xref: /linux/arch/x86/mm/fault.c (revision c4c11dd160a8cc98f402c4e12f94b1572e822ffd)
1 /*
2  *  Copyright (C) 1995  Linus Torvalds
3  *  Copyright (C) 2001, 2002 Andi Kleen, SuSE Labs.
4  *  Copyright (C) 2008-2009, Red Hat Inc., Ingo Molnar
5  */
6 #include <linux/magic.h>		/* STACK_END_MAGIC		*/
7 #include <linux/sched.h>		/* test_thread_flag(), ...	*/
8 #include <linux/kdebug.h>		/* oops_begin/end, ...		*/
9 #include <linux/module.h>		/* search_exception_table	*/
10 #include <linux/bootmem.h>		/* max_low_pfn			*/
11 #include <linux/kprobes.h>		/* __kprobes, ...		*/
12 #include <linux/mmiotrace.h>		/* kmmio_handler, ...		*/
13 #include <linux/perf_event.h>		/* perf_sw_event		*/
14 #include <linux/hugetlb.h>		/* hstate_index_to_shift	*/
15 #include <linux/prefetch.h>		/* prefetchw			*/
16 #include <linux/context_tracking.h>	/* exception_enter(), ...	*/
17 
18 #include <asm/traps.h>			/* dotraplinkage, ...		*/
19 #include <asm/pgalloc.h>		/* pgd_*(), ...			*/
20 #include <asm/kmemcheck.h>		/* kmemcheck_*(), ...		*/
21 #include <asm/fixmap.h>			/* VSYSCALL_START		*/
22 
23 /*
24  * Page fault error code bits:
25  *
26  *   bit 0 ==	 0: no page found	1: protection fault
27  *   bit 1 ==	 0: read access		1: write access
28  *   bit 2 ==	 0: kernel-mode access	1: user-mode access
29  *   bit 3 ==				1: use of reserved bit detected
30  *   bit 4 ==				1: fault was an instruction fetch
31  */
32 enum x86_pf_error_code {
33 
34 	PF_PROT		=		1 << 0,
35 	PF_WRITE	=		1 << 1,
36 	PF_USER		=		1 << 2,
37 	PF_RSVD		=		1 << 3,
38 	PF_INSTR	=		1 << 4,
39 };
40 
41 /*
42  * Returns 0 if mmiotrace is disabled, or if the fault is not
43  * handled by mmiotrace:
44  */
45 static inline int __kprobes
46 kmmio_fault(struct pt_regs *regs, unsigned long addr)
47 {
48 	if (unlikely(is_kmmio_active()))
49 		if (kmmio_handler(regs, addr) == 1)
50 			return -1;
51 	return 0;
52 }
53 
54 static inline int __kprobes notify_page_fault(struct pt_regs *regs)
55 {
56 	int ret = 0;
57 
58 	/* kprobe_running() needs smp_processor_id() */
59 	if (kprobes_built_in() && !user_mode_vm(regs)) {
60 		preempt_disable();
61 		if (kprobe_running() && kprobe_fault_handler(regs, 14))
62 			ret = 1;
63 		preempt_enable();
64 	}
65 
66 	return ret;
67 }
68 
69 /*
70  * Prefetch quirks:
71  *
72  * 32-bit mode:
73  *
74  *   Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
75  *   Check that here and ignore it.
76  *
77  * 64-bit mode:
78  *
79  *   Sometimes the CPU reports invalid exceptions on prefetch.
80  *   Check that here and ignore it.
81  *
82  * Opcode checker based on code by Richard Brunner.
83  */
84 static inline int
85 check_prefetch_opcode(struct pt_regs *regs, unsigned char *instr,
86 		      unsigned char opcode, int *prefetch)
87 {
88 	unsigned char instr_hi = opcode & 0xf0;
89 	unsigned char instr_lo = opcode & 0x0f;
90 
91 	switch (instr_hi) {
92 	case 0x20:
93 	case 0x30:
94 		/*
95 		 * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes.
96 		 * In X86_64 long mode, the CPU will signal invalid
97 		 * opcode if some of these prefixes are present so
98 		 * X86_64 will never get here anyway
99 		 */
100 		return ((instr_lo & 7) == 0x6);
101 #ifdef CONFIG_X86_64
102 	case 0x40:
103 		/*
104 		 * In AMD64 long mode 0x40..0x4F are valid REX prefixes
105 		 * Need to figure out under what instruction mode the
106 		 * instruction was issued. Could check the LDT for lm,
107 		 * but for now it's good enough to assume that long
108 		 * mode only uses well known segments or kernel.
109 		 */
110 		return (!user_mode(regs) || user_64bit_mode(regs));
111 #endif
112 	case 0x60:
113 		/* 0x64 thru 0x67 are valid prefixes in all modes. */
114 		return (instr_lo & 0xC) == 0x4;
115 	case 0xF0:
116 		/* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */
117 		return !instr_lo || (instr_lo>>1) == 1;
118 	case 0x00:
119 		/* Prefetch instruction is 0x0F0D or 0x0F18 */
120 		if (probe_kernel_address(instr, opcode))
121 			return 0;
122 
123 		*prefetch = (instr_lo == 0xF) &&
124 			(opcode == 0x0D || opcode == 0x18);
125 		return 0;
126 	default:
127 		return 0;
128 	}
129 }
130 
131 static int
132 is_prefetch(struct pt_regs *regs, unsigned long error_code, unsigned long addr)
133 {
134 	unsigned char *max_instr;
135 	unsigned char *instr;
136 	int prefetch = 0;
137 
138 	/*
139 	 * If it was a exec (instruction fetch) fault on NX page, then
140 	 * do not ignore the fault:
141 	 */
142 	if (error_code & PF_INSTR)
143 		return 0;
144 
145 	instr = (void *)convert_ip_to_linear(current, regs);
146 	max_instr = instr + 15;
147 
148 	if (user_mode(regs) && instr >= (unsigned char *)TASK_SIZE)
149 		return 0;
150 
151 	while (instr < max_instr) {
152 		unsigned char opcode;
153 
154 		if (probe_kernel_address(instr, opcode))
155 			break;
156 
157 		instr++;
158 
159 		if (!check_prefetch_opcode(regs, instr, opcode, &prefetch))
160 			break;
161 	}
162 	return prefetch;
163 }
164 
165 static void
166 force_sig_info_fault(int si_signo, int si_code, unsigned long address,
167 		     struct task_struct *tsk, int fault)
168 {
169 	unsigned lsb = 0;
170 	siginfo_t info;
171 
172 	info.si_signo	= si_signo;
173 	info.si_errno	= 0;
174 	info.si_code	= si_code;
175 	info.si_addr	= (void __user *)address;
176 	if (fault & VM_FAULT_HWPOISON_LARGE)
177 		lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
178 	if (fault & VM_FAULT_HWPOISON)
179 		lsb = PAGE_SHIFT;
180 	info.si_addr_lsb = lsb;
181 
182 	force_sig_info(si_signo, &info, tsk);
183 }
184 
185 DEFINE_SPINLOCK(pgd_lock);
186 LIST_HEAD(pgd_list);
187 
188 #ifdef CONFIG_X86_32
189 static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
190 {
191 	unsigned index = pgd_index(address);
192 	pgd_t *pgd_k;
193 	pud_t *pud, *pud_k;
194 	pmd_t *pmd, *pmd_k;
195 
196 	pgd += index;
197 	pgd_k = init_mm.pgd + index;
198 
199 	if (!pgd_present(*pgd_k))
200 		return NULL;
201 
202 	/*
203 	 * set_pgd(pgd, *pgd_k); here would be useless on PAE
204 	 * and redundant with the set_pmd() on non-PAE. As would
205 	 * set_pud.
206 	 */
207 	pud = pud_offset(pgd, address);
208 	pud_k = pud_offset(pgd_k, address);
209 	if (!pud_present(*pud_k))
210 		return NULL;
211 
212 	pmd = pmd_offset(pud, address);
213 	pmd_k = pmd_offset(pud_k, address);
214 	if (!pmd_present(*pmd_k))
215 		return NULL;
216 
217 	if (!pmd_present(*pmd))
218 		set_pmd(pmd, *pmd_k);
219 	else
220 		BUG_ON(pmd_page(*pmd) != pmd_page(*pmd_k));
221 
222 	return pmd_k;
223 }
224 
225 void vmalloc_sync_all(void)
226 {
227 	unsigned long address;
228 
229 	if (SHARED_KERNEL_PMD)
230 		return;
231 
232 	for (address = VMALLOC_START & PMD_MASK;
233 	     address >= TASK_SIZE && address < FIXADDR_TOP;
234 	     address += PMD_SIZE) {
235 		struct page *page;
236 
237 		spin_lock(&pgd_lock);
238 		list_for_each_entry(page, &pgd_list, lru) {
239 			spinlock_t *pgt_lock;
240 			pmd_t *ret;
241 
242 			/* the pgt_lock only for Xen */
243 			pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
244 
245 			spin_lock(pgt_lock);
246 			ret = vmalloc_sync_one(page_address(page), address);
247 			spin_unlock(pgt_lock);
248 
249 			if (!ret)
250 				break;
251 		}
252 		spin_unlock(&pgd_lock);
253 	}
254 }
255 
256 /*
257  * 32-bit:
258  *
259  *   Handle a fault on the vmalloc or module mapping area
260  */
261 static noinline __kprobes int vmalloc_fault(unsigned long address)
262 {
263 	unsigned long pgd_paddr;
264 	pmd_t *pmd_k;
265 	pte_t *pte_k;
266 
267 	/* Make sure we are in vmalloc area: */
268 	if (!(address >= VMALLOC_START && address < VMALLOC_END))
269 		return -1;
270 
271 	WARN_ON_ONCE(in_nmi());
272 
273 	/*
274 	 * Synchronize this task's top level page-table
275 	 * with the 'reference' page table.
276 	 *
277 	 * Do _not_ use "current" here. We might be inside
278 	 * an interrupt in the middle of a task switch..
279 	 */
280 	pgd_paddr = read_cr3();
281 	pmd_k = vmalloc_sync_one(__va(pgd_paddr), address);
282 	if (!pmd_k)
283 		return -1;
284 
285 	pte_k = pte_offset_kernel(pmd_k, address);
286 	if (!pte_present(*pte_k))
287 		return -1;
288 
289 	return 0;
290 }
291 
292 /*
293  * Did it hit the DOS screen memory VA from vm86 mode?
294  */
295 static inline void
296 check_v8086_mode(struct pt_regs *regs, unsigned long address,
297 		 struct task_struct *tsk)
298 {
299 	unsigned long bit;
300 
301 	if (!v8086_mode(regs))
302 		return;
303 
304 	bit = (address - 0xA0000) >> PAGE_SHIFT;
305 	if (bit < 32)
306 		tsk->thread.screen_bitmap |= 1 << bit;
307 }
308 
309 static bool low_pfn(unsigned long pfn)
310 {
311 	return pfn < max_low_pfn;
312 }
313 
314 static void dump_pagetable(unsigned long address)
315 {
316 	pgd_t *base = __va(read_cr3());
317 	pgd_t *pgd = &base[pgd_index(address)];
318 	pmd_t *pmd;
319 	pte_t *pte;
320 
321 #ifdef CONFIG_X86_PAE
322 	printk("*pdpt = %016Lx ", pgd_val(*pgd));
323 	if (!low_pfn(pgd_val(*pgd) >> PAGE_SHIFT) || !pgd_present(*pgd))
324 		goto out;
325 #endif
326 	pmd = pmd_offset(pud_offset(pgd, address), address);
327 	printk(KERN_CONT "*pde = %0*Lx ", sizeof(*pmd) * 2, (u64)pmd_val(*pmd));
328 
329 	/*
330 	 * We must not directly access the pte in the highpte
331 	 * case if the page table is located in highmem.
332 	 * And let's rather not kmap-atomic the pte, just in case
333 	 * it's allocated already:
334 	 */
335 	if (!low_pfn(pmd_pfn(*pmd)) || !pmd_present(*pmd) || pmd_large(*pmd))
336 		goto out;
337 
338 	pte = pte_offset_kernel(pmd, address);
339 	printk("*pte = %0*Lx ", sizeof(*pte) * 2, (u64)pte_val(*pte));
340 out:
341 	printk("\n");
342 }
343 
344 #else /* CONFIG_X86_64: */
345 
346 void vmalloc_sync_all(void)
347 {
348 	sync_global_pgds(VMALLOC_START & PGDIR_MASK, VMALLOC_END);
349 }
350 
351 /*
352  * 64-bit:
353  *
354  *   Handle a fault on the vmalloc area
355  *
356  * This assumes no large pages in there.
357  */
358 static noinline __kprobes int vmalloc_fault(unsigned long address)
359 {
360 	pgd_t *pgd, *pgd_ref;
361 	pud_t *pud, *pud_ref;
362 	pmd_t *pmd, *pmd_ref;
363 	pte_t *pte, *pte_ref;
364 
365 	/* Make sure we are in vmalloc area: */
366 	if (!(address >= VMALLOC_START && address < VMALLOC_END))
367 		return -1;
368 
369 	WARN_ON_ONCE(in_nmi());
370 
371 	/*
372 	 * Copy kernel mappings over when needed. This can also
373 	 * happen within a race in page table update. In the later
374 	 * case just flush:
375 	 */
376 	pgd = pgd_offset(current->active_mm, address);
377 	pgd_ref = pgd_offset_k(address);
378 	if (pgd_none(*pgd_ref))
379 		return -1;
380 
381 	if (pgd_none(*pgd)) {
382 		set_pgd(pgd, *pgd_ref);
383 		arch_flush_lazy_mmu_mode();
384 	} else {
385 		BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref));
386 	}
387 
388 	/*
389 	 * Below here mismatches are bugs because these lower tables
390 	 * are shared:
391 	 */
392 
393 	pud = pud_offset(pgd, address);
394 	pud_ref = pud_offset(pgd_ref, address);
395 	if (pud_none(*pud_ref))
396 		return -1;
397 
398 	if (pud_none(*pud) || pud_page_vaddr(*pud) != pud_page_vaddr(*pud_ref))
399 		BUG();
400 
401 	pmd = pmd_offset(pud, address);
402 	pmd_ref = pmd_offset(pud_ref, address);
403 	if (pmd_none(*pmd_ref))
404 		return -1;
405 
406 	if (pmd_none(*pmd) || pmd_page(*pmd) != pmd_page(*pmd_ref))
407 		BUG();
408 
409 	pte_ref = pte_offset_kernel(pmd_ref, address);
410 	if (!pte_present(*pte_ref))
411 		return -1;
412 
413 	pte = pte_offset_kernel(pmd, address);
414 
415 	/*
416 	 * Don't use pte_page here, because the mappings can point
417 	 * outside mem_map, and the NUMA hash lookup cannot handle
418 	 * that:
419 	 */
420 	if (!pte_present(*pte) || pte_pfn(*pte) != pte_pfn(*pte_ref))
421 		BUG();
422 
423 	return 0;
424 }
425 
426 #ifdef CONFIG_CPU_SUP_AMD
427 static const char errata93_warning[] =
428 KERN_ERR
429 "******* Your BIOS seems to not contain a fix for K8 errata #93\n"
430 "******* Working around it, but it may cause SEGVs or burn power.\n"
431 "******* Please consider a BIOS update.\n"
432 "******* Disabling USB legacy in the BIOS may also help.\n";
433 #endif
434 
435 /*
436  * No vm86 mode in 64-bit mode:
437  */
438 static inline void
439 check_v8086_mode(struct pt_regs *regs, unsigned long address,
440 		 struct task_struct *tsk)
441 {
442 }
443 
444 static int bad_address(void *p)
445 {
446 	unsigned long dummy;
447 
448 	return probe_kernel_address((unsigned long *)p, dummy);
449 }
450 
451 static void dump_pagetable(unsigned long address)
452 {
453 	pgd_t *base = __va(read_cr3() & PHYSICAL_PAGE_MASK);
454 	pgd_t *pgd = base + pgd_index(address);
455 	pud_t *pud;
456 	pmd_t *pmd;
457 	pte_t *pte;
458 
459 	if (bad_address(pgd))
460 		goto bad;
461 
462 	printk("PGD %lx ", pgd_val(*pgd));
463 
464 	if (!pgd_present(*pgd))
465 		goto out;
466 
467 	pud = pud_offset(pgd, address);
468 	if (bad_address(pud))
469 		goto bad;
470 
471 	printk("PUD %lx ", pud_val(*pud));
472 	if (!pud_present(*pud) || pud_large(*pud))
473 		goto out;
474 
475 	pmd = pmd_offset(pud, address);
476 	if (bad_address(pmd))
477 		goto bad;
478 
479 	printk("PMD %lx ", pmd_val(*pmd));
480 	if (!pmd_present(*pmd) || pmd_large(*pmd))
481 		goto out;
482 
483 	pte = pte_offset_kernel(pmd, address);
484 	if (bad_address(pte))
485 		goto bad;
486 
487 	printk("PTE %lx", pte_val(*pte));
488 out:
489 	printk("\n");
490 	return;
491 bad:
492 	printk("BAD\n");
493 }
494 
495 #endif /* CONFIG_X86_64 */
496 
497 /*
498  * Workaround for K8 erratum #93 & buggy BIOS.
499  *
500  * BIOS SMM functions are required to use a specific workaround
501  * to avoid corruption of the 64bit RIP register on C stepping K8.
502  *
503  * A lot of BIOS that didn't get tested properly miss this.
504  *
505  * The OS sees this as a page fault with the upper 32bits of RIP cleared.
506  * Try to work around it here.
507  *
508  * Note we only handle faults in kernel here.
509  * Does nothing on 32-bit.
510  */
511 static int is_errata93(struct pt_regs *regs, unsigned long address)
512 {
513 #if defined(CONFIG_X86_64) && defined(CONFIG_CPU_SUP_AMD)
514 	if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD
515 	    || boot_cpu_data.x86 != 0xf)
516 		return 0;
517 
518 	if (address != regs->ip)
519 		return 0;
520 
521 	if ((address >> 32) != 0)
522 		return 0;
523 
524 	address |= 0xffffffffUL << 32;
525 	if ((address >= (u64)_stext && address <= (u64)_etext) ||
526 	    (address >= MODULES_VADDR && address <= MODULES_END)) {
527 		printk_once(errata93_warning);
528 		regs->ip = address;
529 		return 1;
530 	}
531 #endif
532 	return 0;
533 }
534 
535 /*
536  * Work around K8 erratum #100 K8 in compat mode occasionally jumps
537  * to illegal addresses >4GB.
538  *
539  * We catch this in the page fault handler because these addresses
540  * are not reachable. Just detect this case and return.  Any code
541  * segment in LDT is compatibility mode.
542  */
543 static int is_errata100(struct pt_regs *regs, unsigned long address)
544 {
545 #ifdef CONFIG_X86_64
546 	if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) && (address >> 32))
547 		return 1;
548 #endif
549 	return 0;
550 }
551 
552 static int is_f00f_bug(struct pt_regs *regs, unsigned long address)
553 {
554 #ifdef CONFIG_X86_F00F_BUG
555 	unsigned long nr;
556 
557 	/*
558 	 * Pentium F0 0F C7 C8 bug workaround:
559 	 */
560 	if (boot_cpu_has_bug(X86_BUG_F00F)) {
561 		nr = (address - idt_descr.address) >> 3;
562 
563 		if (nr == 6) {
564 			do_invalid_op(regs, 0);
565 			return 1;
566 		}
567 	}
568 #endif
569 	return 0;
570 }
571 
572 static const char nx_warning[] = KERN_CRIT
573 "kernel tried to execute NX-protected page - exploit attempt? (uid: %d)\n";
574 
575 static void
576 show_fault_oops(struct pt_regs *regs, unsigned long error_code,
577 		unsigned long address)
578 {
579 	if (!oops_may_print())
580 		return;
581 
582 	if (error_code & PF_INSTR) {
583 		unsigned int level;
584 
585 		pte_t *pte = lookup_address(address, &level);
586 
587 		if (pte && pte_present(*pte) && !pte_exec(*pte))
588 			printk(nx_warning, from_kuid(&init_user_ns, current_uid()));
589 	}
590 
591 	printk(KERN_ALERT "BUG: unable to handle kernel ");
592 	if (address < PAGE_SIZE)
593 		printk(KERN_CONT "NULL pointer dereference");
594 	else
595 		printk(KERN_CONT "paging request");
596 
597 	printk(KERN_CONT " at %p\n", (void *) address);
598 	printk(KERN_ALERT "IP:");
599 	printk_address(regs->ip, 1);
600 
601 	dump_pagetable(address);
602 }
603 
604 static noinline void
605 pgtable_bad(struct pt_regs *regs, unsigned long error_code,
606 	    unsigned long address)
607 {
608 	struct task_struct *tsk;
609 	unsigned long flags;
610 	int sig;
611 
612 	flags = oops_begin();
613 	tsk = current;
614 	sig = SIGKILL;
615 
616 	printk(KERN_ALERT "%s: Corrupted page table at address %lx\n",
617 	       tsk->comm, address);
618 	dump_pagetable(address);
619 
620 	tsk->thread.cr2		= address;
621 	tsk->thread.trap_nr	= X86_TRAP_PF;
622 	tsk->thread.error_code	= error_code;
623 
624 	if (__die("Bad pagetable", regs, error_code))
625 		sig = 0;
626 
627 	oops_end(flags, regs, sig);
628 }
629 
630 static noinline void
631 no_context(struct pt_regs *regs, unsigned long error_code,
632 	   unsigned long address, int signal, int si_code)
633 {
634 	struct task_struct *tsk = current;
635 	unsigned long *stackend;
636 	unsigned long flags;
637 	int sig;
638 
639 	/* Are we prepared to handle this kernel fault? */
640 	if (fixup_exception(regs)) {
641 		if (current_thread_info()->sig_on_uaccess_error && signal) {
642 			tsk->thread.trap_nr = X86_TRAP_PF;
643 			tsk->thread.error_code = error_code | PF_USER;
644 			tsk->thread.cr2 = address;
645 
646 			/* XXX: hwpoison faults will set the wrong code. */
647 			force_sig_info_fault(signal, si_code, address, tsk, 0);
648 		}
649 		return;
650 	}
651 
652 	/*
653 	 * 32-bit:
654 	 *
655 	 *   Valid to do another page fault here, because if this fault
656 	 *   had been triggered by is_prefetch fixup_exception would have
657 	 *   handled it.
658 	 *
659 	 * 64-bit:
660 	 *
661 	 *   Hall of shame of CPU/BIOS bugs.
662 	 */
663 	if (is_prefetch(regs, error_code, address))
664 		return;
665 
666 	if (is_errata93(regs, address))
667 		return;
668 
669 	/*
670 	 * Oops. The kernel tried to access some bad page. We'll have to
671 	 * terminate things with extreme prejudice:
672 	 */
673 	flags = oops_begin();
674 
675 	show_fault_oops(regs, error_code, address);
676 
677 	stackend = end_of_stack(tsk);
678 	if (tsk != &init_task && *stackend != STACK_END_MAGIC)
679 		printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
680 
681 	tsk->thread.cr2		= address;
682 	tsk->thread.trap_nr	= X86_TRAP_PF;
683 	tsk->thread.error_code	= error_code;
684 
685 	sig = SIGKILL;
686 	if (__die("Oops", regs, error_code))
687 		sig = 0;
688 
689 	/* Executive summary in case the body of the oops scrolled away */
690 	printk(KERN_DEFAULT "CR2: %016lx\n", address);
691 
692 	oops_end(flags, regs, sig);
693 }
694 
695 /*
696  * Print out info about fatal segfaults, if the show_unhandled_signals
697  * sysctl is set:
698  */
699 static inline void
700 show_signal_msg(struct pt_regs *regs, unsigned long error_code,
701 		unsigned long address, struct task_struct *tsk)
702 {
703 	if (!unhandled_signal(tsk, SIGSEGV))
704 		return;
705 
706 	if (!printk_ratelimit())
707 		return;
708 
709 	printk("%s%s[%d]: segfault at %lx ip %p sp %p error %lx",
710 		task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG,
711 		tsk->comm, task_pid_nr(tsk), address,
712 		(void *)regs->ip, (void *)regs->sp, error_code);
713 
714 	print_vma_addr(KERN_CONT " in ", regs->ip);
715 
716 	printk(KERN_CONT "\n");
717 }
718 
719 static void
720 __bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
721 		       unsigned long address, int si_code)
722 {
723 	struct task_struct *tsk = current;
724 
725 	/* User mode accesses just cause a SIGSEGV */
726 	if (error_code & PF_USER) {
727 		/*
728 		 * It's possible to have interrupts off here:
729 		 */
730 		local_irq_enable();
731 
732 		/*
733 		 * Valid to do another page fault here because this one came
734 		 * from user space:
735 		 */
736 		if (is_prefetch(regs, error_code, address))
737 			return;
738 
739 		if (is_errata100(regs, address))
740 			return;
741 
742 #ifdef CONFIG_X86_64
743 		/*
744 		 * Instruction fetch faults in the vsyscall page might need
745 		 * emulation.
746 		 */
747 		if (unlikely((error_code & PF_INSTR) &&
748 			     ((address & ~0xfff) == VSYSCALL_START))) {
749 			if (emulate_vsyscall(regs, address))
750 				return;
751 		}
752 #endif
753 		/* Kernel addresses are always protection faults: */
754 		if (address >= TASK_SIZE)
755 			error_code |= PF_PROT;
756 
757 		if (likely(show_unhandled_signals))
758 			show_signal_msg(regs, error_code, address, tsk);
759 
760 		tsk->thread.cr2		= address;
761 		tsk->thread.error_code	= error_code;
762 		tsk->thread.trap_nr	= X86_TRAP_PF;
763 
764 		force_sig_info_fault(SIGSEGV, si_code, address, tsk, 0);
765 
766 		return;
767 	}
768 
769 	if (is_f00f_bug(regs, address))
770 		return;
771 
772 	no_context(regs, error_code, address, SIGSEGV, si_code);
773 }
774 
775 static noinline void
776 bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
777 		     unsigned long address)
778 {
779 	__bad_area_nosemaphore(regs, error_code, address, SEGV_MAPERR);
780 }
781 
782 static void
783 __bad_area(struct pt_regs *regs, unsigned long error_code,
784 	   unsigned long address, int si_code)
785 {
786 	struct mm_struct *mm = current->mm;
787 
788 	/*
789 	 * Something tried to access memory that isn't in our memory map..
790 	 * Fix it, but check if it's kernel or user first..
791 	 */
792 	up_read(&mm->mmap_sem);
793 
794 	__bad_area_nosemaphore(regs, error_code, address, si_code);
795 }
796 
797 static noinline void
798 bad_area(struct pt_regs *regs, unsigned long error_code, unsigned long address)
799 {
800 	__bad_area(regs, error_code, address, SEGV_MAPERR);
801 }
802 
803 static noinline void
804 bad_area_access_error(struct pt_regs *regs, unsigned long error_code,
805 		      unsigned long address)
806 {
807 	__bad_area(regs, error_code, address, SEGV_ACCERR);
808 }
809 
810 static void
811 do_sigbus(struct pt_regs *regs, unsigned long error_code, unsigned long address,
812 	  unsigned int fault)
813 {
814 	struct task_struct *tsk = current;
815 	struct mm_struct *mm = tsk->mm;
816 	int code = BUS_ADRERR;
817 
818 	up_read(&mm->mmap_sem);
819 
820 	/* Kernel mode? Handle exceptions or die: */
821 	if (!(error_code & PF_USER)) {
822 		no_context(regs, error_code, address, SIGBUS, BUS_ADRERR);
823 		return;
824 	}
825 
826 	/* User-space => ok to do another page fault: */
827 	if (is_prefetch(regs, error_code, address))
828 		return;
829 
830 	tsk->thread.cr2		= address;
831 	tsk->thread.error_code	= error_code;
832 	tsk->thread.trap_nr	= X86_TRAP_PF;
833 
834 #ifdef CONFIG_MEMORY_FAILURE
835 	if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
836 		printk(KERN_ERR
837 	"MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
838 			tsk->comm, tsk->pid, address);
839 		code = BUS_MCEERR_AR;
840 	}
841 #endif
842 	force_sig_info_fault(SIGBUS, code, address, tsk, fault);
843 }
844 
845 static noinline int
846 mm_fault_error(struct pt_regs *regs, unsigned long error_code,
847 	       unsigned long address, unsigned int fault)
848 {
849 	/*
850 	 * Pagefault was interrupted by SIGKILL. We have no reason to
851 	 * continue pagefault.
852 	 */
853 	if (fatal_signal_pending(current)) {
854 		if (!(fault & VM_FAULT_RETRY))
855 			up_read(&current->mm->mmap_sem);
856 		if (!(error_code & PF_USER))
857 			no_context(regs, error_code, address, 0, 0);
858 		return 1;
859 	}
860 	if (!(fault & VM_FAULT_ERROR))
861 		return 0;
862 
863 	if (fault & VM_FAULT_OOM) {
864 		/* Kernel mode? Handle exceptions or die: */
865 		if (!(error_code & PF_USER)) {
866 			up_read(&current->mm->mmap_sem);
867 			no_context(regs, error_code, address,
868 				   SIGSEGV, SEGV_MAPERR);
869 			return 1;
870 		}
871 
872 		up_read(&current->mm->mmap_sem);
873 
874 		/*
875 		 * We ran out of memory, call the OOM killer, and return the
876 		 * userspace (which will retry the fault, or kill us if we got
877 		 * oom-killed):
878 		 */
879 		pagefault_out_of_memory();
880 	} else {
881 		if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
882 			     VM_FAULT_HWPOISON_LARGE))
883 			do_sigbus(regs, error_code, address, fault);
884 		else
885 			BUG();
886 	}
887 	return 1;
888 }
889 
890 static int spurious_fault_check(unsigned long error_code, pte_t *pte)
891 {
892 	if ((error_code & PF_WRITE) && !pte_write(*pte))
893 		return 0;
894 
895 	if ((error_code & PF_INSTR) && !pte_exec(*pte))
896 		return 0;
897 
898 	return 1;
899 }
900 
901 /*
902  * Handle a spurious fault caused by a stale TLB entry.
903  *
904  * This allows us to lazily refresh the TLB when increasing the
905  * permissions of a kernel page (RO -> RW or NX -> X).  Doing it
906  * eagerly is very expensive since that implies doing a full
907  * cross-processor TLB flush, even if no stale TLB entries exist
908  * on other processors.
909  *
910  * There are no security implications to leaving a stale TLB when
911  * increasing the permissions on a page.
912  */
913 static noinline __kprobes int
914 spurious_fault(unsigned long error_code, unsigned long address)
915 {
916 	pgd_t *pgd;
917 	pud_t *pud;
918 	pmd_t *pmd;
919 	pte_t *pte;
920 	int ret;
921 
922 	/* Reserved-bit violation or user access to kernel space? */
923 	if (error_code & (PF_USER | PF_RSVD))
924 		return 0;
925 
926 	pgd = init_mm.pgd + pgd_index(address);
927 	if (!pgd_present(*pgd))
928 		return 0;
929 
930 	pud = pud_offset(pgd, address);
931 	if (!pud_present(*pud))
932 		return 0;
933 
934 	if (pud_large(*pud))
935 		return spurious_fault_check(error_code, (pte_t *) pud);
936 
937 	pmd = pmd_offset(pud, address);
938 	if (!pmd_present(*pmd))
939 		return 0;
940 
941 	if (pmd_large(*pmd))
942 		return spurious_fault_check(error_code, (pte_t *) pmd);
943 
944 	pte = pte_offset_kernel(pmd, address);
945 	if (!pte_present(*pte))
946 		return 0;
947 
948 	ret = spurious_fault_check(error_code, pte);
949 	if (!ret)
950 		return 0;
951 
952 	/*
953 	 * Make sure we have permissions in PMD.
954 	 * If not, then there's a bug in the page tables:
955 	 */
956 	ret = spurious_fault_check(error_code, (pte_t *) pmd);
957 	WARN_ONCE(!ret, "PMD has incorrect permission bits\n");
958 
959 	return ret;
960 }
961 
962 int show_unhandled_signals = 1;
963 
964 static inline int
965 access_error(unsigned long error_code, struct vm_area_struct *vma)
966 {
967 	if (error_code & PF_WRITE) {
968 		/* write, present and write, not present: */
969 		if (unlikely(!(vma->vm_flags & VM_WRITE)))
970 			return 1;
971 		return 0;
972 	}
973 
974 	/* read, present: */
975 	if (unlikely(error_code & PF_PROT))
976 		return 1;
977 
978 	/* read, not present: */
979 	if (unlikely(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))))
980 		return 1;
981 
982 	return 0;
983 }
984 
985 static int fault_in_kernel_space(unsigned long address)
986 {
987 	return address >= TASK_SIZE_MAX;
988 }
989 
990 static inline bool smap_violation(int error_code, struct pt_regs *regs)
991 {
992 	if (error_code & PF_USER)
993 		return false;
994 
995 	if (!user_mode_vm(regs) && (regs->flags & X86_EFLAGS_AC))
996 		return false;
997 
998 	return true;
999 }
1000 
1001 /*
1002  * This routine handles page faults.  It determines the address,
1003  * and the problem, and then passes it off to one of the appropriate
1004  * routines.
1005  */
1006 static void __kprobes
1007 __do_page_fault(struct pt_regs *regs, unsigned long error_code)
1008 {
1009 	struct vm_area_struct *vma;
1010 	struct task_struct *tsk;
1011 	unsigned long address;
1012 	struct mm_struct *mm;
1013 	int fault;
1014 	int write = error_code & PF_WRITE;
1015 	unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE |
1016 					(write ? FAULT_FLAG_WRITE : 0);
1017 
1018 	tsk = current;
1019 	mm = tsk->mm;
1020 
1021 	/* Get the faulting address: */
1022 	address = read_cr2();
1023 
1024 	/*
1025 	 * Detect and handle instructions that would cause a page fault for
1026 	 * both a tracked kernel page and a userspace page.
1027 	 */
1028 	if (kmemcheck_active(regs))
1029 		kmemcheck_hide(regs);
1030 	prefetchw(&mm->mmap_sem);
1031 
1032 	if (unlikely(kmmio_fault(regs, address)))
1033 		return;
1034 
1035 	/*
1036 	 * We fault-in kernel-space virtual memory on-demand. The
1037 	 * 'reference' page table is init_mm.pgd.
1038 	 *
1039 	 * NOTE! We MUST NOT take any locks for this case. We may
1040 	 * be in an interrupt or a critical region, and should
1041 	 * only copy the information from the master page table,
1042 	 * nothing more.
1043 	 *
1044 	 * This verifies that the fault happens in kernel space
1045 	 * (error_code & 4) == 0, and that the fault was not a
1046 	 * protection error (error_code & 9) == 0.
1047 	 */
1048 	if (unlikely(fault_in_kernel_space(address))) {
1049 		if (!(error_code & (PF_RSVD | PF_USER | PF_PROT))) {
1050 			if (vmalloc_fault(address) >= 0)
1051 				return;
1052 
1053 			if (kmemcheck_fault(regs, address, error_code))
1054 				return;
1055 		}
1056 
1057 		/* Can handle a stale RO->RW TLB: */
1058 		if (spurious_fault(error_code, address))
1059 			return;
1060 
1061 		/* kprobes don't want to hook the spurious faults: */
1062 		if (notify_page_fault(regs))
1063 			return;
1064 		/*
1065 		 * Don't take the mm semaphore here. If we fixup a prefetch
1066 		 * fault we could otherwise deadlock:
1067 		 */
1068 		bad_area_nosemaphore(regs, error_code, address);
1069 
1070 		return;
1071 	}
1072 
1073 	/* kprobes don't want to hook the spurious faults: */
1074 	if (unlikely(notify_page_fault(regs)))
1075 		return;
1076 	/*
1077 	 * It's safe to allow irq's after cr2 has been saved and the
1078 	 * vmalloc fault has been handled.
1079 	 *
1080 	 * User-mode registers count as a user access even for any
1081 	 * potential system fault or CPU buglet:
1082 	 */
1083 	if (user_mode_vm(regs)) {
1084 		local_irq_enable();
1085 		error_code |= PF_USER;
1086 	} else {
1087 		if (regs->flags & X86_EFLAGS_IF)
1088 			local_irq_enable();
1089 	}
1090 
1091 	if (unlikely(error_code & PF_RSVD))
1092 		pgtable_bad(regs, error_code, address);
1093 
1094 	if (static_cpu_has(X86_FEATURE_SMAP)) {
1095 		if (unlikely(smap_violation(error_code, regs))) {
1096 			bad_area_nosemaphore(regs, error_code, address);
1097 			return;
1098 		}
1099 	}
1100 
1101 	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
1102 
1103 	/*
1104 	 * If we're in an interrupt, have no user context or are running
1105 	 * in an atomic region then we must not take the fault:
1106 	 */
1107 	if (unlikely(in_atomic() || !mm)) {
1108 		bad_area_nosemaphore(regs, error_code, address);
1109 		return;
1110 	}
1111 
1112 	/*
1113 	 * When running in the kernel we expect faults to occur only to
1114 	 * addresses in user space.  All other faults represent errors in
1115 	 * the kernel and should generate an OOPS.  Unfortunately, in the
1116 	 * case of an erroneous fault occurring in a code path which already
1117 	 * holds mmap_sem we will deadlock attempting to validate the fault
1118 	 * against the address space.  Luckily the kernel only validly
1119 	 * references user space from well defined areas of code, which are
1120 	 * listed in the exceptions table.
1121 	 *
1122 	 * As the vast majority of faults will be valid we will only perform
1123 	 * the source reference check when there is a possibility of a
1124 	 * deadlock. Attempt to lock the address space, if we cannot we then
1125 	 * validate the source. If this is invalid we can skip the address
1126 	 * space check, thus avoiding the deadlock:
1127 	 */
1128 	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
1129 		if ((error_code & PF_USER) == 0 &&
1130 		    !search_exception_tables(regs->ip)) {
1131 			bad_area_nosemaphore(regs, error_code, address);
1132 			return;
1133 		}
1134 retry:
1135 		down_read(&mm->mmap_sem);
1136 	} else {
1137 		/*
1138 		 * The above down_read_trylock() might have succeeded in
1139 		 * which case we'll have missed the might_sleep() from
1140 		 * down_read():
1141 		 */
1142 		might_sleep();
1143 	}
1144 
1145 	vma = find_vma(mm, address);
1146 	if (unlikely(!vma)) {
1147 		bad_area(regs, error_code, address);
1148 		return;
1149 	}
1150 	if (likely(vma->vm_start <= address))
1151 		goto good_area;
1152 	if (unlikely(!(vma->vm_flags & VM_GROWSDOWN))) {
1153 		bad_area(regs, error_code, address);
1154 		return;
1155 	}
1156 	if (error_code & PF_USER) {
1157 		/*
1158 		 * Accessing the stack below %sp is always a bug.
1159 		 * The large cushion allows instructions like enter
1160 		 * and pusha to work. ("enter $65535, $31" pushes
1161 		 * 32 pointers and then decrements %sp by 65535.)
1162 		 */
1163 		if (unlikely(address + 65536 + 32 * sizeof(unsigned long) < regs->sp)) {
1164 			bad_area(regs, error_code, address);
1165 			return;
1166 		}
1167 	}
1168 	if (unlikely(expand_stack(vma, address))) {
1169 		bad_area(regs, error_code, address);
1170 		return;
1171 	}
1172 
1173 	/*
1174 	 * Ok, we have a good vm_area for this memory access, so
1175 	 * we can handle it..
1176 	 */
1177 good_area:
1178 	if (unlikely(access_error(error_code, vma))) {
1179 		bad_area_access_error(regs, error_code, address);
1180 		return;
1181 	}
1182 
1183 	/*
1184 	 * If for any reason at all we couldn't handle the fault,
1185 	 * make sure we exit gracefully rather than endlessly redo
1186 	 * the fault:
1187 	 */
1188 	fault = handle_mm_fault(mm, vma, address, flags);
1189 
1190 	if (unlikely(fault & (VM_FAULT_RETRY|VM_FAULT_ERROR))) {
1191 		if (mm_fault_error(regs, error_code, address, fault))
1192 			return;
1193 	}
1194 
1195 	/*
1196 	 * Major/minor page fault accounting is only done on the
1197 	 * initial attempt. If we go through a retry, it is extremely
1198 	 * likely that the page will be found in page cache at that point.
1199 	 */
1200 	if (flags & FAULT_FLAG_ALLOW_RETRY) {
1201 		if (fault & VM_FAULT_MAJOR) {
1202 			tsk->maj_flt++;
1203 			perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1,
1204 				      regs, address);
1205 		} else {
1206 			tsk->min_flt++;
1207 			perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1,
1208 				      regs, address);
1209 		}
1210 		if (fault & VM_FAULT_RETRY) {
1211 			/* Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk
1212 			 * of starvation. */
1213 			flags &= ~FAULT_FLAG_ALLOW_RETRY;
1214 			flags |= FAULT_FLAG_TRIED;
1215 			goto retry;
1216 		}
1217 	}
1218 
1219 	check_v8086_mode(regs, address, tsk);
1220 
1221 	up_read(&mm->mmap_sem);
1222 }
1223 
1224 dotraplinkage void __kprobes
1225 do_page_fault(struct pt_regs *regs, unsigned long error_code)
1226 {
1227 	enum ctx_state prev_state;
1228 
1229 	prev_state = exception_enter();
1230 	__do_page_fault(regs, error_code);
1231 	exception_exit(prev_state);
1232 }
1233