xref: /linux/arch/x86/mm/fault.c (revision c6ed444fd6fffaaf2e3857d926ed18bf3df81e8e)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  Copyright (C) 1995  Linus Torvalds
4  *  Copyright (C) 2001, 2002 Andi Kleen, SuSE Labs.
5  *  Copyright (C) 2008-2009, Red Hat Inc., Ingo Molnar
6  */
7 #include <linux/sched.h>		/* test_thread_flag(), ...	*/
8 #include <linux/sched/task_stack.h>	/* task_stack_*(), ...		*/
9 #include <linux/kdebug.h>		/* oops_begin/end, ...		*/
10 #include <linux/extable.h>		/* search_exception_tables	*/
11 #include <linux/bootmem.h>		/* max_low_pfn			*/
12 #include <linux/kprobes.h>		/* NOKPROBE_SYMBOL, ...		*/
13 #include <linux/mmiotrace.h>		/* kmmio_handler, ...		*/
14 #include <linux/perf_event.h>		/* perf_sw_event		*/
15 #include <linux/hugetlb.h>		/* hstate_index_to_shift	*/
16 #include <linux/prefetch.h>		/* prefetchw			*/
17 #include <linux/context_tracking.h>	/* exception_enter(), ...	*/
18 #include <linux/uaccess.h>		/* faulthandler_disabled()	*/
19 
20 #include <asm/cpufeature.h>		/* boot_cpu_has, ...		*/
21 #include <asm/traps.h>			/* dotraplinkage, ...		*/
22 #include <asm/pgalloc.h>		/* pgd_*(), ...			*/
23 #include <asm/fixmap.h>			/* VSYSCALL_ADDR		*/
24 #include <asm/vsyscall.h>		/* emulate_vsyscall		*/
25 #include <asm/vm86.h>			/* struct vm86			*/
26 #include <asm/mmu_context.h>		/* vma_pkey()			*/
27 
28 #define CREATE_TRACE_POINTS
29 #include <asm/trace/exceptions.h>
30 
31 /*
32  * Returns 0 if mmiotrace is disabled, or if the fault is not
33  * handled by mmiotrace:
34  */
35 static nokprobe_inline int
36 kmmio_fault(struct pt_regs *regs, unsigned long addr)
37 {
38 	if (unlikely(is_kmmio_active()))
39 		if (kmmio_handler(regs, addr) == 1)
40 			return -1;
41 	return 0;
42 }
43 
44 static nokprobe_inline int kprobes_fault(struct pt_regs *regs)
45 {
46 	int ret = 0;
47 
48 	/* kprobe_running() needs smp_processor_id() */
49 	if (kprobes_built_in() && !user_mode(regs)) {
50 		preempt_disable();
51 		if (kprobe_running() && kprobe_fault_handler(regs, 14))
52 			ret = 1;
53 		preempt_enable();
54 	}
55 
56 	return ret;
57 }
58 
59 /*
60  * Prefetch quirks:
61  *
62  * 32-bit mode:
63  *
64  *   Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
65  *   Check that here and ignore it.
66  *
67  * 64-bit mode:
68  *
69  *   Sometimes the CPU reports invalid exceptions on prefetch.
70  *   Check that here and ignore it.
71  *
72  * Opcode checker based on code by Richard Brunner.
73  */
74 static inline int
75 check_prefetch_opcode(struct pt_regs *regs, unsigned char *instr,
76 		      unsigned char opcode, int *prefetch)
77 {
78 	unsigned char instr_hi = opcode & 0xf0;
79 	unsigned char instr_lo = opcode & 0x0f;
80 
81 	switch (instr_hi) {
82 	case 0x20:
83 	case 0x30:
84 		/*
85 		 * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes.
86 		 * In X86_64 long mode, the CPU will signal invalid
87 		 * opcode if some of these prefixes are present so
88 		 * X86_64 will never get here anyway
89 		 */
90 		return ((instr_lo & 7) == 0x6);
91 #ifdef CONFIG_X86_64
92 	case 0x40:
93 		/*
94 		 * In AMD64 long mode 0x40..0x4F are valid REX prefixes
95 		 * Need to figure out under what instruction mode the
96 		 * instruction was issued. Could check the LDT for lm,
97 		 * but for now it's good enough to assume that long
98 		 * mode only uses well known segments or kernel.
99 		 */
100 		return (!user_mode(regs) || user_64bit_mode(regs));
101 #endif
102 	case 0x60:
103 		/* 0x64 thru 0x67 are valid prefixes in all modes. */
104 		return (instr_lo & 0xC) == 0x4;
105 	case 0xF0:
106 		/* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */
107 		return !instr_lo || (instr_lo>>1) == 1;
108 	case 0x00:
109 		/* Prefetch instruction is 0x0F0D or 0x0F18 */
110 		if (probe_kernel_address(instr, opcode))
111 			return 0;
112 
113 		*prefetch = (instr_lo == 0xF) &&
114 			(opcode == 0x0D || opcode == 0x18);
115 		return 0;
116 	default:
117 		return 0;
118 	}
119 }
120 
121 static int
122 is_prefetch(struct pt_regs *regs, unsigned long error_code, unsigned long addr)
123 {
124 	unsigned char *max_instr;
125 	unsigned char *instr;
126 	int prefetch = 0;
127 
128 	/*
129 	 * If it was a exec (instruction fetch) fault on NX page, then
130 	 * do not ignore the fault:
131 	 */
132 	if (error_code & X86_PF_INSTR)
133 		return 0;
134 
135 	instr = (void *)convert_ip_to_linear(current, regs);
136 	max_instr = instr + 15;
137 
138 	if (user_mode(regs) && instr >= (unsigned char *)TASK_SIZE_MAX)
139 		return 0;
140 
141 	while (instr < max_instr) {
142 		unsigned char opcode;
143 
144 		if (probe_kernel_address(instr, opcode))
145 			break;
146 
147 		instr++;
148 
149 		if (!check_prefetch_opcode(regs, instr, opcode, &prefetch))
150 			break;
151 	}
152 	return prefetch;
153 }
154 
155 /*
156  * A protection key fault means that the PKRU value did not allow
157  * access to some PTE.  Userspace can figure out what PKRU was
158  * from the XSAVE state, and this function fills out a field in
159  * siginfo so userspace can discover which protection key was set
160  * on the PTE.
161  *
162  * If we get here, we know that the hardware signaled a X86_PF_PK
163  * fault and that there was a VMA once we got in the fault
164  * handler.  It does *not* guarantee that the VMA we find here
165  * was the one that we faulted on.
166  *
167  * 1. T1   : mprotect_key(foo, PAGE_SIZE, pkey=4);
168  * 2. T1   : set PKRU to deny access to pkey=4, touches page
169  * 3. T1   : faults...
170  * 4.    T2: mprotect_key(foo, PAGE_SIZE, pkey=5);
171  * 5. T1   : enters fault handler, takes mmap_sem, etc...
172  * 6. T1   : reaches here, sees vma_pkey(vma)=5, when we really
173  *	     faulted on a pte with its pkey=4.
174  */
175 static void fill_sig_info_pkey(int si_signo, int si_code, siginfo_t *info,
176 		u32 *pkey)
177 {
178 	/* This is effectively an #ifdef */
179 	if (!boot_cpu_has(X86_FEATURE_OSPKE))
180 		return;
181 
182 	/* Fault not from Protection Keys: nothing to do */
183 	if ((si_code != SEGV_PKUERR) || (si_signo != SIGSEGV))
184 		return;
185 	/*
186 	 * force_sig_info_fault() is called from a number of
187 	 * contexts, some of which have a VMA and some of which
188 	 * do not.  The X86_PF_PK handing happens after we have a
189 	 * valid VMA, so we should never reach this without a
190 	 * valid VMA.
191 	 */
192 	if (!pkey) {
193 		WARN_ONCE(1, "PKU fault with no VMA passed in");
194 		info->si_pkey = 0;
195 		return;
196 	}
197 	/*
198 	 * si_pkey should be thought of as a strong hint, but not
199 	 * absolutely guranteed to be 100% accurate because of
200 	 * the race explained above.
201 	 */
202 	info->si_pkey = *pkey;
203 }
204 
205 static void
206 force_sig_info_fault(int si_signo, int si_code, unsigned long address,
207 		     struct task_struct *tsk, u32 *pkey, int fault)
208 {
209 	unsigned lsb = 0;
210 	siginfo_t info;
211 
212 	clear_siginfo(&info);
213 	info.si_signo	= si_signo;
214 	info.si_errno	= 0;
215 	info.si_code	= si_code;
216 	info.si_addr	= (void __user *)address;
217 	if (fault & VM_FAULT_HWPOISON_LARGE)
218 		lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
219 	if (fault & VM_FAULT_HWPOISON)
220 		lsb = PAGE_SHIFT;
221 	info.si_addr_lsb = lsb;
222 
223 	fill_sig_info_pkey(si_signo, si_code, &info, pkey);
224 
225 	force_sig_info(si_signo, &info, tsk);
226 }
227 
228 DEFINE_SPINLOCK(pgd_lock);
229 LIST_HEAD(pgd_list);
230 
231 #ifdef CONFIG_X86_32
232 static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
233 {
234 	unsigned index = pgd_index(address);
235 	pgd_t *pgd_k;
236 	p4d_t *p4d, *p4d_k;
237 	pud_t *pud, *pud_k;
238 	pmd_t *pmd, *pmd_k;
239 
240 	pgd += index;
241 	pgd_k = init_mm.pgd + index;
242 
243 	if (!pgd_present(*pgd_k))
244 		return NULL;
245 
246 	/*
247 	 * set_pgd(pgd, *pgd_k); here would be useless on PAE
248 	 * and redundant with the set_pmd() on non-PAE. As would
249 	 * set_p4d/set_pud.
250 	 */
251 	p4d = p4d_offset(pgd, address);
252 	p4d_k = p4d_offset(pgd_k, address);
253 	if (!p4d_present(*p4d_k))
254 		return NULL;
255 
256 	pud = pud_offset(p4d, address);
257 	pud_k = pud_offset(p4d_k, address);
258 	if (!pud_present(*pud_k))
259 		return NULL;
260 
261 	pmd = pmd_offset(pud, address);
262 	pmd_k = pmd_offset(pud_k, address);
263 	if (!pmd_present(*pmd_k))
264 		return NULL;
265 
266 	if (!pmd_present(*pmd))
267 		set_pmd(pmd, *pmd_k);
268 	else
269 		BUG_ON(pmd_page(*pmd) != pmd_page(*pmd_k));
270 
271 	return pmd_k;
272 }
273 
274 void vmalloc_sync_all(void)
275 {
276 	unsigned long address;
277 
278 	if (SHARED_KERNEL_PMD)
279 		return;
280 
281 	for (address = VMALLOC_START & PMD_MASK;
282 	     address >= TASK_SIZE_MAX && address < FIXADDR_TOP;
283 	     address += PMD_SIZE) {
284 		struct page *page;
285 
286 		spin_lock(&pgd_lock);
287 		list_for_each_entry(page, &pgd_list, lru) {
288 			spinlock_t *pgt_lock;
289 			pmd_t *ret;
290 
291 			/* the pgt_lock only for Xen */
292 			pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
293 
294 			spin_lock(pgt_lock);
295 			ret = vmalloc_sync_one(page_address(page), address);
296 			spin_unlock(pgt_lock);
297 
298 			if (!ret)
299 				break;
300 		}
301 		spin_unlock(&pgd_lock);
302 	}
303 }
304 
305 /*
306  * 32-bit:
307  *
308  *   Handle a fault on the vmalloc or module mapping area
309  */
310 static noinline int vmalloc_fault(unsigned long address)
311 {
312 	unsigned long pgd_paddr;
313 	pmd_t *pmd_k;
314 	pte_t *pte_k;
315 
316 	/* Make sure we are in vmalloc area: */
317 	if (!(address >= VMALLOC_START && address < VMALLOC_END))
318 		return -1;
319 
320 	/*
321 	 * Synchronize this task's top level page-table
322 	 * with the 'reference' page table.
323 	 *
324 	 * Do _not_ use "current" here. We might be inside
325 	 * an interrupt in the middle of a task switch..
326 	 */
327 	pgd_paddr = read_cr3_pa();
328 	pmd_k = vmalloc_sync_one(__va(pgd_paddr), address);
329 	if (!pmd_k)
330 		return -1;
331 
332 	if (pmd_large(*pmd_k))
333 		return 0;
334 
335 	pte_k = pte_offset_kernel(pmd_k, address);
336 	if (!pte_present(*pte_k))
337 		return -1;
338 
339 	return 0;
340 }
341 NOKPROBE_SYMBOL(vmalloc_fault);
342 
343 /*
344  * Did it hit the DOS screen memory VA from vm86 mode?
345  */
346 static inline void
347 check_v8086_mode(struct pt_regs *regs, unsigned long address,
348 		 struct task_struct *tsk)
349 {
350 #ifdef CONFIG_VM86
351 	unsigned long bit;
352 
353 	if (!v8086_mode(regs) || !tsk->thread.vm86)
354 		return;
355 
356 	bit = (address - 0xA0000) >> PAGE_SHIFT;
357 	if (bit < 32)
358 		tsk->thread.vm86->screen_bitmap |= 1 << bit;
359 #endif
360 }
361 
362 static bool low_pfn(unsigned long pfn)
363 {
364 	return pfn < max_low_pfn;
365 }
366 
367 static void dump_pagetable(unsigned long address)
368 {
369 	pgd_t *base = __va(read_cr3_pa());
370 	pgd_t *pgd = &base[pgd_index(address)];
371 	p4d_t *p4d;
372 	pud_t *pud;
373 	pmd_t *pmd;
374 	pte_t *pte;
375 
376 #ifdef CONFIG_X86_PAE
377 	pr_info("*pdpt = %016Lx ", pgd_val(*pgd));
378 	if (!low_pfn(pgd_val(*pgd) >> PAGE_SHIFT) || !pgd_present(*pgd))
379 		goto out;
380 #define pr_pde pr_cont
381 #else
382 #define pr_pde pr_info
383 #endif
384 	p4d = p4d_offset(pgd, address);
385 	pud = pud_offset(p4d, address);
386 	pmd = pmd_offset(pud, address);
387 	pr_pde("*pde = %0*Lx ", sizeof(*pmd) * 2, (u64)pmd_val(*pmd));
388 #undef pr_pde
389 
390 	/*
391 	 * We must not directly access the pte in the highpte
392 	 * case if the page table is located in highmem.
393 	 * And let's rather not kmap-atomic the pte, just in case
394 	 * it's allocated already:
395 	 */
396 	if (!low_pfn(pmd_pfn(*pmd)) || !pmd_present(*pmd) || pmd_large(*pmd))
397 		goto out;
398 
399 	pte = pte_offset_kernel(pmd, address);
400 	pr_cont("*pte = %0*Lx ", sizeof(*pte) * 2, (u64)pte_val(*pte));
401 out:
402 	pr_cont("\n");
403 }
404 
405 #else /* CONFIG_X86_64: */
406 
407 void vmalloc_sync_all(void)
408 {
409 	sync_global_pgds(VMALLOC_START & PGDIR_MASK, VMALLOC_END);
410 }
411 
412 /*
413  * 64-bit:
414  *
415  *   Handle a fault on the vmalloc area
416  */
417 static noinline int vmalloc_fault(unsigned long address)
418 {
419 	pgd_t *pgd, *pgd_k;
420 	p4d_t *p4d, *p4d_k;
421 	pud_t *pud;
422 	pmd_t *pmd;
423 	pte_t *pte;
424 
425 	/* Make sure we are in vmalloc area: */
426 	if (!(address >= VMALLOC_START && address < VMALLOC_END))
427 		return -1;
428 
429 	WARN_ON_ONCE(in_nmi());
430 
431 	/*
432 	 * Copy kernel mappings over when needed. This can also
433 	 * happen within a race in page table update. In the later
434 	 * case just flush:
435 	 */
436 	pgd = (pgd_t *)__va(read_cr3_pa()) + pgd_index(address);
437 	pgd_k = pgd_offset_k(address);
438 	if (pgd_none(*pgd_k))
439 		return -1;
440 
441 	if (pgtable_l5_enabled()) {
442 		if (pgd_none(*pgd)) {
443 			set_pgd(pgd, *pgd_k);
444 			arch_flush_lazy_mmu_mode();
445 		} else {
446 			BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_k));
447 		}
448 	}
449 
450 	/* With 4-level paging, copying happens on the p4d level. */
451 	p4d = p4d_offset(pgd, address);
452 	p4d_k = p4d_offset(pgd_k, address);
453 	if (p4d_none(*p4d_k))
454 		return -1;
455 
456 	if (p4d_none(*p4d) && !pgtable_l5_enabled()) {
457 		set_p4d(p4d, *p4d_k);
458 		arch_flush_lazy_mmu_mode();
459 	} else {
460 		BUG_ON(p4d_pfn(*p4d) != p4d_pfn(*p4d_k));
461 	}
462 
463 	BUILD_BUG_ON(CONFIG_PGTABLE_LEVELS < 4);
464 
465 	pud = pud_offset(p4d, address);
466 	if (pud_none(*pud))
467 		return -1;
468 
469 	if (pud_large(*pud))
470 		return 0;
471 
472 	pmd = pmd_offset(pud, address);
473 	if (pmd_none(*pmd))
474 		return -1;
475 
476 	if (pmd_large(*pmd))
477 		return 0;
478 
479 	pte = pte_offset_kernel(pmd, address);
480 	if (!pte_present(*pte))
481 		return -1;
482 
483 	return 0;
484 }
485 NOKPROBE_SYMBOL(vmalloc_fault);
486 
487 #ifdef CONFIG_CPU_SUP_AMD
488 static const char errata93_warning[] =
489 KERN_ERR
490 "******* Your BIOS seems to not contain a fix for K8 errata #93\n"
491 "******* Working around it, but it may cause SEGVs or burn power.\n"
492 "******* Please consider a BIOS update.\n"
493 "******* Disabling USB legacy in the BIOS may also help.\n";
494 #endif
495 
496 /*
497  * No vm86 mode in 64-bit mode:
498  */
499 static inline void
500 check_v8086_mode(struct pt_regs *regs, unsigned long address,
501 		 struct task_struct *tsk)
502 {
503 }
504 
505 static int bad_address(void *p)
506 {
507 	unsigned long dummy;
508 
509 	return probe_kernel_address((unsigned long *)p, dummy);
510 }
511 
512 static void dump_pagetable(unsigned long address)
513 {
514 	pgd_t *base = __va(read_cr3_pa());
515 	pgd_t *pgd = base + pgd_index(address);
516 	p4d_t *p4d;
517 	pud_t *pud;
518 	pmd_t *pmd;
519 	pte_t *pte;
520 
521 	if (bad_address(pgd))
522 		goto bad;
523 
524 	pr_info("PGD %lx ", pgd_val(*pgd));
525 
526 	if (!pgd_present(*pgd))
527 		goto out;
528 
529 	p4d = p4d_offset(pgd, address);
530 	if (bad_address(p4d))
531 		goto bad;
532 
533 	pr_cont("P4D %lx ", p4d_val(*p4d));
534 	if (!p4d_present(*p4d) || p4d_large(*p4d))
535 		goto out;
536 
537 	pud = pud_offset(p4d, address);
538 	if (bad_address(pud))
539 		goto bad;
540 
541 	pr_cont("PUD %lx ", pud_val(*pud));
542 	if (!pud_present(*pud) || pud_large(*pud))
543 		goto out;
544 
545 	pmd = pmd_offset(pud, address);
546 	if (bad_address(pmd))
547 		goto bad;
548 
549 	pr_cont("PMD %lx ", pmd_val(*pmd));
550 	if (!pmd_present(*pmd) || pmd_large(*pmd))
551 		goto out;
552 
553 	pte = pte_offset_kernel(pmd, address);
554 	if (bad_address(pte))
555 		goto bad;
556 
557 	pr_cont("PTE %lx", pte_val(*pte));
558 out:
559 	pr_cont("\n");
560 	return;
561 bad:
562 	pr_info("BAD\n");
563 }
564 
565 #endif /* CONFIG_X86_64 */
566 
567 /*
568  * Workaround for K8 erratum #93 & buggy BIOS.
569  *
570  * BIOS SMM functions are required to use a specific workaround
571  * to avoid corruption of the 64bit RIP register on C stepping K8.
572  *
573  * A lot of BIOS that didn't get tested properly miss this.
574  *
575  * The OS sees this as a page fault with the upper 32bits of RIP cleared.
576  * Try to work around it here.
577  *
578  * Note we only handle faults in kernel here.
579  * Does nothing on 32-bit.
580  */
581 static int is_errata93(struct pt_regs *regs, unsigned long address)
582 {
583 #if defined(CONFIG_X86_64) && defined(CONFIG_CPU_SUP_AMD)
584 	if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD
585 	    || boot_cpu_data.x86 != 0xf)
586 		return 0;
587 
588 	if (address != regs->ip)
589 		return 0;
590 
591 	if ((address >> 32) != 0)
592 		return 0;
593 
594 	address |= 0xffffffffUL << 32;
595 	if ((address >= (u64)_stext && address <= (u64)_etext) ||
596 	    (address >= MODULES_VADDR && address <= MODULES_END)) {
597 		printk_once(errata93_warning);
598 		regs->ip = address;
599 		return 1;
600 	}
601 #endif
602 	return 0;
603 }
604 
605 /*
606  * Work around K8 erratum #100 K8 in compat mode occasionally jumps
607  * to illegal addresses >4GB.
608  *
609  * We catch this in the page fault handler because these addresses
610  * are not reachable. Just detect this case and return.  Any code
611  * segment in LDT is compatibility mode.
612  */
613 static int is_errata100(struct pt_regs *regs, unsigned long address)
614 {
615 #ifdef CONFIG_X86_64
616 	if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) && (address >> 32))
617 		return 1;
618 #endif
619 	return 0;
620 }
621 
622 static int is_f00f_bug(struct pt_regs *regs, unsigned long address)
623 {
624 #ifdef CONFIG_X86_F00F_BUG
625 	unsigned long nr;
626 
627 	/*
628 	 * Pentium F0 0F C7 C8 bug workaround:
629 	 */
630 	if (boot_cpu_has_bug(X86_BUG_F00F)) {
631 		nr = (address - idt_descr.address) >> 3;
632 
633 		if (nr == 6) {
634 			do_invalid_op(regs, 0);
635 			return 1;
636 		}
637 	}
638 #endif
639 	return 0;
640 }
641 
642 static void
643 show_fault_oops(struct pt_regs *regs, unsigned long error_code,
644 		unsigned long address)
645 {
646 	if (!oops_may_print())
647 		return;
648 
649 	if (error_code & X86_PF_INSTR) {
650 		unsigned int level;
651 		pgd_t *pgd;
652 		pte_t *pte;
653 
654 		pgd = __va(read_cr3_pa());
655 		pgd += pgd_index(address);
656 
657 		pte = lookup_address_in_pgd(pgd, address, &level);
658 
659 		if (pte && pte_present(*pte) && !pte_exec(*pte))
660 			pr_crit("kernel tried to execute NX-protected page - exploit attempt? (uid: %d)\n",
661 				from_kuid(&init_user_ns, current_uid()));
662 		if (pte && pte_present(*pte) && pte_exec(*pte) &&
663 				(pgd_flags(*pgd) & _PAGE_USER) &&
664 				(__read_cr4() & X86_CR4_SMEP))
665 			pr_crit("unable to execute userspace code (SMEP?) (uid: %d)\n",
666 				from_kuid(&init_user_ns, current_uid()));
667 	}
668 
669 	pr_alert("BUG: unable to handle kernel %s at %px\n",
670 		 address < PAGE_SIZE ? "NULL pointer dereference" : "paging request",
671 		 (void *)address);
672 
673 	dump_pagetable(address);
674 }
675 
676 static noinline void
677 pgtable_bad(struct pt_regs *regs, unsigned long error_code,
678 	    unsigned long address)
679 {
680 	struct task_struct *tsk;
681 	unsigned long flags;
682 	int sig;
683 
684 	flags = oops_begin();
685 	tsk = current;
686 	sig = SIGKILL;
687 
688 	printk(KERN_ALERT "%s: Corrupted page table at address %lx\n",
689 	       tsk->comm, address);
690 	dump_pagetable(address);
691 
692 	tsk->thread.cr2		= address;
693 	tsk->thread.trap_nr	= X86_TRAP_PF;
694 	tsk->thread.error_code	= error_code;
695 
696 	if (__die("Bad pagetable", regs, error_code))
697 		sig = 0;
698 
699 	oops_end(flags, regs, sig);
700 }
701 
702 static noinline void
703 no_context(struct pt_regs *regs, unsigned long error_code,
704 	   unsigned long address, int signal, int si_code)
705 {
706 	struct task_struct *tsk = current;
707 	unsigned long flags;
708 	int sig;
709 
710 	/* Are we prepared to handle this kernel fault? */
711 	if (fixup_exception(regs, X86_TRAP_PF)) {
712 		/*
713 		 * Any interrupt that takes a fault gets the fixup. This makes
714 		 * the below recursive fault logic only apply to a faults from
715 		 * task context.
716 		 */
717 		if (in_interrupt())
718 			return;
719 
720 		/*
721 		 * Per the above we're !in_interrupt(), aka. task context.
722 		 *
723 		 * In this case we need to make sure we're not recursively
724 		 * faulting through the emulate_vsyscall() logic.
725 		 */
726 		if (current->thread.sig_on_uaccess_err && signal) {
727 			tsk->thread.trap_nr = X86_TRAP_PF;
728 			tsk->thread.error_code = error_code | X86_PF_USER;
729 			tsk->thread.cr2 = address;
730 
731 			/* XXX: hwpoison faults will set the wrong code. */
732 			force_sig_info_fault(signal, si_code, address,
733 					     tsk, NULL, 0);
734 		}
735 
736 		/*
737 		 * Barring that, we can do the fixup and be happy.
738 		 */
739 		return;
740 	}
741 
742 #ifdef CONFIG_VMAP_STACK
743 	/*
744 	 * Stack overflow?  During boot, we can fault near the initial
745 	 * stack in the direct map, but that's not an overflow -- check
746 	 * that we're in vmalloc space to avoid this.
747 	 */
748 	if (is_vmalloc_addr((void *)address) &&
749 	    (((unsigned long)tsk->stack - 1 - address < PAGE_SIZE) ||
750 	     address - ((unsigned long)tsk->stack + THREAD_SIZE) < PAGE_SIZE)) {
751 		unsigned long stack = this_cpu_read(orig_ist.ist[DOUBLEFAULT_STACK]) - sizeof(void *);
752 		/*
753 		 * We're likely to be running with very little stack space
754 		 * left.  It's plausible that we'd hit this condition but
755 		 * double-fault even before we get this far, in which case
756 		 * we're fine: the double-fault handler will deal with it.
757 		 *
758 		 * We don't want to make it all the way into the oops code
759 		 * and then double-fault, though, because we're likely to
760 		 * break the console driver and lose most of the stack dump.
761 		 */
762 		asm volatile ("movq %[stack], %%rsp\n\t"
763 			      "call handle_stack_overflow\n\t"
764 			      "1: jmp 1b"
765 			      : ASM_CALL_CONSTRAINT
766 			      : "D" ("kernel stack overflow (page fault)"),
767 				"S" (regs), "d" (address),
768 				[stack] "rm" (stack));
769 		unreachable();
770 	}
771 #endif
772 
773 	/*
774 	 * 32-bit:
775 	 *
776 	 *   Valid to do another page fault here, because if this fault
777 	 *   had been triggered by is_prefetch fixup_exception would have
778 	 *   handled it.
779 	 *
780 	 * 64-bit:
781 	 *
782 	 *   Hall of shame of CPU/BIOS bugs.
783 	 */
784 	if (is_prefetch(regs, error_code, address))
785 		return;
786 
787 	if (is_errata93(regs, address))
788 		return;
789 
790 	/*
791 	 * Oops. The kernel tried to access some bad page. We'll have to
792 	 * terminate things with extreme prejudice:
793 	 */
794 	flags = oops_begin();
795 
796 	show_fault_oops(regs, error_code, address);
797 
798 	if (task_stack_end_corrupted(tsk))
799 		printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
800 
801 	tsk->thread.cr2		= address;
802 	tsk->thread.trap_nr	= X86_TRAP_PF;
803 	tsk->thread.error_code	= error_code;
804 
805 	sig = SIGKILL;
806 	if (__die("Oops", regs, error_code))
807 		sig = 0;
808 
809 	/* Executive summary in case the body of the oops scrolled away */
810 	printk(KERN_DEFAULT "CR2: %016lx\n", address);
811 
812 	oops_end(flags, regs, sig);
813 }
814 
815 /*
816  * Print out info about fatal segfaults, if the show_unhandled_signals
817  * sysctl is set:
818  */
819 static inline void
820 show_signal_msg(struct pt_regs *regs, unsigned long error_code,
821 		unsigned long address, struct task_struct *tsk)
822 {
823 	const char *loglvl = task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG;
824 
825 	if (!unhandled_signal(tsk, SIGSEGV))
826 		return;
827 
828 	if (!printk_ratelimit())
829 		return;
830 
831 	printk("%s%s[%d]: segfault at %lx ip %px sp %px error %lx",
832 		loglvl, tsk->comm, task_pid_nr(tsk), address,
833 		(void *)regs->ip, (void *)regs->sp, error_code);
834 
835 	print_vma_addr(KERN_CONT " in ", regs->ip);
836 
837 	printk(KERN_CONT "\n");
838 
839 	show_opcodes((u8 *)regs->ip, loglvl);
840 }
841 
842 static void
843 __bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
844 		       unsigned long address, u32 *pkey, int si_code)
845 {
846 	struct task_struct *tsk = current;
847 
848 	/* User mode accesses just cause a SIGSEGV */
849 	if (error_code & X86_PF_USER) {
850 		/*
851 		 * It's possible to have interrupts off here:
852 		 */
853 		local_irq_enable();
854 
855 		/*
856 		 * Valid to do another page fault here because this one came
857 		 * from user space:
858 		 */
859 		if (is_prefetch(regs, error_code, address))
860 			return;
861 
862 		if (is_errata100(regs, address))
863 			return;
864 
865 #ifdef CONFIG_X86_64
866 		/*
867 		 * Instruction fetch faults in the vsyscall page might need
868 		 * emulation.
869 		 */
870 		if (unlikely((error_code & X86_PF_INSTR) &&
871 			     ((address & ~0xfff) == VSYSCALL_ADDR))) {
872 			if (emulate_vsyscall(regs, address))
873 				return;
874 		}
875 #endif
876 
877 		/*
878 		 * To avoid leaking information about the kernel page table
879 		 * layout, pretend that user-mode accesses to kernel addresses
880 		 * are always protection faults.
881 		 */
882 		if (address >= TASK_SIZE_MAX)
883 			error_code |= X86_PF_PROT;
884 
885 		if (likely(show_unhandled_signals))
886 			show_signal_msg(regs, error_code, address, tsk);
887 
888 		tsk->thread.cr2		= address;
889 		tsk->thread.error_code	= error_code;
890 		tsk->thread.trap_nr	= X86_TRAP_PF;
891 
892 		force_sig_info_fault(SIGSEGV, si_code, address, tsk, pkey, 0);
893 
894 		return;
895 	}
896 
897 	if (is_f00f_bug(regs, address))
898 		return;
899 
900 	no_context(regs, error_code, address, SIGSEGV, si_code);
901 }
902 
903 static noinline void
904 bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
905 		     unsigned long address, u32 *pkey)
906 {
907 	__bad_area_nosemaphore(regs, error_code, address, pkey, SEGV_MAPERR);
908 }
909 
910 static void
911 __bad_area(struct pt_regs *regs, unsigned long error_code,
912 	   unsigned long address,  struct vm_area_struct *vma, int si_code)
913 {
914 	struct mm_struct *mm = current->mm;
915 	u32 pkey;
916 
917 	if (vma)
918 		pkey = vma_pkey(vma);
919 
920 	/*
921 	 * Something tried to access memory that isn't in our memory map..
922 	 * Fix it, but check if it's kernel or user first..
923 	 */
924 	up_read(&mm->mmap_sem);
925 
926 	__bad_area_nosemaphore(regs, error_code, address,
927 			       (vma) ? &pkey : NULL, si_code);
928 }
929 
930 static noinline void
931 bad_area(struct pt_regs *regs, unsigned long error_code, unsigned long address)
932 {
933 	__bad_area(regs, error_code, address, NULL, SEGV_MAPERR);
934 }
935 
936 static inline bool bad_area_access_from_pkeys(unsigned long error_code,
937 		struct vm_area_struct *vma)
938 {
939 	/* This code is always called on the current mm */
940 	bool foreign = false;
941 
942 	if (!boot_cpu_has(X86_FEATURE_OSPKE))
943 		return false;
944 	if (error_code & X86_PF_PK)
945 		return true;
946 	/* this checks permission keys on the VMA: */
947 	if (!arch_vma_access_permitted(vma, (error_code & X86_PF_WRITE),
948 				       (error_code & X86_PF_INSTR), foreign))
949 		return true;
950 	return false;
951 }
952 
953 static noinline void
954 bad_area_access_error(struct pt_regs *regs, unsigned long error_code,
955 		      unsigned long address, struct vm_area_struct *vma)
956 {
957 	/*
958 	 * This OSPKE check is not strictly necessary at runtime.
959 	 * But, doing it this way allows compiler optimizations
960 	 * if pkeys are compiled out.
961 	 */
962 	if (bad_area_access_from_pkeys(error_code, vma))
963 		__bad_area(regs, error_code, address, vma, SEGV_PKUERR);
964 	else
965 		__bad_area(regs, error_code, address, vma, SEGV_ACCERR);
966 }
967 
968 static void
969 do_sigbus(struct pt_regs *regs, unsigned long error_code, unsigned long address,
970 	  u32 *pkey, unsigned int fault)
971 {
972 	struct task_struct *tsk = current;
973 	int code = BUS_ADRERR;
974 
975 	/* Kernel mode? Handle exceptions or die: */
976 	if (!(error_code & X86_PF_USER)) {
977 		no_context(regs, error_code, address, SIGBUS, BUS_ADRERR);
978 		return;
979 	}
980 
981 	/* User-space => ok to do another page fault: */
982 	if (is_prefetch(regs, error_code, address))
983 		return;
984 
985 	tsk->thread.cr2		= address;
986 	tsk->thread.error_code	= error_code;
987 	tsk->thread.trap_nr	= X86_TRAP_PF;
988 
989 #ifdef CONFIG_MEMORY_FAILURE
990 	if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
991 		printk(KERN_ERR
992 	"MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
993 			tsk->comm, tsk->pid, address);
994 		code = BUS_MCEERR_AR;
995 	}
996 #endif
997 	force_sig_info_fault(SIGBUS, code, address, tsk, pkey, fault);
998 }
999 
1000 static noinline void
1001 mm_fault_error(struct pt_regs *regs, unsigned long error_code,
1002 	       unsigned long address, u32 *pkey, unsigned int fault)
1003 {
1004 	if (fatal_signal_pending(current) && !(error_code & X86_PF_USER)) {
1005 		no_context(regs, error_code, address, 0, 0);
1006 		return;
1007 	}
1008 
1009 	if (fault & VM_FAULT_OOM) {
1010 		/* Kernel mode? Handle exceptions or die: */
1011 		if (!(error_code & X86_PF_USER)) {
1012 			no_context(regs, error_code, address,
1013 				   SIGSEGV, SEGV_MAPERR);
1014 			return;
1015 		}
1016 
1017 		/*
1018 		 * We ran out of memory, call the OOM killer, and return the
1019 		 * userspace (which will retry the fault, or kill us if we got
1020 		 * oom-killed):
1021 		 */
1022 		pagefault_out_of_memory();
1023 	} else {
1024 		if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
1025 			     VM_FAULT_HWPOISON_LARGE))
1026 			do_sigbus(regs, error_code, address, pkey, fault);
1027 		else if (fault & VM_FAULT_SIGSEGV)
1028 			bad_area_nosemaphore(regs, error_code, address, pkey);
1029 		else
1030 			BUG();
1031 	}
1032 }
1033 
1034 static int spurious_fault_check(unsigned long error_code, pte_t *pte)
1035 {
1036 	if ((error_code & X86_PF_WRITE) && !pte_write(*pte))
1037 		return 0;
1038 
1039 	if ((error_code & X86_PF_INSTR) && !pte_exec(*pte))
1040 		return 0;
1041 	/*
1042 	 * Note: We do not do lazy flushing on protection key
1043 	 * changes, so no spurious fault will ever set X86_PF_PK.
1044 	 */
1045 	if ((error_code & X86_PF_PK))
1046 		return 1;
1047 
1048 	return 1;
1049 }
1050 
1051 /*
1052  * Handle a spurious fault caused by a stale TLB entry.
1053  *
1054  * This allows us to lazily refresh the TLB when increasing the
1055  * permissions of a kernel page (RO -> RW or NX -> X).  Doing it
1056  * eagerly is very expensive since that implies doing a full
1057  * cross-processor TLB flush, even if no stale TLB entries exist
1058  * on other processors.
1059  *
1060  * Spurious faults may only occur if the TLB contains an entry with
1061  * fewer permission than the page table entry.  Non-present (P = 0)
1062  * and reserved bit (R = 1) faults are never spurious.
1063  *
1064  * There are no security implications to leaving a stale TLB when
1065  * increasing the permissions on a page.
1066  *
1067  * Returns non-zero if a spurious fault was handled, zero otherwise.
1068  *
1069  * See Intel Developer's Manual Vol 3 Section 4.10.4.3, bullet 3
1070  * (Optional Invalidation).
1071  */
1072 static noinline int
1073 spurious_fault(unsigned long error_code, unsigned long address)
1074 {
1075 	pgd_t *pgd;
1076 	p4d_t *p4d;
1077 	pud_t *pud;
1078 	pmd_t *pmd;
1079 	pte_t *pte;
1080 	int ret;
1081 
1082 	/*
1083 	 * Only writes to RO or instruction fetches from NX may cause
1084 	 * spurious faults.
1085 	 *
1086 	 * These could be from user or supervisor accesses but the TLB
1087 	 * is only lazily flushed after a kernel mapping protection
1088 	 * change, so user accesses are not expected to cause spurious
1089 	 * faults.
1090 	 */
1091 	if (error_code != (X86_PF_WRITE | X86_PF_PROT) &&
1092 	    error_code != (X86_PF_INSTR | X86_PF_PROT))
1093 		return 0;
1094 
1095 	pgd = init_mm.pgd + pgd_index(address);
1096 	if (!pgd_present(*pgd))
1097 		return 0;
1098 
1099 	p4d = p4d_offset(pgd, address);
1100 	if (!p4d_present(*p4d))
1101 		return 0;
1102 
1103 	if (p4d_large(*p4d))
1104 		return spurious_fault_check(error_code, (pte_t *) p4d);
1105 
1106 	pud = pud_offset(p4d, address);
1107 	if (!pud_present(*pud))
1108 		return 0;
1109 
1110 	if (pud_large(*pud))
1111 		return spurious_fault_check(error_code, (pte_t *) pud);
1112 
1113 	pmd = pmd_offset(pud, address);
1114 	if (!pmd_present(*pmd))
1115 		return 0;
1116 
1117 	if (pmd_large(*pmd))
1118 		return spurious_fault_check(error_code, (pte_t *) pmd);
1119 
1120 	pte = pte_offset_kernel(pmd, address);
1121 	if (!pte_present(*pte))
1122 		return 0;
1123 
1124 	ret = spurious_fault_check(error_code, pte);
1125 	if (!ret)
1126 		return 0;
1127 
1128 	/*
1129 	 * Make sure we have permissions in PMD.
1130 	 * If not, then there's a bug in the page tables:
1131 	 */
1132 	ret = spurious_fault_check(error_code, (pte_t *) pmd);
1133 	WARN_ONCE(!ret, "PMD has incorrect permission bits\n");
1134 
1135 	return ret;
1136 }
1137 NOKPROBE_SYMBOL(spurious_fault);
1138 
1139 int show_unhandled_signals = 1;
1140 
1141 static inline int
1142 access_error(unsigned long error_code, struct vm_area_struct *vma)
1143 {
1144 	/* This is only called for the current mm, so: */
1145 	bool foreign = false;
1146 
1147 	/*
1148 	 * Read or write was blocked by protection keys.  This is
1149 	 * always an unconditional error and can never result in
1150 	 * a follow-up action to resolve the fault, like a COW.
1151 	 */
1152 	if (error_code & X86_PF_PK)
1153 		return 1;
1154 
1155 	/*
1156 	 * Make sure to check the VMA so that we do not perform
1157 	 * faults just to hit a X86_PF_PK as soon as we fill in a
1158 	 * page.
1159 	 */
1160 	if (!arch_vma_access_permitted(vma, (error_code & X86_PF_WRITE),
1161 				       (error_code & X86_PF_INSTR), foreign))
1162 		return 1;
1163 
1164 	if (error_code & X86_PF_WRITE) {
1165 		/* write, present and write, not present: */
1166 		if (unlikely(!(vma->vm_flags & VM_WRITE)))
1167 			return 1;
1168 		return 0;
1169 	}
1170 
1171 	/* read, present: */
1172 	if (unlikely(error_code & X86_PF_PROT))
1173 		return 1;
1174 
1175 	/* read, not present: */
1176 	if (unlikely(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))))
1177 		return 1;
1178 
1179 	return 0;
1180 }
1181 
1182 static int fault_in_kernel_space(unsigned long address)
1183 {
1184 	return address >= TASK_SIZE_MAX;
1185 }
1186 
1187 static inline bool smap_violation(int error_code, struct pt_regs *regs)
1188 {
1189 	if (!IS_ENABLED(CONFIG_X86_SMAP))
1190 		return false;
1191 
1192 	if (!static_cpu_has(X86_FEATURE_SMAP))
1193 		return false;
1194 
1195 	if (error_code & X86_PF_USER)
1196 		return false;
1197 
1198 	if (!user_mode(regs) && (regs->flags & X86_EFLAGS_AC))
1199 		return false;
1200 
1201 	return true;
1202 }
1203 
1204 /*
1205  * This routine handles page faults.  It determines the address,
1206  * and the problem, and then passes it off to one of the appropriate
1207  * routines.
1208  */
1209 static noinline void
1210 __do_page_fault(struct pt_regs *regs, unsigned long error_code,
1211 		unsigned long address)
1212 {
1213 	struct vm_area_struct *vma;
1214 	struct task_struct *tsk;
1215 	struct mm_struct *mm;
1216 	int fault, major = 0;
1217 	unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
1218 	u32 pkey;
1219 
1220 	tsk = current;
1221 	mm = tsk->mm;
1222 
1223 	prefetchw(&mm->mmap_sem);
1224 
1225 	if (unlikely(kmmio_fault(regs, address)))
1226 		return;
1227 
1228 	/*
1229 	 * We fault-in kernel-space virtual memory on-demand. The
1230 	 * 'reference' page table is init_mm.pgd.
1231 	 *
1232 	 * NOTE! We MUST NOT take any locks for this case. We may
1233 	 * be in an interrupt or a critical region, and should
1234 	 * only copy the information from the master page table,
1235 	 * nothing more.
1236 	 *
1237 	 * This verifies that the fault happens in kernel space
1238 	 * (error_code & 4) == 0, and that the fault was not a
1239 	 * protection error (error_code & 9) == 0.
1240 	 */
1241 	if (unlikely(fault_in_kernel_space(address))) {
1242 		if (!(error_code & (X86_PF_RSVD | X86_PF_USER | X86_PF_PROT))) {
1243 			if (vmalloc_fault(address) >= 0)
1244 				return;
1245 		}
1246 
1247 		/* Can handle a stale RO->RW TLB: */
1248 		if (spurious_fault(error_code, address))
1249 			return;
1250 
1251 		/* kprobes don't want to hook the spurious faults: */
1252 		if (kprobes_fault(regs))
1253 			return;
1254 		/*
1255 		 * Don't take the mm semaphore here. If we fixup a prefetch
1256 		 * fault we could otherwise deadlock:
1257 		 */
1258 		bad_area_nosemaphore(regs, error_code, address, NULL);
1259 
1260 		return;
1261 	}
1262 
1263 	/* kprobes don't want to hook the spurious faults: */
1264 	if (unlikely(kprobes_fault(regs)))
1265 		return;
1266 
1267 	if (unlikely(error_code & X86_PF_RSVD))
1268 		pgtable_bad(regs, error_code, address);
1269 
1270 	if (unlikely(smap_violation(error_code, regs))) {
1271 		bad_area_nosemaphore(regs, error_code, address, NULL);
1272 		return;
1273 	}
1274 
1275 	/*
1276 	 * If we're in an interrupt, have no user context or are running
1277 	 * in a region with pagefaults disabled then we must not take the fault
1278 	 */
1279 	if (unlikely(faulthandler_disabled() || !mm)) {
1280 		bad_area_nosemaphore(regs, error_code, address, NULL);
1281 		return;
1282 	}
1283 
1284 	/*
1285 	 * It's safe to allow irq's after cr2 has been saved and the
1286 	 * vmalloc fault has been handled.
1287 	 *
1288 	 * User-mode registers count as a user access even for any
1289 	 * potential system fault or CPU buglet:
1290 	 */
1291 	if (user_mode(regs)) {
1292 		local_irq_enable();
1293 		error_code |= X86_PF_USER;
1294 		flags |= FAULT_FLAG_USER;
1295 	} else {
1296 		if (regs->flags & X86_EFLAGS_IF)
1297 			local_irq_enable();
1298 	}
1299 
1300 	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
1301 
1302 	if (error_code & X86_PF_WRITE)
1303 		flags |= FAULT_FLAG_WRITE;
1304 	if (error_code & X86_PF_INSTR)
1305 		flags |= FAULT_FLAG_INSTRUCTION;
1306 
1307 	/*
1308 	 * When running in the kernel we expect faults to occur only to
1309 	 * addresses in user space.  All other faults represent errors in
1310 	 * the kernel and should generate an OOPS.  Unfortunately, in the
1311 	 * case of an erroneous fault occurring in a code path which already
1312 	 * holds mmap_sem we will deadlock attempting to validate the fault
1313 	 * against the address space.  Luckily the kernel only validly
1314 	 * references user space from well defined areas of code, which are
1315 	 * listed in the exceptions table.
1316 	 *
1317 	 * As the vast majority of faults will be valid we will only perform
1318 	 * the source reference check when there is a possibility of a
1319 	 * deadlock. Attempt to lock the address space, if we cannot we then
1320 	 * validate the source. If this is invalid we can skip the address
1321 	 * space check, thus avoiding the deadlock:
1322 	 */
1323 	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
1324 		if (!(error_code & X86_PF_USER) &&
1325 		    !search_exception_tables(regs->ip)) {
1326 			bad_area_nosemaphore(regs, error_code, address, NULL);
1327 			return;
1328 		}
1329 retry:
1330 		down_read(&mm->mmap_sem);
1331 	} else {
1332 		/*
1333 		 * The above down_read_trylock() might have succeeded in
1334 		 * which case we'll have missed the might_sleep() from
1335 		 * down_read():
1336 		 */
1337 		might_sleep();
1338 	}
1339 
1340 	vma = find_vma(mm, address);
1341 	if (unlikely(!vma)) {
1342 		bad_area(regs, error_code, address);
1343 		return;
1344 	}
1345 	if (likely(vma->vm_start <= address))
1346 		goto good_area;
1347 	if (unlikely(!(vma->vm_flags & VM_GROWSDOWN))) {
1348 		bad_area(regs, error_code, address);
1349 		return;
1350 	}
1351 	if (error_code & X86_PF_USER) {
1352 		/*
1353 		 * Accessing the stack below %sp is always a bug.
1354 		 * The large cushion allows instructions like enter
1355 		 * and pusha to work. ("enter $65535, $31" pushes
1356 		 * 32 pointers and then decrements %sp by 65535.)
1357 		 */
1358 		if (unlikely(address + 65536 + 32 * sizeof(unsigned long) < regs->sp)) {
1359 			bad_area(regs, error_code, address);
1360 			return;
1361 		}
1362 	}
1363 	if (unlikely(expand_stack(vma, address))) {
1364 		bad_area(regs, error_code, address);
1365 		return;
1366 	}
1367 
1368 	/*
1369 	 * Ok, we have a good vm_area for this memory access, so
1370 	 * we can handle it..
1371 	 */
1372 good_area:
1373 	if (unlikely(access_error(error_code, vma))) {
1374 		bad_area_access_error(regs, error_code, address, vma);
1375 		return;
1376 	}
1377 
1378 	/*
1379 	 * If for any reason at all we couldn't handle the fault,
1380 	 * make sure we exit gracefully rather than endlessly redo
1381 	 * the fault.  Since we never set FAULT_FLAG_RETRY_NOWAIT, if
1382 	 * we get VM_FAULT_RETRY back, the mmap_sem has been unlocked.
1383 	 *
1384 	 * Note that handle_userfault() may also release and reacquire mmap_sem
1385 	 * (and not return with VM_FAULT_RETRY), when returning to userland to
1386 	 * repeat the page fault later with a VM_FAULT_NOPAGE retval
1387 	 * (potentially after handling any pending signal during the return to
1388 	 * userland). The return to userland is identified whenever
1389 	 * FAULT_FLAG_USER|FAULT_FLAG_KILLABLE are both set in flags.
1390 	 * Thus we have to be careful about not touching vma after handling the
1391 	 * fault, so we read the pkey beforehand.
1392 	 */
1393 	pkey = vma_pkey(vma);
1394 	fault = handle_mm_fault(vma, address, flags);
1395 	major |= fault & VM_FAULT_MAJOR;
1396 
1397 	/*
1398 	 * If we need to retry the mmap_sem has already been released,
1399 	 * and if there is a fatal signal pending there is no guarantee
1400 	 * that we made any progress. Handle this case first.
1401 	 */
1402 	if (unlikely(fault & VM_FAULT_RETRY)) {
1403 		/* Retry at most once */
1404 		if (flags & FAULT_FLAG_ALLOW_RETRY) {
1405 			flags &= ~FAULT_FLAG_ALLOW_RETRY;
1406 			flags |= FAULT_FLAG_TRIED;
1407 			if (!fatal_signal_pending(tsk))
1408 				goto retry;
1409 		}
1410 
1411 		/* User mode? Just return to handle the fatal exception */
1412 		if (flags & FAULT_FLAG_USER)
1413 			return;
1414 
1415 		/* Not returning to user mode? Handle exceptions or die: */
1416 		no_context(regs, error_code, address, SIGBUS, BUS_ADRERR);
1417 		return;
1418 	}
1419 
1420 	up_read(&mm->mmap_sem);
1421 	if (unlikely(fault & VM_FAULT_ERROR)) {
1422 		mm_fault_error(regs, error_code, address, &pkey, fault);
1423 		return;
1424 	}
1425 
1426 	/*
1427 	 * Major/minor page fault accounting. If any of the events
1428 	 * returned VM_FAULT_MAJOR, we account it as a major fault.
1429 	 */
1430 	if (major) {
1431 		tsk->maj_flt++;
1432 		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
1433 	} else {
1434 		tsk->min_flt++;
1435 		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
1436 	}
1437 
1438 	check_v8086_mode(regs, address, tsk);
1439 }
1440 NOKPROBE_SYMBOL(__do_page_fault);
1441 
1442 static nokprobe_inline void
1443 trace_page_fault_entries(unsigned long address, struct pt_regs *regs,
1444 			 unsigned long error_code)
1445 {
1446 	if (user_mode(regs))
1447 		trace_page_fault_user(address, regs, error_code);
1448 	else
1449 		trace_page_fault_kernel(address, regs, error_code);
1450 }
1451 
1452 /*
1453  * We must have this function blacklisted from kprobes, tagged with notrace
1454  * and call read_cr2() before calling anything else. To avoid calling any
1455  * kind of tracing machinery before we've observed the CR2 value.
1456  *
1457  * exception_{enter,exit}() contains all sorts of tracepoints.
1458  */
1459 dotraplinkage void notrace
1460 do_page_fault(struct pt_regs *regs, unsigned long error_code)
1461 {
1462 	unsigned long address = read_cr2(); /* Get the faulting address */
1463 	enum ctx_state prev_state;
1464 
1465 	prev_state = exception_enter();
1466 	if (trace_pagefault_enabled())
1467 		trace_page_fault_entries(address, regs, error_code);
1468 
1469 	__do_page_fault(regs, error_code, address);
1470 	exception_exit(prev_state);
1471 }
1472 NOKPROBE_SYMBOL(do_page_fault);
1473