1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 1995 Linus Torvalds 4 * Copyright (C) 2001, 2002 Andi Kleen, SuSE Labs. 5 * Copyright (C) 2008-2009, Red Hat Inc., Ingo Molnar 6 */ 7 #include <linux/sched.h> /* test_thread_flag(), ... */ 8 #include <linux/sched/task_stack.h> /* task_stack_*(), ... */ 9 #include <linux/kdebug.h> /* oops_begin/end, ... */ 10 #include <linux/extable.h> /* search_exception_tables */ 11 #include <linux/memblock.h> /* max_low_pfn */ 12 #include <linux/kprobes.h> /* NOKPROBE_SYMBOL, ... */ 13 #include <linux/mmiotrace.h> /* kmmio_handler, ... */ 14 #include <linux/perf_event.h> /* perf_sw_event */ 15 #include <linux/hugetlb.h> /* hstate_index_to_shift */ 16 #include <linux/prefetch.h> /* prefetchw */ 17 #include <linux/context_tracking.h> /* exception_enter(), ... */ 18 #include <linux/uaccess.h> /* faulthandler_disabled() */ 19 #include <linux/efi.h> /* efi_crash_gracefully_on_page_fault()*/ 20 #include <linux/mm_types.h> 21 22 #include <asm/cpufeature.h> /* boot_cpu_has, ... */ 23 #include <asm/traps.h> /* dotraplinkage, ... */ 24 #include <asm/fixmap.h> /* VSYSCALL_ADDR */ 25 #include <asm/vsyscall.h> /* emulate_vsyscall */ 26 #include <asm/vm86.h> /* struct vm86 */ 27 #include <asm/mmu_context.h> /* vma_pkey() */ 28 #include <asm/efi.h> /* efi_crash_gracefully_on_page_fault()*/ 29 #include <asm/desc.h> /* store_idt(), ... */ 30 #include <asm/cpu_entry_area.h> /* exception stack */ 31 #include <asm/pgtable_areas.h> /* VMALLOC_START, ... */ 32 #include <asm/kvm_para.h> /* kvm_handle_async_pf */ 33 #include <asm/vdso.h> /* fixup_vdso_exception() */ 34 35 #define CREATE_TRACE_POINTS 36 #include <asm/trace/exceptions.h> 37 38 /* 39 * Returns 0 if mmiotrace is disabled, or if the fault is not 40 * handled by mmiotrace: 41 */ 42 static nokprobe_inline int 43 kmmio_fault(struct pt_regs *regs, unsigned long addr) 44 { 45 if (unlikely(is_kmmio_active())) 46 if (kmmio_handler(regs, addr) == 1) 47 return -1; 48 return 0; 49 } 50 51 /* 52 * Prefetch quirks: 53 * 54 * 32-bit mode: 55 * 56 * Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch. 57 * Check that here and ignore it. This is AMD erratum #91. 58 * 59 * 64-bit mode: 60 * 61 * Sometimes the CPU reports invalid exceptions on prefetch. 62 * Check that here and ignore it. 63 * 64 * Opcode checker based on code by Richard Brunner. 65 */ 66 static inline int 67 check_prefetch_opcode(struct pt_regs *regs, unsigned char *instr, 68 unsigned char opcode, int *prefetch) 69 { 70 unsigned char instr_hi = opcode & 0xf0; 71 unsigned char instr_lo = opcode & 0x0f; 72 73 switch (instr_hi) { 74 case 0x20: 75 case 0x30: 76 /* 77 * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes. 78 * In X86_64 long mode, the CPU will signal invalid 79 * opcode if some of these prefixes are present so 80 * X86_64 will never get here anyway 81 */ 82 return ((instr_lo & 7) == 0x6); 83 #ifdef CONFIG_X86_64 84 case 0x40: 85 /* 86 * In 64-bit mode 0x40..0x4F are valid REX prefixes 87 */ 88 return (!user_mode(regs) || user_64bit_mode(regs)); 89 #endif 90 case 0x60: 91 /* 0x64 thru 0x67 are valid prefixes in all modes. */ 92 return (instr_lo & 0xC) == 0x4; 93 case 0xF0: 94 /* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */ 95 return !instr_lo || (instr_lo>>1) == 1; 96 case 0x00: 97 /* Prefetch instruction is 0x0F0D or 0x0F18 */ 98 if (get_kernel_nofault(opcode, instr)) 99 return 0; 100 101 *prefetch = (instr_lo == 0xF) && 102 (opcode == 0x0D || opcode == 0x18); 103 return 0; 104 default: 105 return 0; 106 } 107 } 108 109 static bool is_amd_k8_pre_npt(void) 110 { 111 struct cpuinfo_x86 *c = &boot_cpu_data; 112 113 return unlikely(IS_ENABLED(CONFIG_CPU_SUP_AMD) && 114 c->x86_vendor == X86_VENDOR_AMD && 115 c->x86 == 0xf && c->x86_model < 0x40); 116 } 117 118 static int 119 is_prefetch(struct pt_regs *regs, unsigned long error_code, unsigned long addr) 120 { 121 unsigned char *max_instr; 122 unsigned char *instr; 123 int prefetch = 0; 124 125 /* Erratum #91 affects AMD K8, pre-NPT CPUs */ 126 if (!is_amd_k8_pre_npt()) 127 return 0; 128 129 /* 130 * If it was a exec (instruction fetch) fault on NX page, then 131 * do not ignore the fault: 132 */ 133 if (error_code & X86_PF_INSTR) 134 return 0; 135 136 instr = (void *)convert_ip_to_linear(current, regs); 137 max_instr = instr + 15; 138 139 /* 140 * This code has historically always bailed out if IP points to a 141 * not-present page (e.g. due to a race). No one has ever 142 * complained about this. 143 */ 144 pagefault_disable(); 145 146 while (instr < max_instr) { 147 unsigned char opcode; 148 149 if (user_mode(regs)) { 150 if (get_user(opcode, instr)) 151 break; 152 } else { 153 if (get_kernel_nofault(opcode, instr)) 154 break; 155 } 156 157 instr++; 158 159 if (!check_prefetch_opcode(regs, instr, opcode, &prefetch)) 160 break; 161 } 162 163 pagefault_enable(); 164 return prefetch; 165 } 166 167 DEFINE_SPINLOCK(pgd_lock); 168 LIST_HEAD(pgd_list); 169 170 #ifdef CONFIG_X86_32 171 static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address) 172 { 173 unsigned index = pgd_index(address); 174 pgd_t *pgd_k; 175 p4d_t *p4d, *p4d_k; 176 pud_t *pud, *pud_k; 177 pmd_t *pmd, *pmd_k; 178 179 pgd += index; 180 pgd_k = init_mm.pgd + index; 181 182 if (!pgd_present(*pgd_k)) 183 return NULL; 184 185 /* 186 * set_pgd(pgd, *pgd_k); here would be useless on PAE 187 * and redundant with the set_pmd() on non-PAE. As would 188 * set_p4d/set_pud. 189 */ 190 p4d = p4d_offset(pgd, address); 191 p4d_k = p4d_offset(pgd_k, address); 192 if (!p4d_present(*p4d_k)) 193 return NULL; 194 195 pud = pud_offset(p4d, address); 196 pud_k = pud_offset(p4d_k, address); 197 if (!pud_present(*pud_k)) 198 return NULL; 199 200 pmd = pmd_offset(pud, address); 201 pmd_k = pmd_offset(pud_k, address); 202 203 if (pmd_present(*pmd) != pmd_present(*pmd_k)) 204 set_pmd(pmd, *pmd_k); 205 206 if (!pmd_present(*pmd_k)) 207 return NULL; 208 else 209 BUG_ON(pmd_pfn(*pmd) != pmd_pfn(*pmd_k)); 210 211 return pmd_k; 212 } 213 214 /* 215 * Handle a fault on the vmalloc or module mapping area 216 * 217 * This is needed because there is a race condition between the time 218 * when the vmalloc mapping code updates the PMD to the point in time 219 * where it synchronizes this update with the other page-tables in the 220 * system. 221 * 222 * In this race window another thread/CPU can map an area on the same 223 * PMD, finds it already present and does not synchronize it with the 224 * rest of the system yet. As a result v[mz]alloc might return areas 225 * which are not mapped in every page-table in the system, causing an 226 * unhandled page-fault when they are accessed. 227 */ 228 static noinline int vmalloc_fault(unsigned long address) 229 { 230 unsigned long pgd_paddr; 231 pmd_t *pmd_k; 232 pte_t *pte_k; 233 234 /* Make sure we are in vmalloc area: */ 235 if (!(address >= VMALLOC_START && address < VMALLOC_END)) 236 return -1; 237 238 /* 239 * Synchronize this task's top level page-table 240 * with the 'reference' page table. 241 * 242 * Do _not_ use "current" here. We might be inside 243 * an interrupt in the middle of a task switch.. 244 */ 245 pgd_paddr = read_cr3_pa(); 246 pmd_k = vmalloc_sync_one(__va(pgd_paddr), address); 247 if (!pmd_k) 248 return -1; 249 250 if (pmd_large(*pmd_k)) 251 return 0; 252 253 pte_k = pte_offset_kernel(pmd_k, address); 254 if (!pte_present(*pte_k)) 255 return -1; 256 257 return 0; 258 } 259 NOKPROBE_SYMBOL(vmalloc_fault); 260 261 void arch_sync_kernel_mappings(unsigned long start, unsigned long end) 262 { 263 unsigned long addr; 264 265 for (addr = start & PMD_MASK; 266 addr >= TASK_SIZE_MAX && addr < VMALLOC_END; 267 addr += PMD_SIZE) { 268 struct page *page; 269 270 spin_lock(&pgd_lock); 271 list_for_each_entry(page, &pgd_list, lru) { 272 spinlock_t *pgt_lock; 273 274 /* the pgt_lock only for Xen */ 275 pgt_lock = &pgd_page_get_mm(page)->page_table_lock; 276 277 spin_lock(pgt_lock); 278 vmalloc_sync_one(page_address(page), addr); 279 spin_unlock(pgt_lock); 280 } 281 spin_unlock(&pgd_lock); 282 } 283 } 284 285 static bool low_pfn(unsigned long pfn) 286 { 287 return pfn < max_low_pfn; 288 } 289 290 static void dump_pagetable(unsigned long address) 291 { 292 pgd_t *base = __va(read_cr3_pa()); 293 pgd_t *pgd = &base[pgd_index(address)]; 294 p4d_t *p4d; 295 pud_t *pud; 296 pmd_t *pmd; 297 pte_t *pte; 298 299 #ifdef CONFIG_X86_PAE 300 pr_info("*pdpt = %016Lx ", pgd_val(*pgd)); 301 if (!low_pfn(pgd_val(*pgd) >> PAGE_SHIFT) || !pgd_present(*pgd)) 302 goto out; 303 #define pr_pde pr_cont 304 #else 305 #define pr_pde pr_info 306 #endif 307 p4d = p4d_offset(pgd, address); 308 pud = pud_offset(p4d, address); 309 pmd = pmd_offset(pud, address); 310 pr_pde("*pde = %0*Lx ", sizeof(*pmd) * 2, (u64)pmd_val(*pmd)); 311 #undef pr_pde 312 313 /* 314 * We must not directly access the pte in the highpte 315 * case if the page table is located in highmem. 316 * And let's rather not kmap-atomic the pte, just in case 317 * it's allocated already: 318 */ 319 if (!low_pfn(pmd_pfn(*pmd)) || !pmd_present(*pmd) || pmd_large(*pmd)) 320 goto out; 321 322 pte = pte_offset_kernel(pmd, address); 323 pr_cont("*pte = %0*Lx ", sizeof(*pte) * 2, (u64)pte_val(*pte)); 324 out: 325 pr_cont("\n"); 326 } 327 328 #else /* CONFIG_X86_64: */ 329 330 #ifdef CONFIG_CPU_SUP_AMD 331 static const char errata93_warning[] = 332 KERN_ERR 333 "******* Your BIOS seems to not contain a fix for K8 errata #93\n" 334 "******* Working around it, but it may cause SEGVs or burn power.\n" 335 "******* Please consider a BIOS update.\n" 336 "******* Disabling USB legacy in the BIOS may also help.\n"; 337 #endif 338 339 static int bad_address(void *p) 340 { 341 unsigned long dummy; 342 343 return get_kernel_nofault(dummy, (unsigned long *)p); 344 } 345 346 static void dump_pagetable(unsigned long address) 347 { 348 pgd_t *base = __va(read_cr3_pa()); 349 pgd_t *pgd = base + pgd_index(address); 350 p4d_t *p4d; 351 pud_t *pud; 352 pmd_t *pmd; 353 pte_t *pte; 354 355 if (bad_address(pgd)) 356 goto bad; 357 358 pr_info("PGD %lx ", pgd_val(*pgd)); 359 360 if (!pgd_present(*pgd)) 361 goto out; 362 363 p4d = p4d_offset(pgd, address); 364 if (bad_address(p4d)) 365 goto bad; 366 367 pr_cont("P4D %lx ", p4d_val(*p4d)); 368 if (!p4d_present(*p4d) || p4d_large(*p4d)) 369 goto out; 370 371 pud = pud_offset(p4d, address); 372 if (bad_address(pud)) 373 goto bad; 374 375 pr_cont("PUD %lx ", pud_val(*pud)); 376 if (!pud_present(*pud) || pud_large(*pud)) 377 goto out; 378 379 pmd = pmd_offset(pud, address); 380 if (bad_address(pmd)) 381 goto bad; 382 383 pr_cont("PMD %lx ", pmd_val(*pmd)); 384 if (!pmd_present(*pmd) || pmd_large(*pmd)) 385 goto out; 386 387 pte = pte_offset_kernel(pmd, address); 388 if (bad_address(pte)) 389 goto bad; 390 391 pr_cont("PTE %lx", pte_val(*pte)); 392 out: 393 pr_cont("\n"); 394 return; 395 bad: 396 pr_info("BAD\n"); 397 } 398 399 #endif /* CONFIG_X86_64 */ 400 401 /* 402 * Workaround for K8 erratum #93 & buggy BIOS. 403 * 404 * BIOS SMM functions are required to use a specific workaround 405 * to avoid corruption of the 64bit RIP register on C stepping K8. 406 * 407 * A lot of BIOS that didn't get tested properly miss this. 408 * 409 * The OS sees this as a page fault with the upper 32bits of RIP cleared. 410 * Try to work around it here. 411 * 412 * Note we only handle faults in kernel here. 413 * Does nothing on 32-bit. 414 */ 415 static int is_errata93(struct pt_regs *regs, unsigned long address) 416 { 417 #if defined(CONFIG_X86_64) && defined(CONFIG_CPU_SUP_AMD) 418 if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD 419 || boot_cpu_data.x86 != 0xf) 420 return 0; 421 422 if (user_mode(regs)) 423 return 0; 424 425 if (address != regs->ip) 426 return 0; 427 428 if ((address >> 32) != 0) 429 return 0; 430 431 address |= 0xffffffffUL << 32; 432 if ((address >= (u64)_stext && address <= (u64)_etext) || 433 (address >= MODULES_VADDR && address <= MODULES_END)) { 434 printk_once(errata93_warning); 435 regs->ip = address; 436 return 1; 437 } 438 #endif 439 return 0; 440 } 441 442 /* 443 * Work around K8 erratum #100 K8 in compat mode occasionally jumps 444 * to illegal addresses >4GB. 445 * 446 * We catch this in the page fault handler because these addresses 447 * are not reachable. Just detect this case and return. Any code 448 * segment in LDT is compatibility mode. 449 */ 450 static int is_errata100(struct pt_regs *regs, unsigned long address) 451 { 452 #ifdef CONFIG_X86_64 453 if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) && (address >> 32)) 454 return 1; 455 #endif 456 return 0; 457 } 458 459 /* Pentium F0 0F C7 C8 bug workaround: */ 460 static int is_f00f_bug(struct pt_regs *regs, unsigned long error_code, 461 unsigned long address) 462 { 463 #ifdef CONFIG_X86_F00F_BUG 464 if (boot_cpu_has_bug(X86_BUG_F00F) && !(error_code & X86_PF_USER) && 465 idt_is_f00f_address(address)) { 466 handle_invalid_op(regs); 467 return 1; 468 } 469 #endif 470 return 0; 471 } 472 473 static void show_ldttss(const struct desc_ptr *gdt, const char *name, u16 index) 474 { 475 u32 offset = (index >> 3) * sizeof(struct desc_struct); 476 unsigned long addr; 477 struct ldttss_desc desc; 478 479 if (index == 0) { 480 pr_alert("%s: NULL\n", name); 481 return; 482 } 483 484 if (offset + sizeof(struct ldttss_desc) >= gdt->size) { 485 pr_alert("%s: 0x%hx -- out of bounds\n", name, index); 486 return; 487 } 488 489 if (copy_from_kernel_nofault(&desc, (void *)(gdt->address + offset), 490 sizeof(struct ldttss_desc))) { 491 pr_alert("%s: 0x%hx -- GDT entry is not readable\n", 492 name, index); 493 return; 494 } 495 496 addr = desc.base0 | (desc.base1 << 16) | ((unsigned long)desc.base2 << 24); 497 #ifdef CONFIG_X86_64 498 addr |= ((u64)desc.base3 << 32); 499 #endif 500 pr_alert("%s: 0x%hx -- base=0x%lx limit=0x%x\n", 501 name, index, addr, (desc.limit0 | (desc.limit1 << 16))); 502 } 503 504 static void 505 show_fault_oops(struct pt_regs *regs, unsigned long error_code, unsigned long address) 506 { 507 if (!oops_may_print()) 508 return; 509 510 if (error_code & X86_PF_INSTR) { 511 unsigned int level; 512 pgd_t *pgd; 513 pte_t *pte; 514 515 pgd = __va(read_cr3_pa()); 516 pgd += pgd_index(address); 517 518 pte = lookup_address_in_pgd(pgd, address, &level); 519 520 if (pte && pte_present(*pte) && !pte_exec(*pte)) 521 pr_crit("kernel tried to execute NX-protected page - exploit attempt? (uid: %d)\n", 522 from_kuid(&init_user_ns, current_uid())); 523 if (pte && pte_present(*pte) && pte_exec(*pte) && 524 (pgd_flags(*pgd) & _PAGE_USER) && 525 (__read_cr4() & X86_CR4_SMEP)) 526 pr_crit("unable to execute userspace code (SMEP?) (uid: %d)\n", 527 from_kuid(&init_user_ns, current_uid())); 528 } 529 530 if (address < PAGE_SIZE && !user_mode(regs)) 531 pr_alert("BUG: kernel NULL pointer dereference, address: %px\n", 532 (void *)address); 533 else 534 pr_alert("BUG: unable to handle page fault for address: %px\n", 535 (void *)address); 536 537 pr_alert("#PF: %s %s in %s mode\n", 538 (error_code & X86_PF_USER) ? "user" : "supervisor", 539 (error_code & X86_PF_INSTR) ? "instruction fetch" : 540 (error_code & X86_PF_WRITE) ? "write access" : 541 "read access", 542 user_mode(regs) ? "user" : "kernel"); 543 pr_alert("#PF: error_code(0x%04lx) - %s\n", error_code, 544 !(error_code & X86_PF_PROT) ? "not-present page" : 545 (error_code & X86_PF_RSVD) ? "reserved bit violation" : 546 (error_code & X86_PF_PK) ? "protection keys violation" : 547 "permissions violation"); 548 549 if (!(error_code & X86_PF_USER) && user_mode(regs)) { 550 struct desc_ptr idt, gdt; 551 u16 ldtr, tr; 552 553 /* 554 * This can happen for quite a few reasons. The more obvious 555 * ones are faults accessing the GDT, or LDT. Perhaps 556 * surprisingly, if the CPU tries to deliver a benign or 557 * contributory exception from user code and gets a page fault 558 * during delivery, the page fault can be delivered as though 559 * it originated directly from user code. This could happen 560 * due to wrong permissions on the IDT, GDT, LDT, TSS, or 561 * kernel or IST stack. 562 */ 563 store_idt(&idt); 564 565 /* Usable even on Xen PV -- it's just slow. */ 566 native_store_gdt(&gdt); 567 568 pr_alert("IDT: 0x%lx (limit=0x%hx) GDT: 0x%lx (limit=0x%hx)\n", 569 idt.address, idt.size, gdt.address, gdt.size); 570 571 store_ldt(ldtr); 572 show_ldttss(&gdt, "LDTR", ldtr); 573 574 store_tr(tr); 575 show_ldttss(&gdt, "TR", tr); 576 } 577 578 dump_pagetable(address); 579 } 580 581 static noinline void 582 pgtable_bad(struct pt_regs *regs, unsigned long error_code, 583 unsigned long address) 584 { 585 struct task_struct *tsk; 586 unsigned long flags; 587 int sig; 588 589 flags = oops_begin(); 590 tsk = current; 591 sig = SIGKILL; 592 593 printk(KERN_ALERT "%s: Corrupted page table at address %lx\n", 594 tsk->comm, address); 595 dump_pagetable(address); 596 597 if (__die("Bad pagetable", regs, error_code)) 598 sig = 0; 599 600 oops_end(flags, regs, sig); 601 } 602 603 static void sanitize_error_code(unsigned long address, 604 unsigned long *error_code) 605 { 606 /* 607 * To avoid leaking information about the kernel page 608 * table layout, pretend that user-mode accesses to 609 * kernel addresses are always protection faults. 610 * 611 * NB: This means that failed vsyscalls with vsyscall=none 612 * will have the PROT bit. This doesn't leak any 613 * information and does not appear to cause any problems. 614 */ 615 if (address >= TASK_SIZE_MAX) 616 *error_code |= X86_PF_PROT; 617 } 618 619 static void set_signal_archinfo(unsigned long address, 620 unsigned long error_code) 621 { 622 struct task_struct *tsk = current; 623 624 tsk->thread.trap_nr = X86_TRAP_PF; 625 tsk->thread.error_code = error_code | X86_PF_USER; 626 tsk->thread.cr2 = address; 627 } 628 629 static noinline void 630 page_fault_oops(struct pt_regs *regs, unsigned long error_code, 631 unsigned long address) 632 { 633 unsigned long flags; 634 int sig; 635 636 if (user_mode(regs)) { 637 /* 638 * Implicit kernel access from user mode? Skip the stack 639 * overflow and EFI special cases. 640 */ 641 goto oops; 642 } 643 644 #ifdef CONFIG_VMAP_STACK 645 /* 646 * Stack overflow? During boot, we can fault near the initial 647 * stack in the direct map, but that's not an overflow -- check 648 * that we're in vmalloc space to avoid this. 649 */ 650 if (is_vmalloc_addr((void *)address) && 651 (((unsigned long)current->stack - 1 - address < PAGE_SIZE) || 652 address - ((unsigned long)current->stack + THREAD_SIZE) < PAGE_SIZE)) { 653 unsigned long stack = __this_cpu_ist_top_va(DF) - sizeof(void *); 654 /* 655 * We're likely to be running with very little stack space 656 * left. It's plausible that we'd hit this condition but 657 * double-fault even before we get this far, in which case 658 * we're fine: the double-fault handler will deal with it. 659 * 660 * We don't want to make it all the way into the oops code 661 * and then double-fault, though, because we're likely to 662 * break the console driver and lose most of the stack dump. 663 */ 664 asm volatile ("movq %[stack], %%rsp\n\t" 665 "call handle_stack_overflow\n\t" 666 "1: jmp 1b" 667 : ASM_CALL_CONSTRAINT 668 : "D" ("kernel stack overflow (page fault)"), 669 "S" (regs), "d" (address), 670 [stack] "rm" (stack)); 671 unreachable(); 672 } 673 #endif 674 675 /* 676 * Buggy firmware could access regions which might page fault. If 677 * this happens, EFI has a special OOPS path that will try to 678 * avoid hanging the system. 679 */ 680 if (IS_ENABLED(CONFIG_EFI)) 681 efi_crash_gracefully_on_page_fault(address); 682 683 oops: 684 /* 685 * Oops. The kernel tried to access some bad page. We'll have to 686 * terminate things with extreme prejudice: 687 */ 688 flags = oops_begin(); 689 690 show_fault_oops(regs, error_code, address); 691 692 if (task_stack_end_corrupted(current)) 693 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n"); 694 695 sig = SIGKILL; 696 if (__die("Oops", regs, error_code)) 697 sig = 0; 698 699 /* Executive summary in case the body of the oops scrolled away */ 700 printk(KERN_DEFAULT "CR2: %016lx\n", address); 701 702 oops_end(flags, regs, sig); 703 } 704 705 static noinline void 706 kernelmode_fixup_or_oops(struct pt_regs *regs, unsigned long error_code, 707 unsigned long address, int signal, int si_code) 708 { 709 WARN_ON_ONCE(user_mode(regs)); 710 711 /* Are we prepared to handle this kernel fault? */ 712 if (fixup_exception(regs, X86_TRAP_PF, error_code, address)) { 713 /* 714 * Any interrupt that takes a fault gets the fixup. This makes 715 * the below recursive fault logic only apply to a faults from 716 * task context. 717 */ 718 if (in_interrupt()) 719 return; 720 721 /* 722 * Per the above we're !in_interrupt(), aka. task context. 723 * 724 * In this case we need to make sure we're not recursively 725 * faulting through the emulate_vsyscall() logic. 726 */ 727 if (current->thread.sig_on_uaccess_err && signal) { 728 sanitize_error_code(address, &error_code); 729 730 set_signal_archinfo(address, error_code); 731 732 /* XXX: hwpoison faults will set the wrong code. */ 733 force_sig_fault(signal, si_code, (void __user *)address); 734 } 735 736 /* 737 * Barring that, we can do the fixup and be happy. 738 */ 739 return; 740 } 741 742 /* 743 * AMD erratum #91 manifests as a spurious page fault on a PREFETCH 744 * instruction. 745 */ 746 if (is_prefetch(regs, error_code, address)) 747 return; 748 749 page_fault_oops(regs, error_code, address); 750 } 751 752 /* 753 * Print out info about fatal segfaults, if the show_unhandled_signals 754 * sysctl is set: 755 */ 756 static inline void 757 show_signal_msg(struct pt_regs *regs, unsigned long error_code, 758 unsigned long address, struct task_struct *tsk) 759 { 760 const char *loglvl = task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG; 761 762 if (!unhandled_signal(tsk, SIGSEGV)) 763 return; 764 765 if (!printk_ratelimit()) 766 return; 767 768 printk("%s%s[%d]: segfault at %lx ip %px sp %px error %lx", 769 loglvl, tsk->comm, task_pid_nr(tsk), address, 770 (void *)regs->ip, (void *)regs->sp, error_code); 771 772 print_vma_addr(KERN_CONT " in ", regs->ip); 773 774 printk(KERN_CONT "\n"); 775 776 show_opcodes(regs, loglvl); 777 } 778 779 /* 780 * The (legacy) vsyscall page is the long page in the kernel portion 781 * of the address space that has user-accessible permissions. 782 */ 783 static bool is_vsyscall_vaddr(unsigned long vaddr) 784 { 785 return unlikely((vaddr & PAGE_MASK) == VSYSCALL_ADDR); 786 } 787 788 static void 789 __bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code, 790 unsigned long address, u32 pkey, int si_code) 791 { 792 struct task_struct *tsk = current; 793 794 if (!user_mode(regs)) { 795 kernelmode_fixup_or_oops(regs, error_code, address, pkey, si_code); 796 return; 797 } 798 799 if (!(error_code & X86_PF_USER)) { 800 /* Implicit user access to kernel memory -- just oops */ 801 page_fault_oops(regs, error_code, address); 802 return; 803 } 804 805 /* 806 * User mode accesses just cause a SIGSEGV. 807 * It's possible to have interrupts off here: 808 */ 809 local_irq_enable(); 810 811 /* 812 * Valid to do another page fault here because this one came 813 * from user space: 814 */ 815 if (is_prefetch(regs, error_code, address)) 816 return; 817 818 if (is_errata100(regs, address)) 819 return; 820 821 sanitize_error_code(address, &error_code); 822 823 if (fixup_vdso_exception(regs, X86_TRAP_PF, error_code, address)) 824 return; 825 826 if (likely(show_unhandled_signals)) 827 show_signal_msg(regs, error_code, address, tsk); 828 829 set_signal_archinfo(address, error_code); 830 831 if (si_code == SEGV_PKUERR) 832 force_sig_pkuerr((void __user *)address, pkey); 833 834 force_sig_fault(SIGSEGV, si_code, (void __user *)address); 835 836 local_irq_disable(); 837 } 838 839 static noinline void 840 bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code, 841 unsigned long address) 842 { 843 __bad_area_nosemaphore(regs, error_code, address, 0, SEGV_MAPERR); 844 } 845 846 static void 847 __bad_area(struct pt_regs *regs, unsigned long error_code, 848 unsigned long address, u32 pkey, int si_code) 849 { 850 struct mm_struct *mm = current->mm; 851 /* 852 * Something tried to access memory that isn't in our memory map.. 853 * Fix it, but check if it's kernel or user first.. 854 */ 855 mmap_read_unlock(mm); 856 857 __bad_area_nosemaphore(regs, error_code, address, pkey, si_code); 858 } 859 860 static noinline void 861 bad_area(struct pt_regs *regs, unsigned long error_code, unsigned long address) 862 { 863 __bad_area(regs, error_code, address, 0, SEGV_MAPERR); 864 } 865 866 static inline bool bad_area_access_from_pkeys(unsigned long error_code, 867 struct vm_area_struct *vma) 868 { 869 /* This code is always called on the current mm */ 870 bool foreign = false; 871 872 if (!boot_cpu_has(X86_FEATURE_OSPKE)) 873 return false; 874 if (error_code & X86_PF_PK) 875 return true; 876 /* this checks permission keys on the VMA: */ 877 if (!arch_vma_access_permitted(vma, (error_code & X86_PF_WRITE), 878 (error_code & X86_PF_INSTR), foreign)) 879 return true; 880 return false; 881 } 882 883 static noinline void 884 bad_area_access_error(struct pt_regs *regs, unsigned long error_code, 885 unsigned long address, struct vm_area_struct *vma) 886 { 887 /* 888 * This OSPKE check is not strictly necessary at runtime. 889 * But, doing it this way allows compiler optimizations 890 * if pkeys are compiled out. 891 */ 892 if (bad_area_access_from_pkeys(error_code, vma)) { 893 /* 894 * A protection key fault means that the PKRU value did not allow 895 * access to some PTE. Userspace can figure out what PKRU was 896 * from the XSAVE state. This function captures the pkey from 897 * the vma and passes it to userspace so userspace can discover 898 * which protection key was set on the PTE. 899 * 900 * If we get here, we know that the hardware signaled a X86_PF_PK 901 * fault and that there was a VMA once we got in the fault 902 * handler. It does *not* guarantee that the VMA we find here 903 * was the one that we faulted on. 904 * 905 * 1. T1 : mprotect_key(foo, PAGE_SIZE, pkey=4); 906 * 2. T1 : set PKRU to deny access to pkey=4, touches page 907 * 3. T1 : faults... 908 * 4. T2: mprotect_key(foo, PAGE_SIZE, pkey=5); 909 * 5. T1 : enters fault handler, takes mmap_lock, etc... 910 * 6. T1 : reaches here, sees vma_pkey(vma)=5, when we really 911 * faulted on a pte with its pkey=4. 912 */ 913 u32 pkey = vma_pkey(vma); 914 915 __bad_area(regs, error_code, address, pkey, SEGV_PKUERR); 916 } else { 917 __bad_area(regs, error_code, address, 0, SEGV_ACCERR); 918 } 919 } 920 921 static void 922 do_sigbus(struct pt_regs *regs, unsigned long error_code, unsigned long address, 923 vm_fault_t fault) 924 { 925 /* Kernel mode? Handle exceptions or die: */ 926 if (!user_mode(regs)) { 927 kernelmode_fixup_or_oops(regs, error_code, address, SIGBUS, BUS_ADRERR); 928 return; 929 } 930 931 /* User-space => ok to do another page fault: */ 932 if (is_prefetch(regs, error_code, address)) 933 return; 934 935 sanitize_error_code(address, &error_code); 936 937 if (fixup_vdso_exception(regs, X86_TRAP_PF, error_code, address)) 938 return; 939 940 set_signal_archinfo(address, error_code); 941 942 #ifdef CONFIG_MEMORY_FAILURE 943 if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) { 944 struct task_struct *tsk = current; 945 unsigned lsb = 0; 946 947 pr_err( 948 "MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n", 949 tsk->comm, tsk->pid, address); 950 if (fault & VM_FAULT_HWPOISON_LARGE) 951 lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault)); 952 if (fault & VM_FAULT_HWPOISON) 953 lsb = PAGE_SHIFT; 954 force_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, lsb); 955 return; 956 } 957 #endif 958 force_sig_fault(SIGBUS, BUS_ADRERR, (void __user *)address); 959 } 960 961 static int spurious_kernel_fault_check(unsigned long error_code, pte_t *pte) 962 { 963 if ((error_code & X86_PF_WRITE) && !pte_write(*pte)) 964 return 0; 965 966 if ((error_code & X86_PF_INSTR) && !pte_exec(*pte)) 967 return 0; 968 969 return 1; 970 } 971 972 /* 973 * Handle a spurious fault caused by a stale TLB entry. 974 * 975 * This allows us to lazily refresh the TLB when increasing the 976 * permissions of a kernel page (RO -> RW or NX -> X). Doing it 977 * eagerly is very expensive since that implies doing a full 978 * cross-processor TLB flush, even if no stale TLB entries exist 979 * on other processors. 980 * 981 * Spurious faults may only occur if the TLB contains an entry with 982 * fewer permission than the page table entry. Non-present (P = 0) 983 * and reserved bit (R = 1) faults are never spurious. 984 * 985 * There are no security implications to leaving a stale TLB when 986 * increasing the permissions on a page. 987 * 988 * Returns non-zero if a spurious fault was handled, zero otherwise. 989 * 990 * See Intel Developer's Manual Vol 3 Section 4.10.4.3, bullet 3 991 * (Optional Invalidation). 992 */ 993 static noinline int 994 spurious_kernel_fault(unsigned long error_code, unsigned long address) 995 { 996 pgd_t *pgd; 997 p4d_t *p4d; 998 pud_t *pud; 999 pmd_t *pmd; 1000 pte_t *pte; 1001 int ret; 1002 1003 /* 1004 * Only writes to RO or instruction fetches from NX may cause 1005 * spurious faults. 1006 * 1007 * These could be from user or supervisor accesses but the TLB 1008 * is only lazily flushed after a kernel mapping protection 1009 * change, so user accesses are not expected to cause spurious 1010 * faults. 1011 */ 1012 if (error_code != (X86_PF_WRITE | X86_PF_PROT) && 1013 error_code != (X86_PF_INSTR | X86_PF_PROT)) 1014 return 0; 1015 1016 pgd = init_mm.pgd + pgd_index(address); 1017 if (!pgd_present(*pgd)) 1018 return 0; 1019 1020 p4d = p4d_offset(pgd, address); 1021 if (!p4d_present(*p4d)) 1022 return 0; 1023 1024 if (p4d_large(*p4d)) 1025 return spurious_kernel_fault_check(error_code, (pte_t *) p4d); 1026 1027 pud = pud_offset(p4d, address); 1028 if (!pud_present(*pud)) 1029 return 0; 1030 1031 if (pud_large(*pud)) 1032 return spurious_kernel_fault_check(error_code, (pte_t *) pud); 1033 1034 pmd = pmd_offset(pud, address); 1035 if (!pmd_present(*pmd)) 1036 return 0; 1037 1038 if (pmd_large(*pmd)) 1039 return spurious_kernel_fault_check(error_code, (pte_t *) pmd); 1040 1041 pte = pte_offset_kernel(pmd, address); 1042 if (!pte_present(*pte)) 1043 return 0; 1044 1045 ret = spurious_kernel_fault_check(error_code, pte); 1046 if (!ret) 1047 return 0; 1048 1049 /* 1050 * Make sure we have permissions in PMD. 1051 * If not, then there's a bug in the page tables: 1052 */ 1053 ret = spurious_kernel_fault_check(error_code, (pte_t *) pmd); 1054 WARN_ONCE(!ret, "PMD has incorrect permission bits\n"); 1055 1056 return ret; 1057 } 1058 NOKPROBE_SYMBOL(spurious_kernel_fault); 1059 1060 int show_unhandled_signals = 1; 1061 1062 static inline int 1063 access_error(unsigned long error_code, struct vm_area_struct *vma) 1064 { 1065 /* This is only called for the current mm, so: */ 1066 bool foreign = false; 1067 1068 /* 1069 * Read or write was blocked by protection keys. This is 1070 * always an unconditional error and can never result in 1071 * a follow-up action to resolve the fault, like a COW. 1072 */ 1073 if (error_code & X86_PF_PK) 1074 return 1; 1075 1076 /* 1077 * SGX hardware blocked the access. This usually happens 1078 * when the enclave memory contents have been destroyed, like 1079 * after a suspend/resume cycle. In any case, the kernel can't 1080 * fix the cause of the fault. Handle the fault as an access 1081 * error even in cases where no actual access violation 1082 * occurred. This allows userspace to rebuild the enclave in 1083 * response to the signal. 1084 */ 1085 if (unlikely(error_code & X86_PF_SGX)) 1086 return 1; 1087 1088 /* 1089 * Make sure to check the VMA so that we do not perform 1090 * faults just to hit a X86_PF_PK as soon as we fill in a 1091 * page. 1092 */ 1093 if (!arch_vma_access_permitted(vma, (error_code & X86_PF_WRITE), 1094 (error_code & X86_PF_INSTR), foreign)) 1095 return 1; 1096 1097 if (error_code & X86_PF_WRITE) { 1098 /* write, present and write, not present: */ 1099 if (unlikely(!(vma->vm_flags & VM_WRITE))) 1100 return 1; 1101 return 0; 1102 } 1103 1104 /* read, present: */ 1105 if (unlikely(error_code & X86_PF_PROT)) 1106 return 1; 1107 1108 /* read, not present: */ 1109 if (unlikely(!vma_is_accessible(vma))) 1110 return 1; 1111 1112 return 0; 1113 } 1114 1115 bool fault_in_kernel_space(unsigned long address) 1116 { 1117 /* 1118 * On 64-bit systems, the vsyscall page is at an address above 1119 * TASK_SIZE_MAX, but is not considered part of the kernel 1120 * address space. 1121 */ 1122 if (IS_ENABLED(CONFIG_X86_64) && is_vsyscall_vaddr(address)) 1123 return false; 1124 1125 return address >= TASK_SIZE_MAX; 1126 } 1127 1128 /* 1129 * Called for all faults where 'address' is part of the kernel address 1130 * space. Might get called for faults that originate from *code* that 1131 * ran in userspace or the kernel. 1132 */ 1133 static void 1134 do_kern_addr_fault(struct pt_regs *regs, unsigned long hw_error_code, 1135 unsigned long address) 1136 { 1137 /* 1138 * Protection keys exceptions only happen on user pages. We 1139 * have no user pages in the kernel portion of the address 1140 * space, so do not expect them here. 1141 */ 1142 WARN_ON_ONCE(hw_error_code & X86_PF_PK); 1143 1144 #ifdef CONFIG_X86_32 1145 /* 1146 * We can fault-in kernel-space virtual memory on-demand. The 1147 * 'reference' page table is init_mm.pgd. 1148 * 1149 * NOTE! We MUST NOT take any locks for this case. We may 1150 * be in an interrupt or a critical region, and should 1151 * only copy the information from the master page table, 1152 * nothing more. 1153 * 1154 * Before doing this on-demand faulting, ensure that the 1155 * fault is not any of the following: 1156 * 1. A fault on a PTE with a reserved bit set. 1157 * 2. A fault caused by a user-mode access. (Do not demand- 1158 * fault kernel memory due to user-mode accesses). 1159 * 3. A fault caused by a page-level protection violation. 1160 * (A demand fault would be on a non-present page which 1161 * would have X86_PF_PROT==0). 1162 * 1163 * This is only needed to close a race condition on x86-32 in 1164 * the vmalloc mapping/unmapping code. See the comment above 1165 * vmalloc_fault() for details. On x86-64 the race does not 1166 * exist as the vmalloc mappings don't need to be synchronized 1167 * there. 1168 */ 1169 if (!(hw_error_code & (X86_PF_RSVD | X86_PF_USER | X86_PF_PROT))) { 1170 if (vmalloc_fault(address) >= 0) 1171 return; 1172 } 1173 #endif 1174 1175 if (is_f00f_bug(regs, hw_error_code, address)) 1176 return; 1177 1178 /* Was the fault spurious, caused by lazy TLB invalidation? */ 1179 if (spurious_kernel_fault(hw_error_code, address)) 1180 return; 1181 1182 /* kprobes don't want to hook the spurious faults: */ 1183 if (kprobe_page_fault(regs, X86_TRAP_PF)) 1184 return; 1185 1186 /* 1187 * Note, despite being a "bad area", there are quite a few 1188 * acceptable reasons to get here, such as erratum fixups 1189 * and handling kernel code that can fault, like get_user(). 1190 * 1191 * Don't take the mm semaphore here. If we fixup a prefetch 1192 * fault we could otherwise deadlock: 1193 */ 1194 bad_area_nosemaphore(regs, hw_error_code, address); 1195 } 1196 NOKPROBE_SYMBOL(do_kern_addr_fault); 1197 1198 /* 1199 * Handle faults in the user portion of the address space. Nothing in here 1200 * should check X86_PF_USER without a specific justification: for almost 1201 * all purposes, we should treat a normal kernel access to user memory 1202 * (e.g. get_user(), put_user(), etc.) the same as the WRUSS instruction. 1203 * The one exception is AC flag handling, which is, per the x86 1204 * architecture, special for WRUSS. 1205 */ 1206 static inline 1207 void do_user_addr_fault(struct pt_regs *regs, 1208 unsigned long error_code, 1209 unsigned long address) 1210 { 1211 struct vm_area_struct *vma; 1212 struct task_struct *tsk; 1213 struct mm_struct *mm; 1214 vm_fault_t fault; 1215 unsigned int flags = FAULT_FLAG_DEFAULT; 1216 1217 tsk = current; 1218 mm = tsk->mm; 1219 1220 if (unlikely((error_code & (X86_PF_USER | X86_PF_INSTR)) == X86_PF_INSTR)) { 1221 /* 1222 * Whoops, this is kernel mode code trying to execute from 1223 * user memory. Unless this is AMD erratum #93, which 1224 * corrupts RIP such that it looks like a user address, 1225 * this is unrecoverable. Don't even try to look up the 1226 * VMA or look for extable entries. 1227 */ 1228 if (is_errata93(regs, address)) 1229 return; 1230 1231 page_fault_oops(regs, error_code, address); 1232 return; 1233 } 1234 1235 /* kprobes don't want to hook the spurious faults: */ 1236 if (unlikely(kprobe_page_fault(regs, X86_TRAP_PF))) 1237 return; 1238 1239 /* 1240 * Reserved bits are never expected to be set on 1241 * entries in the user portion of the page tables. 1242 */ 1243 if (unlikely(error_code & X86_PF_RSVD)) 1244 pgtable_bad(regs, error_code, address); 1245 1246 /* 1247 * If SMAP is on, check for invalid kernel (supervisor) access to user 1248 * pages in the user address space. The odd case here is WRUSS, 1249 * which, according to the preliminary documentation, does not respect 1250 * SMAP and will have the USER bit set so, in all cases, SMAP 1251 * enforcement appears to be consistent with the USER bit. 1252 */ 1253 if (unlikely(cpu_feature_enabled(X86_FEATURE_SMAP) && 1254 !(error_code & X86_PF_USER) && 1255 !(regs->flags & X86_EFLAGS_AC))) { 1256 /* 1257 * No extable entry here. This was a kernel access to an 1258 * invalid pointer. get_kernel_nofault() will not get here. 1259 */ 1260 page_fault_oops(regs, error_code, address); 1261 return; 1262 } 1263 1264 /* 1265 * If we're in an interrupt, have no user context or are running 1266 * in a region with pagefaults disabled then we must not take the fault 1267 */ 1268 if (unlikely(faulthandler_disabled() || !mm)) { 1269 bad_area_nosemaphore(regs, error_code, address); 1270 return; 1271 } 1272 1273 /* 1274 * It's safe to allow irq's after cr2 has been saved and the 1275 * vmalloc fault has been handled. 1276 * 1277 * User-mode registers count as a user access even for any 1278 * potential system fault or CPU buglet: 1279 */ 1280 if (user_mode(regs)) { 1281 local_irq_enable(); 1282 flags |= FAULT_FLAG_USER; 1283 } else { 1284 if (regs->flags & X86_EFLAGS_IF) 1285 local_irq_enable(); 1286 } 1287 1288 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address); 1289 1290 if (error_code & X86_PF_WRITE) 1291 flags |= FAULT_FLAG_WRITE; 1292 if (error_code & X86_PF_INSTR) 1293 flags |= FAULT_FLAG_INSTRUCTION; 1294 1295 #ifdef CONFIG_X86_64 1296 /* 1297 * Faults in the vsyscall page might need emulation. The 1298 * vsyscall page is at a high address (>PAGE_OFFSET), but is 1299 * considered to be part of the user address space. 1300 * 1301 * The vsyscall page does not have a "real" VMA, so do this 1302 * emulation before we go searching for VMAs. 1303 * 1304 * PKRU never rejects instruction fetches, so we don't need 1305 * to consider the PF_PK bit. 1306 */ 1307 if (is_vsyscall_vaddr(address)) { 1308 if (emulate_vsyscall(error_code, regs, address)) 1309 return; 1310 } 1311 #endif 1312 1313 /* 1314 * Kernel-mode access to the user address space should only occur 1315 * on well-defined single instructions listed in the exception 1316 * tables. But, an erroneous kernel fault occurring outside one of 1317 * those areas which also holds mmap_lock might deadlock attempting 1318 * to validate the fault against the address space. 1319 * 1320 * Only do the expensive exception table search when we might be at 1321 * risk of a deadlock. This happens if we 1322 * 1. Failed to acquire mmap_lock, and 1323 * 2. The access did not originate in userspace. 1324 */ 1325 if (unlikely(!mmap_read_trylock(mm))) { 1326 if (!user_mode(regs) && !search_exception_tables(regs->ip)) { 1327 /* 1328 * Fault from code in kernel from 1329 * which we do not expect faults. 1330 */ 1331 bad_area_nosemaphore(regs, error_code, address); 1332 return; 1333 } 1334 retry: 1335 mmap_read_lock(mm); 1336 } else { 1337 /* 1338 * The above down_read_trylock() might have succeeded in 1339 * which case we'll have missed the might_sleep() from 1340 * down_read(): 1341 */ 1342 might_sleep(); 1343 } 1344 1345 vma = find_vma(mm, address); 1346 if (unlikely(!vma)) { 1347 bad_area(regs, error_code, address); 1348 return; 1349 } 1350 if (likely(vma->vm_start <= address)) 1351 goto good_area; 1352 if (unlikely(!(vma->vm_flags & VM_GROWSDOWN))) { 1353 bad_area(regs, error_code, address); 1354 return; 1355 } 1356 if (unlikely(expand_stack(vma, address))) { 1357 bad_area(regs, error_code, address); 1358 return; 1359 } 1360 1361 /* 1362 * Ok, we have a good vm_area for this memory access, so 1363 * we can handle it.. 1364 */ 1365 good_area: 1366 if (unlikely(access_error(error_code, vma))) { 1367 bad_area_access_error(regs, error_code, address, vma); 1368 return; 1369 } 1370 1371 /* 1372 * If for any reason at all we couldn't handle the fault, 1373 * make sure we exit gracefully rather than endlessly redo 1374 * the fault. Since we never set FAULT_FLAG_RETRY_NOWAIT, if 1375 * we get VM_FAULT_RETRY back, the mmap_lock has been unlocked. 1376 * 1377 * Note that handle_userfault() may also release and reacquire mmap_lock 1378 * (and not return with VM_FAULT_RETRY), when returning to userland to 1379 * repeat the page fault later with a VM_FAULT_NOPAGE retval 1380 * (potentially after handling any pending signal during the return to 1381 * userland). The return to userland is identified whenever 1382 * FAULT_FLAG_USER|FAULT_FLAG_KILLABLE are both set in flags. 1383 */ 1384 fault = handle_mm_fault(vma, address, flags, regs); 1385 1386 if (fault_signal_pending(fault, regs)) { 1387 /* 1388 * Quick path to respond to signals. The core mm code 1389 * has unlocked the mm for us if we get here. 1390 */ 1391 if (!user_mode(regs)) 1392 kernelmode_fixup_or_oops(regs, error_code, address, 1393 SIGBUS, BUS_ADRERR); 1394 return; 1395 } 1396 1397 /* 1398 * If we need to retry the mmap_lock has already been released, 1399 * and if there is a fatal signal pending there is no guarantee 1400 * that we made any progress. Handle this case first. 1401 */ 1402 if (unlikely((fault & VM_FAULT_RETRY) && 1403 (flags & FAULT_FLAG_ALLOW_RETRY))) { 1404 flags |= FAULT_FLAG_TRIED; 1405 goto retry; 1406 } 1407 1408 mmap_read_unlock(mm); 1409 if (likely(!(fault & VM_FAULT_ERROR))) 1410 return; 1411 1412 if (fatal_signal_pending(current) && !user_mode(regs)) { 1413 kernelmode_fixup_or_oops(regs, error_code, address, 0, 0); 1414 return; 1415 } 1416 1417 if (fault & VM_FAULT_OOM) { 1418 /* Kernel mode? Handle exceptions or die: */ 1419 if (!user_mode(regs)) { 1420 kernelmode_fixup_or_oops(regs, error_code, address, 1421 SIGSEGV, SEGV_MAPERR); 1422 return; 1423 } 1424 1425 /* 1426 * We ran out of memory, call the OOM killer, and return the 1427 * userspace (which will retry the fault, or kill us if we got 1428 * oom-killed): 1429 */ 1430 pagefault_out_of_memory(); 1431 } else { 1432 if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON| 1433 VM_FAULT_HWPOISON_LARGE)) 1434 do_sigbus(regs, error_code, address, fault); 1435 else if (fault & VM_FAULT_SIGSEGV) 1436 bad_area_nosemaphore(regs, error_code, address); 1437 else 1438 BUG(); 1439 } 1440 } 1441 NOKPROBE_SYMBOL(do_user_addr_fault); 1442 1443 static __always_inline void 1444 trace_page_fault_entries(struct pt_regs *regs, unsigned long error_code, 1445 unsigned long address) 1446 { 1447 if (!trace_pagefault_enabled()) 1448 return; 1449 1450 if (user_mode(regs)) 1451 trace_page_fault_user(address, regs, error_code); 1452 else 1453 trace_page_fault_kernel(address, regs, error_code); 1454 } 1455 1456 static __always_inline void 1457 handle_page_fault(struct pt_regs *regs, unsigned long error_code, 1458 unsigned long address) 1459 { 1460 trace_page_fault_entries(regs, error_code, address); 1461 1462 if (unlikely(kmmio_fault(regs, address))) 1463 return; 1464 1465 /* Was the fault on kernel-controlled part of the address space? */ 1466 if (unlikely(fault_in_kernel_space(address))) { 1467 do_kern_addr_fault(regs, error_code, address); 1468 } else { 1469 do_user_addr_fault(regs, error_code, address); 1470 /* 1471 * User address page fault handling might have reenabled 1472 * interrupts. Fixing up all potential exit points of 1473 * do_user_addr_fault() and its leaf functions is just not 1474 * doable w/o creating an unholy mess or turning the code 1475 * upside down. 1476 */ 1477 local_irq_disable(); 1478 } 1479 } 1480 1481 DEFINE_IDTENTRY_RAW_ERRORCODE(exc_page_fault) 1482 { 1483 unsigned long address = read_cr2(); 1484 irqentry_state_t state; 1485 1486 prefetchw(¤t->mm->mmap_lock); 1487 1488 /* 1489 * KVM uses #PF vector to deliver 'page not present' events to guests 1490 * (asynchronous page fault mechanism). The event happens when a 1491 * userspace task is trying to access some valid (from guest's point of 1492 * view) memory which is not currently mapped by the host (e.g. the 1493 * memory is swapped out). Note, the corresponding "page ready" event 1494 * which is injected when the memory becomes available, is delived via 1495 * an interrupt mechanism and not a #PF exception 1496 * (see arch/x86/kernel/kvm.c: sysvec_kvm_asyncpf_interrupt()). 1497 * 1498 * We are relying on the interrupted context being sane (valid RSP, 1499 * relevant locks not held, etc.), which is fine as long as the 1500 * interrupted context had IF=1. We are also relying on the KVM 1501 * async pf type field and CR2 being read consistently instead of 1502 * getting values from real and async page faults mixed up. 1503 * 1504 * Fingers crossed. 1505 * 1506 * The async #PF handling code takes care of idtentry handling 1507 * itself. 1508 */ 1509 if (kvm_handle_async_pf(regs, (u32)address)) 1510 return; 1511 1512 /* 1513 * Entry handling for valid #PF from kernel mode is slightly 1514 * different: RCU is already watching and rcu_irq_enter() must not 1515 * be invoked because a kernel fault on a user space address might 1516 * sleep. 1517 * 1518 * In case the fault hit a RCU idle region the conditional entry 1519 * code reenabled RCU to avoid subsequent wreckage which helps 1520 * debugability. 1521 */ 1522 state = irqentry_enter(regs); 1523 1524 instrumentation_begin(); 1525 handle_page_fault(regs, error_code, address); 1526 instrumentation_end(); 1527 1528 irqentry_exit(regs, state); 1529 } 1530