERR)
905 			force_sig_pkuerr((void __user *)address, pkey);
906 
907 		force_sig_fault(SIGSEGV, si_code, (void __user *)address);
908 
909 		return;
910 	}
911 
912 	if (is_f00f_bug(regs, address))
913 		return;
914 
915 	no_context(regs, error_code, address, SIGSEGV, si_code);
916 }
917 
918 static noinline void
919 bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
920 		     unsigned long address)
921 {
922 	__bad_area_nosemaphore(regs, error_code, address, 0, SEGV_MAPERR);
923 }
924 
925 static void
926 __bad_area(struct pt_regs *regs, unsigned long error_code,
927 	   unsigned long address, u32 pkey, int si_code)
928 {
929 	struct mm_struct *mm = current->mm;
930 	/*
931 	 * Something tried to access memory that isn't in our memory map..
932 	 * Fix it, but check if it's kernel or user first..
933 	 */
934 	up_read(&mm->mmap_sem);
935 
936 	__bad_area_nosemaphore(regs, error_code, address, pkey, si_code);
937 }
938 
939 static noinline void
940 bad_area(struct pt_regs *regs, unsigned long error_code, unsigned long address)
941 {
942 	__bad_area(regs, error_code, address, 0, SEGV_MAPERR);
943 }
944 
945 static inline bool bad_area_access_from_pkeys(unsigned long error_code,
946 		struct vm_area_struct *vma)
947 {
948 	/* This code is always called on the current mm */
949 	bool foreign = false;
950 
951 	if (!boot_cpu_has(X86_FEATURE_OSPKE))
952 		return false;
953 	if (error_code & X86_PF_PK)
954 		return true;
955 	/* this checks permission keys on the VMA: */
956 	if (!arch_vma_access_permitted(vma, (error_code & X86_PF_WRITE),
957 				       (error_code & X86_PF_INSTR), foreign))
958 		return true;
959 	return false;
960 }
961 
962 static noinline void
963 bad_area_access_error(struct pt_regs *regs, unsigned long error_code,
964 		      unsigned long address, struct vm_area_struct *vma)
965 {
966 	/*
967 	 * This OSPKE check is not strictly necessary at runtime.
968 	 * But, doing it this way allows compiler optimizations
969 	 * if pkeys are compiled out.
970 	 */
971 	if (bad_area_access_from_pkeys(error_code, vma)) {
972 		/*
973 		 * A protection key fault means that the PKRU value did not allow
974 		 * access to some PTE.  Userspace can figure out what PKRU was
975 		 * from the XSAVE state.  This function captures the pkey from
976 		 * the vma and passes it to userspace so userspace can discover
977 		 * which protection key was set on the PTE.
978 		 *
979 		 * If we get here, we know that the hardware signaled a X86_PF_PK
980 		 * fault and that there was a VMA once we got in the fault
981 		 * handler.  It does *not* guarantee that the VMA we find here
982 		 * was the one that we faulted on.
983 		 *
984 		 * 1. T1   : mprotect_key(foo, PAGE_SIZE, pkey=4);
985 		 * 2. T1   : set PKRU to deny access to pkey=4, touches page
986 		 * 3. T1   : faults...
987 		 * 4.    T2: mprotect_key(foo, PAGE_SIZE, pkey=5);
988 		 * 5. T1   : enters fault handler, takes mmap_sem, etc...
989 		 * 6. T1   : reaches here, sees vma_pkey(vma)=5, when we really
990 		 *	     faulted on a pte with its pkey=4.
991 		 */
992 		u32 pkey = vma_pkey(vma);
993 
994 		__bad_area(regs, error_code, address, pkey, SEGV_PKUERR);
995 	} else {
996 		__bad_area(regs, error_code, address, 0, SEGV_ACCERR);
997 	}
998 }
999 
1000 static void
1001 do_sigbus(struct pt_regs *regs, unsigned long error_code, unsigned long address,
1002 	  vm_fault_t fault)
1003 {
1004 	/* Kernel mode? Handle exceptions or die: */
1005 	if (!(error_code & X86_PF_USER)) {
1006 		no_context(regs, error_code, address, SIGBUS, BUS_ADRERR);
1007 		return;
1008 	}
1009 
1010 	/* User-space => ok to do another page fault: */
1011 	if (is_prefetch(regs, error_code, address))
1012 		return;
1013 
1014 	set_signal_archinfo(address, error_code);
1015 
1016 #ifdef CONFIG_MEMORY_FAILURE
1017 	if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
1018 		struct task_struct *tsk = current;
1019 		unsigned lsb = 0;
1020 
1021 		pr_err(
1022 	"MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
1023 			tsk->comm, tsk->pid, address);
1024 		if (fault & VM_FAULT_HWPOISON_LARGE)
1025 			lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
1026 		if (fault & VM_FAULT_HWPOISON)
1027 			lsb = PAGE_SHIFT;
1028 		force_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, lsb);
1029 		return;
1030 	}
1031 #endif
1032 	force_sig_fault(SIGBUS, BUS_ADRERR, (void __user *)address);
1033 }
1034 
1035 static noinline void
1036 mm_fault_error(struct pt_regs *regs, unsigned long error_code,
1037 	       unsigned long address, vm_fault_t fault)
1038 {
1039 	if (fatal_signal_pending(current) && !(error_code & X86_PF_USER)) {
1040 		no_context(regs, error_code, address, 0, 0);
1041 		return;
1042 	}
1043 
1044 	if (fault & VM_FAULT_OOM) {
1045 		/* Kernel mode? Handle exceptions or die: */
1046 		if (!(error_code & X86_PF_USER)) {
1047 			no_context(regs, error_code, address,
1048 				   SIGSEGV, SEGV_MAPERR);
1049 			return;
1050 		}
1051 
1052 		/*
1053 		 * We ran out of memory, call the OOM killer, and return the
1054 		 * userspace (which will retry the fault, or kill us if we got
1055 		 * oom-killed):
1056 		 */
1057 		pagefault_out_of_memory();
1058 	} else {
1059 		if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
1060 			     VM_FAULT_HWPOISON_LARGE))
1061 			do_sigbus(regs, error_code, address, fault);
1062 		else if (fault & VM_FAULT_SIGSEGV)
1063 			bad_area_nosemaphore(regs, error_code, address);
1064 		else
1065 			BUG();
1066 	}
1067 }
1068 
1069 static int spurious_kernel_fault_check(unsigned long error_code, pte_t *pte)
1070 {
1071 	if ((error_code & X86_PF_WRITE) && !pte_write(*pte))
1072 		return 0;
1073 
1074 	if ((error_code & X86_PF_INSTR) && !pte_exec(*pte))
1075 		return 0;
1076 
1077 	return 1;
1078 }
1079 
1080 /*
1081  * Handle a spurious fault caused by a stale TLB entry.
1082  *
1083  * This allows us to lazily refresh the TLB when increasing the
1084  * permissions of a kernel page (RO -> RW or NX -> X).  Doing it
1085  * eagerly is very expensive since that implies doing a full
1086  * cross-processor TLB flush, even if no stale TLB entries exist
1087  * on other processors.
1088  *
1089  * Spurious faults may only occur if the TLB contains an entry with
1090  * fewer permission than the page table entry.  Non-present (P = 0)
1091  * and reserved bit (R = 1) faults are never spurious.
1092  *
1093  * There are no security implications to leaving a stale TLB when
1094  * increasing the permissions on a page.
1095  *
1096  * Returns non-zero if a spurious fault was handled, zero otherwise.
1097  *
1098  * See Intel Developer's Manual Vol 3 Section 4.10.4.3, bullet 3
1099  * (Optional Invalidation).
1100  */
1101 static noinline int
1102 spurious_kernel_fault(unsigned long error_code, unsigned long address)
1103 {
1104 	pgd_t *pgd;
1105 	p4d_t *p4d;
1106 	pud_t *pud;
1107 	pmd_t *pmd;
1108 	pte_t *pte;
1109 	int ret;
1110 
1111 	/*
1112 	 * Only writes to RO or instruction fetches from NX may cause
1113 	 * spurious faults.
1114 	 *
1115 	 * These could be from user or supervisor accesses but the TLB
1116 	 * is only lazily flushed after a kernel mapping protection
1117 	 * change, so user accesses are not expected to cause spurious
1118 	 * faults.
1119 	 */
1120 	if (error_code != (X86_PF_WRITE | X86_PF_PROT) &&
1121 	    error_code != (X86_PF_INSTR | X86_PF_PROT))
1122 		return 0;
1123 
1124 	pgd = init_mm.pgd + pgd_index(address);
1125 	if (!pgd_present(*pgd))
1126 		return 0;
1127 
1128 	p4d = p4d_offset(pgd, address);
1129 	if (!p4d_present(*p4d))
1130 		return 0;
1131 
1132 	if (p4d_large(*p4d))
1133 		return spurious_kernel_fault_check(error_code, (pte_t *) p4d);
1134 
1135 	pud = pud_offset(p4d, address);
1136 	if (!pud_present(*pud))
1137 		return 0;
1138 
1139 	if (pud_large(*pud))
1140 		return spurious_kernel_fault_check(error_code, (pte_t *) pud);
1141 
1142 	pmd = pmd_offset(pud, address);
1143 	if (!pmd_present(*pmd))
1144 		return 0;
1145 
1146 	if (pmd_large(*pmd))
1147 		return spurious_kernel_fault_check(error_code, (pte_t *) pmd);
1148 
1149 	pte = pte_offset_kernel(pmd, address);
1150 	if (!pte_present(*pte))
1151 		return 0;
1152 
1153 	ret = spurious_kernel_fault_check(error_code, pte);
1154 	if (!ret)
1155 		return 0;
1156 
1157 	/*
1158 	 * Make sure we have permissions in PMD.
1159 	 * If not, then there's a bug in the page tables:
1160 	 */
1161 	ret = spurious_kernel_fault_check(error_code, (pte_t *) pmd);
1162 	WARN_ONCE(!ret, "PMD has incorrect permission bits\n");
1163 
1164 	return ret;
1165 }
1166 NOKPROBE_SYMBOL(spurious_kernel_fault);
1167 
1168 int show_unhandled_signals = 1;
1169 
1170 static inline int
1171 access_error(unsigned long error_code, struct vm_area_struct *vma)
1172 {
1173 	/* This is only called for the current mm, so: */
1174 	bool foreign = false;
1175 
1176 	/*
1177 	 * Read or write was blocked by protection keys.  This is
1178 	 * always an unconditional error and can never result in
1179 	 * a follow-up action to resolve the fault, like a COW.
1180 	 */
1181 	if (error_code & X86_PF_PK)
1182 		return 1;
1183 
1184 	/*
1185 	 * Make sure to check the VMA so that we do not perform
1186 	 * faults just to hit a X86_PF_PK as soon as we fill in a
1187 	 * page.
1188 	 */
1189 	if (!arch_vma_access_permitted(vma, (error_code & X86_PF_WRITE),
1190 				       (error_code & X86_PF_INSTR), foreign))
1191 		return 1;
1192 
1193 	if (error_code & X86_PF_WRITE) {
1194 		/* write, present and write, not present: */
1195 		if (unlikely(!(vma->vm_flags & VM_WRITE)))
1196 			return 1;
1197 		return 0;
1198 	}
1199 
1200 	/* read, present: */
1201 	if (unlikely(error_code & X86_PF_PROT))
1202 		return 1;
1203 
1204 	/* read, not present: */
1205 	if (unlikely(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))))
1206 		return 1;
1207 
1208 	return 0;
1209 }
1210 
1211 static int fault_in_kernel_space(unsigned long address)
1212 {
1213 	/*
1214 	 * On 64-bit systems, the vsyscall page is at an address above
1215 	 * TASK_SIZE_MAX, but is not considered part of the kernel
1216 	 * address space.
1217 	 */
1218 	if (IS_ENABLED(CONFIG_X86_64) && is_vsyscall_vaddr(address))
1219 		return false;
1220 
1221 	return address >= TASK_SIZE_MAX;
1222 }
1223 
1224 /*
1225  * Called for all faults where 'address' is part of the kernel address
1226  * space.  Might get called for faults that originate from *code* that
1227  * ran in userspace or the kernel.
1228  */
1229 static void
1230 do_kern_addr_fault(struct pt_regs *regs, unsigned long hw_error_code,
1231 		   unsigned long address)
1232 {
1233 	/*
1234 	 * Protection keys exceptions only happen on user pages.  We
1235 	 * have no user pages in the kernel portion of the address
1236 	 * space, so do not expect them here.
1237 	 */
1238 	WARN_ON_ONCE(hw_error_code & X86_PF_PK);
1239 
1240 	/*
1241 	 * We can fault-in kernel-space virtual memory on-demand. The
1242 	 * 'reference' page table is init_mm.pgd.
1243 	 *
1244 	 * NOTE! We MUST NOT take any locks for this case. We may
1245 	 * be in an interrupt or a critical region, and should
1246 	 * only copy the information from the master page table,
1247 	 * nothing more.
1248 	 *
1249 	 * Before doing this on-demand faulting, ensure that the
1250 	 * fault is not any of the following:
1251 	 * 1. A fault on a PTE with a reserved bit set.
1252 	 * 2. A fault caused by a user-mode access.  (Do not demand-
1253 	 *    fault kernel memory due to user-mode accesses).
1254 	 * 3. A fault caused by a page-level protection violation.
1255 	 *    (A demand fault would be on a non-present page which
1256 	 *     would have X86_PF_PROT==0).
1257 	 */
1258 	if (!(hw_error_code & (X86_PF_RSVD | X86_PF_USER | X86_PF_PROT))) {
1259 		if (vmalloc_fault(address) >= 0)
1260 			return;
1261 	}
1262 
1263 	/* Was the fault spurious, caused by lazy TLB invalidation? */
1264 	if (spurious_kernel_fault(hw_error_code, address))
1265 		return;
1266 
1267 	/* kprobes don't want to hook the spurious faults: */
1268 	if (kprobe_page_fault(regs, X86_TRAP_PF))
1269 		return;
1270 
1271 	/*
1272 	 * Note, despite being a "bad area", there are quite a few
1273 	 * acceptable reasons to get here, such as erratum fixups
1274 	 * and handling kernel code that can fault, like get_user().
1275 	 *
1276 	 * Don't take the mm semaphore here. If we fixup a prefetch
1277 	 * fault we could otherwise deadlock:
1278 	 */
1279 	bad_area_nosemaphore(regs, hw_error_code, address);
1280 }
1281 NOKPROBE_SYMBOL(do_kern_addr_fault);
1282 
1283 /* Handle faults in the user portion of the address space */
1284 static inline
1285 void do_user_addr_fault(struct pt_regs *regs,
1286 			unsigned long hw_error_code,
1287 			unsigned long address)
1288 {
1289 	struct vm_area_struct *vma;
1290 	struct task_struct *tsk;
1291 	struct mm_struct *mm;
1292 	vm_fault_t fault, major = 0;
1293 	unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
1294 
1295 	tsk = current;
1296 	mm = tsk->mm;
1297 
1298 	/* kprobes don't want to hook the spurious faults: */
1299 	if (unlikely(kprobe_page_fault(regs, X86_TRAP_PF)))
1300 		return;
1301 
1302 	/*
1303 	 * Reserved bits are never expected to be set on
1304 	 * entries in the user portion of the page tables.
1305 	 */
1306 	if (unlikely(hw_error_code & X86_PF_RSVD))
1307 		pgtable_bad(regs, hw_error_code, address);
1308 
1309 	/*
1310 	 * If SMAP is on, check for invalid kernel (supervisor) access to user
1311 	 * pages in the user address space.  The odd case here is WRUSS,
1312 	 * which, according to the preliminary documentation, does not respect
1313 	 * SMAP and will have the USER bit set so, in all cases, SMAP
1314 	 * enforcement appears to be consistent with the USER bit.
1315 	 */
1316 	if (unlikely(cpu_feature_enabled(X86_FEATURE_SMAP) &&
1317 		     !(hw_error_code & X86_PF_USER) &&
1318 		     !(regs->flags & X86_EFLAGS_AC)))
1319 	{
1320 		bad_area_nosemaphore(regs, hw_error_code, address);
1321 		return;
1322 	}
1323 
1324 	/*
1325 	 * If we're in an interrupt, have no user context or are running
1326 	 * in a region with pagefaults disabled then we must not take the fault
1327 	 */
1328 	if (unlikely(faulthandler_disabled() || !mm)) {
1329 		bad_area_nosemaphore(regs, hw_error_code, address);
1330 		return;
1331 	}
1332 
1333 	/*
1334 	 * It's safe to allow irq's after cr2 has been saved and the
1335 	 * vmalloc fault has been handled.
1336 	 *
1337 	 * User-mode registers count as a user access even for any
1338 	 * potential system fault or CPU buglet:
1339 	 */
1340 	if (user_mode(regs)) {
1341 		local_irq_enable();
1342 		flags |= FAULT_FLAG_USER;
1343 	} else {
1344 		if (regs->flags & X86_EFLAGS_IF)
1345 			local_irq_enable();
1346 	}
1347 
1348 	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
1349 
1350 	if (hw_error_code & X86_PF_WRITE)
1351 		flags |= FAULT_FLAG_WRITE;
1352 	if (hw_error_code & X86_PF_INSTR)
1353 		flags |= FAULT_FLAG_INSTRUCTION;
1354 
1355 #ifdef CONFIG_X86_64
1356 	/*
1357 	 * Faults in the vsyscall page might need emulation.  The
1358 	 * vsyscall page is at a high address (>PAGE_OFFSET), but is
1359 	 * considered to be part of the user address space.
1360 	 *
1361 	 * The vsyscall page does not have a "real" VMA, so do this
1362 	 * emulation before we go searching for VMAs.
1363 	 *
1364 	 * PKRU never rejects instruction fetches, so we don't need
1365 	 * to consider the PF_PK bit.
1366 	 */
1367 	if (is_vsyscall_vaddr(address)) {
1368 		if (emulate_vsyscall(hw_error_code, regs, address))
1369 			return;
1370 	}
1371 #endif
1372 
1373 	/*
1374 	 * Kernel-mode access to the user address space should only occur
1375 	 * on well-defined single instructions listed in the exception
1376 	 * tables.  But, an erroneous kernel fault occurring outside one of
1377 	 * those areas which also holds mmap_sem might deadlock attempting
1378 	 * to validate the fault against the address space.
1379 	 *
1380 	 * Only do the expensive exception table search when we might be at
1381 	 * risk of a deadlock.  This happens if we
1382 	 * 1. Failed to acquire mmap_sem, and
1383 	 * 2. The access did not originate in userspace.
1384 	 */
1385 	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
1386 		if (!user_mode(regs) && !search_exception_tables(regs->ip)) {
1387 			/*
1388 			 * Fault from code in kernel from
1389 			 * which we do not expect faults.
1390 			 */
1391 			bad_area_nosemaphore(regs, hw_error_code, address);
1392 			return;
1393 		}
1394 retry:
1395 		down_read(&mm->mmap_sem);
1396 	} else {
1397 		/*
1398 		 * The above down_read_trylock() might have succeeded in
1399 		 * which case we'll have missed the might_sleep() from
1400 		 * down_read():
1401 		 */
1402 		might_sleep();
1403 	}
1404 
1405 	vma = find_vma(mm, address);
1406 	if (unlikely(!vma)) {
1407 		bad_area(regs, hw_error_code, address);
1408 		return;
1409 	}
1410 	if (likely(vma->vm_start <= address))
1411 		goto good_area;
1412 	if (unlikely(!(vma->vm_flags & VM_GROWSDOWN))) {
1413 		bad_area(regs, hw_error_code, address);
1414 		return;
1415 	}
1416 	if (unlikely(expand_stack(vma, address))) {
1417 		bad_area(regs, hw_error_code, address);
1418 		return;
1419 	}
1420 
1421 	/*
1422 	 * Ok, we have a good vm_area for this memory access, so
1423 	 * we can handle it..
1424 	 */
1425 good_area:
1426 	if (unlikely(access_error(hw_error_code, vma))) {
1427 		bad_area_access_error(regs, hw_error_code, address, vma);
1428 		return;
1429 	}
1430 
1431 	/*
1432 	 * If for any reason at all we couldn't handle the fault,
1433 	 * make sure we exit gracefully rather than endlessly redo
1434 	 * the fault.  Since we never set FAULT_FLAG_RETRY_NOWAIT, if
1435 	 * we get VM_FAULT_RETRY back, the mmap_sem has been unlocked.
1436 	 *
1437 	 * Note that handle_userfault() may also release and reacquire mmap_sem
1438 	 * (and not return with VM_FAULT_RETRY), when returning to userland to
1439 	 * repeat the page fault later with a VM_FAULT_NOPAGE retval
1440 	 * (potentially after handling any pending signal during the return to
1441 	 * userland). The return to userland is identified whenever
1442 	 * FAULT_FLAG_USER|FAULT_FLAG_KILLABLE are both set in flags.
1443 	 */
1444 	fault = handle_mm_fault(vma, address, flags);
1445 	major |= fault & VM_FAULT_MAJOR;
1446 
1447 	/*
1448 	 * If we need to retry the mmap_sem has already been released,
1449 	 * and if there is a fatal signal pending there is no guarantee
1450 	 * that we made any progress. Handle this case first.
1451 	 */
1452 	if (unlikely(fault & VM_FAULT_RETRY)) {
1453 		/* Retry at most once */
1454 		if (flags & FAULT_FLAG_ALLOW_RETRY) {
1455 			flags &= ~FAULT_FLAG_ALLOW_RETRY;
1456 			flags |= FAULT_FLAG_TRIED;
1457 			if (!fatal_signal_pending(tsk))
1458 				goto retry;
1459 		}
1460 
1461 		/* User mode? Just return to handle the fatal exception */
1462 		if (flags & FAULT_FLAG_USER)
1463 			return;
1464 
1465 		/* Not returning to user mode? Handle exceptions or die: */
1466 		no_context(regs, hw_error_code, address, SIGBUS, BUS_ADRERR);
1467 		return;
1468 	}
1469 
1470 	up_read(&mm->mmap_sem);
1471 	if (unlikely(fault & VM_FAULT_ERROR)) {
1472 		mm_fault_error(regs, hw_error_code, address, fault);
1473 		return;
1474 	}
1475 
1476 	/*
1477 	 * Major/minor page fault accounting. If any of the events
1478 	 * returned VM_FAULT_MAJOR, we account it as a major fault.
1479 	 */
1480 	if (major) {
1481 		tsk->maj_flt++;
1482 		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
1483 	} else {
1484 		tsk->min_flt++;
1485 		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
1486 	}
1487 
1488 	check_v8086_mode(regs, address, tsk);
1489 }
1490 NOKPROBE_SYMBOL(do_user_addr_fault);
1491 
1492 /*
1493  * Explicitly marked noinline such that the function tracer sees this as the
1494  * page_fault entry point.
1495  */
1496 static noinline void
1497 __do_page_fault(struct pt_regs *regs, unsigned long hw_error_code,
1498 		unsigned long address)
1499 {
1500 	prefetchw(&current->mm->mmap_sem);
1501 
1502 	if (unlikely(kmmio_fault(regs, address)))
1503 		return;
1504 
1505 	/* Was the fault on kernel-controlled part of the address space? */
1506 	if (unlikely(fault_in_kernel_space(address)))
1507 		do_kern_addr_fault(regs, hw_error_code, address);
1508 	else
1509 		do_user_addr_fault(regs, hw_error_code, address);
1510 }
1511 NOKPROBE_SYMBOL(__do_page_fault);
1512 
1513 static __always_inline void
1514 trace_page_fault_entries(struct pt_regs *regs, unsigned long error_code,
1515 			 unsigned long address)
1516 {
1517 	if (!trace_pagefault_enabled())
1518 		return;
1519 
1520 	if (user_mode(regs))
1521 		trace_page_fault_user(address, regs, error_code);
1522 	else
1523 		trace_page_fault_kernel(address, regs, error_code);
1524 }
1525 
1526 dotraplinkage void
1527 do_page_fault(struct pt_regs *regs, unsigned long error_code, unsigned long address)
1528 {
1529 	enum ctx_state prev_state;
1530 
1531 	prev_state = exception_enter();
1532 	trace_page_fault_entries(regs, error_code, address);
1533 	__do_page_fault(regs, error_code, address);
1534 	exception_exit(prev_state);
1535 }
1536 NOKPROBE_SYMBOL(do_page_fault);
1537