xref: /linux/arch/x86/mm/fault.c (revision b85d45947951d23cb22d90caecf4c1eb81342c96)
1 /*
2  *  Copyright (C) 1995  Linus Torvalds
3  *  Copyright (C) 2001, 2002 Andi Kleen, SuSE Labs.
4  *  Copyright (C) 2008-2009, Red Hat Inc., Ingo Molnar
5  */
6 #include <linux/sched.h>		/* test_thread_flag(), ...	*/
7 #include <linux/kdebug.h>		/* oops_begin/end, ...		*/
8 #include <linux/module.h>		/* search_exception_table	*/
9 #include <linux/bootmem.h>		/* max_low_pfn			*/
10 #include <linux/kprobes.h>		/* NOKPROBE_SYMBOL, ...		*/
11 #include <linux/mmiotrace.h>		/* kmmio_handler, ...		*/
12 #include <linux/perf_event.h>		/* perf_sw_event		*/
13 #include <linux/hugetlb.h>		/* hstate_index_to_shift	*/
14 #include <linux/prefetch.h>		/* prefetchw			*/
15 #include <linux/context_tracking.h>	/* exception_enter(), ...	*/
16 #include <linux/uaccess.h>		/* faulthandler_disabled()	*/
17 
18 #include <asm/traps.h>			/* dotraplinkage, ...		*/
19 #include <asm/pgalloc.h>		/* pgd_*(), ...			*/
20 #include <asm/kmemcheck.h>		/* kmemcheck_*(), ...		*/
21 #include <asm/fixmap.h>			/* VSYSCALL_ADDR		*/
22 #include <asm/vsyscall.h>		/* emulate_vsyscall		*/
23 #include <asm/vm86.h>			/* struct vm86			*/
24 
25 #define CREATE_TRACE_POINTS
26 #include <asm/trace/exceptions.h>
27 
28 /*
29  * Page fault error code bits:
30  *
31  *   bit 0 ==	 0: no page found	1: protection fault
32  *   bit 1 ==	 0: read access		1: write access
33  *   bit 2 ==	 0: kernel-mode access	1: user-mode access
34  *   bit 3 ==				1: use of reserved bit detected
35  *   bit 4 ==				1: fault was an instruction fetch
36  */
37 enum x86_pf_error_code {
38 
39 	PF_PROT		=		1 << 0,
40 	PF_WRITE	=		1 << 1,
41 	PF_USER		=		1 << 2,
42 	PF_RSVD		=		1 << 3,
43 	PF_INSTR	=		1 << 4,
44 };
45 
46 /*
47  * Returns 0 if mmiotrace is disabled, or if the fault is not
48  * handled by mmiotrace:
49  */
50 static nokprobe_inline int
51 kmmio_fault(struct pt_regs *regs, unsigned long addr)
52 {
53 	if (unlikely(is_kmmio_active()))
54 		if (kmmio_handler(regs, addr) == 1)
55 			return -1;
56 	return 0;
57 }
58 
59 static nokprobe_inline int kprobes_fault(struct pt_regs *regs)
60 {
61 	int ret = 0;
62 
63 	/* kprobe_running() needs smp_processor_id() */
64 	if (kprobes_built_in() && !user_mode(regs)) {
65 		preempt_disable();
66 		if (kprobe_running() && kprobe_fault_handler(regs, 14))
67 			ret = 1;
68 		preempt_enable();
69 	}
70 
71 	return ret;
72 }
73 
74 /*
75  * Prefetch quirks:
76  *
77  * 32-bit mode:
78  *
79  *   Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
80  *   Check that here and ignore it.
81  *
82  * 64-bit mode:
83  *
84  *   Sometimes the CPU reports invalid exceptions on prefetch.
85  *   Check that here and ignore it.
86  *
87  * Opcode checker based on code by Richard Brunner.
88  */
89 static inline int
90 check_prefetch_opcode(struct pt_regs *regs, unsigned char *instr,
91 		      unsigned char opcode, int *prefetch)
92 {
93 	unsigned char instr_hi = opcode & 0xf0;
94 	unsigned char instr_lo = opcode & 0x0f;
95 
96 	switch (instr_hi) {
97 	case 0x20:
98 	case 0x30:
99 		/*
100 		 * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes.
101 		 * In X86_64 long mode, the CPU will signal invalid
102 		 * opcode if some of these prefixes are present so
103 		 * X86_64 will never get here anyway
104 		 */
105 		return ((instr_lo & 7) == 0x6);
106 #ifdef CONFIG_X86_64
107 	case 0x40:
108 		/*
109 		 * In AMD64 long mode 0x40..0x4F are valid REX prefixes
110 		 * Need to figure out under what instruction mode the
111 		 * instruction was issued. Could check the LDT for lm,
112 		 * but for now it's good enough to assume that long
113 		 * mode only uses well known segments or kernel.
114 		 */
115 		return (!user_mode(regs) || user_64bit_mode(regs));
116 #endif
117 	case 0x60:
118 		/* 0x64 thru 0x67 are valid prefixes in all modes. */
119 		return (instr_lo & 0xC) == 0x4;
120 	case 0xF0:
121 		/* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */
122 		return !instr_lo || (instr_lo>>1) == 1;
123 	case 0x00:
124 		/* Prefetch instruction is 0x0F0D or 0x0F18 */
125 		if (probe_kernel_address(instr, opcode))
126 			return 0;
127 
128 		*prefetch = (instr_lo == 0xF) &&
129 			(opcode == 0x0D || opcode == 0x18);
130 		return 0;
131 	default:
132 		return 0;
133 	}
134 }
135 
136 static int
137 is_prefetch(struct pt_regs *regs, unsigned long error_code, unsigned long addr)
138 {
139 	unsigned char *max_instr;
140 	unsigned char *instr;
141 	int prefetch = 0;
142 
143 	/*
144 	 * If it was a exec (instruction fetch) fault on NX page, then
145 	 * do not ignore the fault:
146 	 */
147 	if (error_code & PF_INSTR)
148 		return 0;
149 
150 	instr = (void *)convert_ip_to_linear(current, regs);
151 	max_instr = instr + 15;
152 
153 	if (user_mode(regs) && instr >= (unsigned char *)TASK_SIZE_MAX)
154 		return 0;
155 
156 	while (instr < max_instr) {
157 		unsigned char opcode;
158 
159 		if (probe_kernel_address(instr, opcode))
160 			break;
161 
162 		instr++;
163 
164 		if (!check_prefetch_opcode(regs, instr, opcode, &prefetch))
165 			break;
166 	}
167 	return prefetch;
168 }
169 
170 static void
171 force_sig_info_fault(int si_signo, int si_code, unsigned long address,
172 		     struct task_struct *tsk, int fault)
173 {
174 	unsigned lsb = 0;
175 	siginfo_t info;
176 
177 	info.si_signo	= si_signo;
178 	info.si_errno	= 0;
179 	info.si_code	= si_code;
180 	info.si_addr	= (void __user *)address;
181 	if (fault & VM_FAULT_HWPOISON_LARGE)
182 		lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
183 	if (fault & VM_FAULT_HWPOISON)
184 		lsb = PAGE_SHIFT;
185 	info.si_addr_lsb = lsb;
186 
187 	force_sig_info(si_signo, &info, tsk);
188 }
189 
190 DEFINE_SPINLOCK(pgd_lock);
191 LIST_HEAD(pgd_list);
192 
193 #ifdef CONFIG_X86_32
194 static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
195 {
196 	unsigned index = pgd_index(address);
197 	pgd_t *pgd_k;
198 	pud_t *pud, *pud_k;
199 	pmd_t *pmd, *pmd_k;
200 
201 	pgd += index;
202 	pgd_k = init_mm.pgd + index;
203 
204 	if (!pgd_present(*pgd_k))
205 		return NULL;
206 
207 	/*
208 	 * set_pgd(pgd, *pgd_k); here would be useless on PAE
209 	 * and redundant with the set_pmd() on non-PAE. As would
210 	 * set_pud.
211 	 */
212 	pud = pud_offset(pgd, address);
213 	pud_k = pud_offset(pgd_k, address);
214 	if (!pud_present(*pud_k))
215 		return NULL;
216 
217 	pmd = pmd_offset(pud, address);
218 	pmd_k = pmd_offset(pud_k, address);
219 	if (!pmd_present(*pmd_k))
220 		return NULL;
221 
222 	if (!pmd_present(*pmd))
223 		set_pmd(pmd, *pmd_k);
224 	else
225 		BUG_ON(pmd_page(*pmd) != pmd_page(*pmd_k));
226 
227 	return pmd_k;
228 }
229 
230 void vmalloc_sync_all(void)
231 {
232 	unsigned long address;
233 
234 	if (SHARED_KERNEL_PMD)
235 		return;
236 
237 	for (address = VMALLOC_START & PMD_MASK;
238 	     address >= TASK_SIZE && address < FIXADDR_TOP;
239 	     address += PMD_SIZE) {
240 		struct page *page;
241 
242 		spin_lock(&pgd_lock);
243 		list_for_each_entry(page, &pgd_list, lru) {
244 			spinlock_t *pgt_lock;
245 			pmd_t *ret;
246 
247 			/* the pgt_lock only for Xen */
248 			pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
249 
250 			spin_lock(pgt_lock);
251 			ret = vmalloc_sync_one(page_address(page), address);
252 			spin_unlock(pgt_lock);
253 
254 			if (!ret)
255 				break;
256 		}
257 		spin_unlock(&pgd_lock);
258 	}
259 }
260 
261 /*
262  * 32-bit:
263  *
264  *   Handle a fault on the vmalloc or module mapping area
265  */
266 static noinline int vmalloc_fault(unsigned long address)
267 {
268 	unsigned long pgd_paddr;
269 	pmd_t *pmd_k;
270 	pte_t *pte_k;
271 
272 	/* Make sure we are in vmalloc area: */
273 	if (!(address >= VMALLOC_START && address < VMALLOC_END))
274 		return -1;
275 
276 	WARN_ON_ONCE(in_nmi());
277 
278 	/*
279 	 * Synchronize this task's top level page-table
280 	 * with the 'reference' page table.
281 	 *
282 	 * Do _not_ use "current" here. We might be inside
283 	 * an interrupt in the middle of a task switch..
284 	 */
285 	pgd_paddr = read_cr3();
286 	pmd_k = vmalloc_sync_one(__va(pgd_paddr), address);
287 	if (!pmd_k)
288 		return -1;
289 
290 	pte_k = pte_offset_kernel(pmd_k, address);
291 	if (!pte_present(*pte_k))
292 		return -1;
293 
294 	return 0;
295 }
296 NOKPROBE_SYMBOL(vmalloc_fault);
297 
298 /*
299  * Did it hit the DOS screen memory VA from vm86 mode?
300  */
301 static inline void
302 check_v8086_mode(struct pt_regs *regs, unsigned long address,
303 		 struct task_struct *tsk)
304 {
305 #ifdef CONFIG_VM86
306 	unsigned long bit;
307 
308 	if (!v8086_mode(regs) || !tsk->thread.vm86)
309 		return;
310 
311 	bit = (address - 0xA0000) >> PAGE_SHIFT;
312 	if (bit < 32)
313 		tsk->thread.vm86->screen_bitmap |= 1 << bit;
314 #endif
315 }
316 
317 static bool low_pfn(unsigned long pfn)
318 {
319 	return pfn < max_low_pfn;
320 }
321 
322 static void dump_pagetable(unsigned long address)
323 {
324 	pgd_t *base = __va(read_cr3());
325 	pgd_t *pgd = &base[pgd_index(address)];
326 	pmd_t *pmd;
327 	pte_t *pte;
328 
329 #ifdef CONFIG_X86_PAE
330 	printk("*pdpt = %016Lx ", pgd_val(*pgd));
331 	if (!low_pfn(pgd_val(*pgd) >> PAGE_SHIFT) || !pgd_present(*pgd))
332 		goto out;
333 #endif
334 	pmd = pmd_offset(pud_offset(pgd, address), address);
335 	printk(KERN_CONT "*pde = %0*Lx ", sizeof(*pmd) * 2, (u64)pmd_val(*pmd));
336 
337 	/*
338 	 * We must not directly access the pte in the highpte
339 	 * case if the page table is located in highmem.
340 	 * And let's rather not kmap-atomic the pte, just in case
341 	 * it's allocated already:
342 	 */
343 	if (!low_pfn(pmd_pfn(*pmd)) || !pmd_present(*pmd) || pmd_large(*pmd))
344 		goto out;
345 
346 	pte = pte_offset_kernel(pmd, address);
347 	printk("*pte = %0*Lx ", sizeof(*pte) * 2, (u64)pte_val(*pte));
348 out:
349 	printk("\n");
350 }
351 
352 #else /* CONFIG_X86_64: */
353 
354 void vmalloc_sync_all(void)
355 {
356 	sync_global_pgds(VMALLOC_START & PGDIR_MASK, VMALLOC_END, 0);
357 }
358 
359 /*
360  * 64-bit:
361  *
362  *   Handle a fault on the vmalloc area
363  *
364  * This assumes no large pages in there.
365  */
366 static noinline int vmalloc_fault(unsigned long address)
367 {
368 	pgd_t *pgd, *pgd_ref;
369 	pud_t *pud, *pud_ref;
370 	pmd_t *pmd, *pmd_ref;
371 	pte_t *pte, *pte_ref;
372 
373 	/* Make sure we are in vmalloc area: */
374 	if (!(address >= VMALLOC_START && address < VMALLOC_END))
375 		return -1;
376 
377 	WARN_ON_ONCE(in_nmi());
378 
379 	/*
380 	 * Copy kernel mappings over when needed. This can also
381 	 * happen within a race in page table update. In the later
382 	 * case just flush:
383 	 */
384 	pgd = pgd_offset(current->active_mm, address);
385 	pgd_ref = pgd_offset_k(address);
386 	if (pgd_none(*pgd_ref))
387 		return -1;
388 
389 	if (pgd_none(*pgd)) {
390 		set_pgd(pgd, *pgd_ref);
391 		arch_flush_lazy_mmu_mode();
392 	} else {
393 		BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref));
394 	}
395 
396 	/*
397 	 * Below here mismatches are bugs because these lower tables
398 	 * are shared:
399 	 */
400 
401 	pud = pud_offset(pgd, address);
402 	pud_ref = pud_offset(pgd_ref, address);
403 	if (pud_none(*pud_ref))
404 		return -1;
405 
406 	if (pud_none(*pud) || pud_page_vaddr(*pud) != pud_page_vaddr(*pud_ref))
407 		BUG();
408 
409 	pmd = pmd_offset(pud, address);
410 	pmd_ref = pmd_offset(pud_ref, address);
411 	if (pmd_none(*pmd_ref))
412 		return -1;
413 
414 	if (pmd_none(*pmd) || pmd_page(*pmd) != pmd_page(*pmd_ref))
415 		BUG();
416 
417 	pte_ref = pte_offset_kernel(pmd_ref, address);
418 	if (!pte_present(*pte_ref))
419 		return -1;
420 
421 	pte = pte_offset_kernel(pmd, address);
422 
423 	/*
424 	 * Don't use pte_page here, because the mappings can point
425 	 * outside mem_map, and the NUMA hash lookup cannot handle
426 	 * that:
427 	 */
428 	if (!pte_present(*pte) || pte_pfn(*pte) != pte_pfn(*pte_ref))
429 		BUG();
430 
431 	return 0;
432 }
433 NOKPROBE_SYMBOL(vmalloc_fault);
434 
435 #ifdef CONFIG_CPU_SUP_AMD
436 static const char errata93_warning[] =
437 KERN_ERR
438 "******* Your BIOS seems to not contain a fix for K8 errata #93\n"
439 "******* Working around it, but it may cause SEGVs or burn power.\n"
440 "******* Please consider a BIOS update.\n"
441 "******* Disabling USB legacy in the BIOS may also help.\n";
442 #endif
443 
444 /*
445  * No vm86 mode in 64-bit mode:
446  */
447 static inline void
448 check_v8086_mode(struct pt_regs *regs, unsigned long address,
449 		 struct task_struct *tsk)
450 {
451 }
452 
453 static int bad_address(void *p)
454 {
455 	unsigned long dummy;
456 
457 	return probe_kernel_address((unsigned long *)p, dummy);
458 }
459 
460 static void dump_pagetable(unsigned long address)
461 {
462 	pgd_t *base = __va(read_cr3() & PHYSICAL_PAGE_MASK);
463 	pgd_t *pgd = base + pgd_index(address);
464 	pud_t *pud;
465 	pmd_t *pmd;
466 	pte_t *pte;
467 
468 	if (bad_address(pgd))
469 		goto bad;
470 
471 	printk("PGD %lx ", pgd_val(*pgd));
472 
473 	if (!pgd_present(*pgd))
474 		goto out;
475 
476 	pud = pud_offset(pgd, address);
477 	if (bad_address(pud))
478 		goto bad;
479 
480 	printk("PUD %lx ", pud_val(*pud));
481 	if (!pud_present(*pud) || pud_large(*pud))
482 		goto out;
483 
484 	pmd = pmd_offset(pud, address);
485 	if (bad_address(pmd))
486 		goto bad;
487 
488 	printk("PMD %lx ", pmd_val(*pmd));
489 	if (!pmd_present(*pmd) || pmd_large(*pmd))
490 		goto out;
491 
492 	pte = pte_offset_kernel(pmd, address);
493 	if (bad_address(pte))
494 		goto bad;
495 
496 	printk("PTE %lx", pte_val(*pte));
497 out:
498 	printk("\n");
499 	return;
500 bad:
501 	printk("BAD\n");
502 }
503 
504 #endif /* CONFIG_X86_64 */
505 
506 /*
507  * Workaround for K8 erratum #93 & buggy BIOS.
508  *
509  * BIOS SMM functions are required to use a specific workaround
510  * to avoid corruption of the 64bit RIP register on C stepping K8.
511  *
512  * A lot of BIOS that didn't get tested properly miss this.
513  *
514  * The OS sees this as a page fault with the upper 32bits of RIP cleared.
515  * Try to work around it here.
516  *
517  * Note we only handle faults in kernel here.
518  * Does nothing on 32-bit.
519  */
520 static int is_errata93(struct pt_regs *regs, unsigned long address)
521 {
522 #if defined(CONFIG_X86_64) && defined(CONFIG_CPU_SUP_AMD)
523 	if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD
524 	    || boot_cpu_data.x86 != 0xf)
525 		return 0;
526 
527 	if (address != regs->ip)
528 		return 0;
529 
530 	if ((address >> 32) != 0)
531 		return 0;
532 
533 	address |= 0xffffffffUL << 32;
534 	if ((address >= (u64)_stext && address <= (u64)_etext) ||
535 	    (address >= MODULES_VADDR && address <= MODULES_END)) {
536 		printk_once(errata93_warning);
537 		regs->ip = address;
538 		return 1;
539 	}
540 #endif
541 	return 0;
542 }
543 
544 /*
545  * Work around K8 erratum #100 K8 in compat mode occasionally jumps
546  * to illegal addresses >4GB.
547  *
548  * We catch this in the page fault handler because these addresses
549  * are not reachable. Just detect this case and return.  Any code
550  * segment in LDT is compatibility mode.
551  */
552 static int is_errata100(struct pt_regs *regs, unsigned long address)
553 {
554 #ifdef CONFIG_X86_64
555 	if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) && (address >> 32))
556 		return 1;
557 #endif
558 	return 0;
559 }
560 
561 static int is_f00f_bug(struct pt_regs *regs, unsigned long address)
562 {
563 #ifdef CONFIG_X86_F00F_BUG
564 	unsigned long nr;
565 
566 	/*
567 	 * Pentium F0 0F C7 C8 bug workaround:
568 	 */
569 	if (boot_cpu_has_bug(X86_BUG_F00F)) {
570 		nr = (address - idt_descr.address) >> 3;
571 
572 		if (nr == 6) {
573 			do_invalid_op(regs, 0);
574 			return 1;
575 		}
576 	}
577 #endif
578 	return 0;
579 }
580 
581 static const char nx_warning[] = KERN_CRIT
582 "kernel tried to execute NX-protected page - exploit attempt? (uid: %d)\n";
583 static const char smep_warning[] = KERN_CRIT
584 "unable to execute userspace code (SMEP?) (uid: %d)\n";
585 
586 static void
587 show_fault_oops(struct pt_regs *regs, unsigned long error_code,
588 		unsigned long address)
589 {
590 	if (!oops_may_print())
591 		return;
592 
593 	if (error_code & PF_INSTR) {
594 		unsigned int level;
595 		pgd_t *pgd;
596 		pte_t *pte;
597 
598 		pgd = __va(read_cr3() & PHYSICAL_PAGE_MASK);
599 		pgd += pgd_index(address);
600 
601 		pte = lookup_address_in_pgd(pgd, address, &level);
602 
603 		if (pte && pte_present(*pte) && !pte_exec(*pte))
604 			printk(nx_warning, from_kuid(&init_user_ns, current_uid()));
605 		if (pte && pte_present(*pte) && pte_exec(*pte) &&
606 				(pgd_flags(*pgd) & _PAGE_USER) &&
607 				(__read_cr4() & X86_CR4_SMEP))
608 			printk(smep_warning, from_kuid(&init_user_ns, current_uid()));
609 	}
610 
611 	printk(KERN_ALERT "BUG: unable to handle kernel ");
612 	if (address < PAGE_SIZE)
613 		printk(KERN_CONT "NULL pointer dereference");
614 	else
615 		printk(KERN_CONT "paging request");
616 
617 	printk(KERN_CONT " at %p\n", (void *) address);
618 	printk(KERN_ALERT "IP:");
619 	printk_address(regs->ip);
620 
621 	dump_pagetable(address);
622 }
623 
624 static noinline void
625 pgtable_bad(struct pt_regs *regs, unsigned long error_code,
626 	    unsigned long address)
627 {
628 	struct task_struct *tsk;
629 	unsigned long flags;
630 	int sig;
631 
632 	flags = oops_begin();
633 	tsk = current;
634 	sig = SIGKILL;
635 
636 	printk(KERN_ALERT "%s: Corrupted page table at address %lx\n",
637 	       tsk->comm, address);
638 	dump_pagetable(address);
639 
640 	tsk->thread.cr2		= address;
641 	tsk->thread.trap_nr	= X86_TRAP_PF;
642 	tsk->thread.error_code	= error_code;
643 
644 	if (__die("Bad pagetable", regs, error_code))
645 		sig = 0;
646 
647 	oops_end(flags, regs, sig);
648 }
649 
650 static noinline void
651 no_context(struct pt_regs *regs, unsigned long error_code,
652 	   unsigned long address, int signal, int si_code)
653 {
654 	struct task_struct *tsk = current;
655 	unsigned long flags;
656 	int sig;
657 
658 	/* Are we prepared to handle this kernel fault? */
659 	if (fixup_exception(regs)) {
660 		/*
661 		 * Any interrupt that takes a fault gets the fixup. This makes
662 		 * the below recursive fault logic only apply to a faults from
663 		 * task context.
664 		 */
665 		if (in_interrupt())
666 			return;
667 
668 		/*
669 		 * Per the above we're !in_interrupt(), aka. task context.
670 		 *
671 		 * In this case we need to make sure we're not recursively
672 		 * faulting through the emulate_vsyscall() logic.
673 		 */
674 		if (current_thread_info()->sig_on_uaccess_error && signal) {
675 			tsk->thread.trap_nr = X86_TRAP_PF;
676 			tsk->thread.error_code = error_code | PF_USER;
677 			tsk->thread.cr2 = address;
678 
679 			/* XXX: hwpoison faults will set the wrong code. */
680 			force_sig_info_fault(signal, si_code, address, tsk, 0);
681 		}
682 
683 		/*
684 		 * Barring that, we can do the fixup and be happy.
685 		 */
686 		return;
687 	}
688 
689 	/*
690 	 * 32-bit:
691 	 *
692 	 *   Valid to do another page fault here, because if this fault
693 	 *   had been triggered by is_prefetch fixup_exception would have
694 	 *   handled it.
695 	 *
696 	 * 64-bit:
697 	 *
698 	 *   Hall of shame of CPU/BIOS bugs.
699 	 */
700 	if (is_prefetch(regs, error_code, address))
701 		return;
702 
703 	if (is_errata93(regs, address))
704 		return;
705 
706 	/*
707 	 * Oops. The kernel tried to access some bad page. We'll have to
708 	 * terminate things with extreme prejudice:
709 	 */
710 	flags = oops_begin();
711 
712 	show_fault_oops(regs, error_code, address);
713 
714 	if (task_stack_end_corrupted(tsk))
715 		printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
716 
717 	tsk->thread.cr2		= address;
718 	tsk->thread.trap_nr	= X86_TRAP_PF;
719 	tsk->thread.error_code	= error_code;
720 
721 	sig = SIGKILL;
722 	if (__die("Oops", regs, error_code))
723 		sig = 0;
724 
725 	/* Executive summary in case the body of the oops scrolled away */
726 	printk(KERN_DEFAULT "CR2: %016lx\n", address);
727 
728 	oops_end(flags, regs, sig);
729 }
730 
731 /*
732  * Print out info about fatal segfaults, if the show_unhandled_signals
733  * sysctl is set:
734  */
735 static inline void
736 show_signal_msg(struct pt_regs *regs, unsigned long error_code,
737 		unsigned long address, struct task_struct *tsk)
738 {
739 	if (!unhandled_signal(tsk, SIGSEGV))
740 		return;
741 
742 	if (!printk_ratelimit())
743 		return;
744 
745 	printk("%s%s[%d]: segfault at %lx ip %p sp %p error %lx",
746 		task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG,
747 		tsk->comm, task_pid_nr(tsk), address,
748 		(void *)regs->ip, (void *)regs->sp, error_code);
749 
750 	print_vma_addr(KERN_CONT " in ", regs->ip);
751 
752 	printk(KERN_CONT "\n");
753 }
754 
755 static void
756 __bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
757 		       unsigned long address, int si_code)
758 {
759 	struct task_struct *tsk = current;
760 
761 	/* User mode accesses just cause a SIGSEGV */
762 	if (error_code & PF_USER) {
763 		/*
764 		 * It's possible to have interrupts off here:
765 		 */
766 		local_irq_enable();
767 
768 		/*
769 		 * Valid to do another page fault here because this one came
770 		 * from user space:
771 		 */
772 		if (is_prefetch(regs, error_code, address))
773 			return;
774 
775 		if (is_errata100(regs, address))
776 			return;
777 
778 #ifdef CONFIG_X86_64
779 		/*
780 		 * Instruction fetch faults in the vsyscall page might need
781 		 * emulation.
782 		 */
783 		if (unlikely((error_code & PF_INSTR) &&
784 			     ((address & ~0xfff) == VSYSCALL_ADDR))) {
785 			if (emulate_vsyscall(regs, address))
786 				return;
787 		}
788 #endif
789 		/* Kernel addresses are always protection faults: */
790 		if (address >= TASK_SIZE)
791 			error_code |= PF_PROT;
792 
793 		if (likely(show_unhandled_signals))
794 			show_signal_msg(regs, error_code, address, tsk);
795 
796 		tsk->thread.cr2		= address;
797 		tsk->thread.error_code	= error_code;
798 		tsk->thread.trap_nr	= X86_TRAP_PF;
799 
800 		force_sig_info_fault(SIGSEGV, si_code, address, tsk, 0);
801 
802 		return;
803 	}
804 
805 	if (is_f00f_bug(regs, address))
806 		return;
807 
808 	no_context(regs, error_code, address, SIGSEGV, si_code);
809 }
810 
811 static noinline void
812 bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
813 		     unsigned long address)
814 {
815 	__bad_area_nosemaphore(regs, error_code, address, SEGV_MAPERR);
816 }
817 
818 static void
819 __bad_area(struct pt_regs *regs, unsigned long error_code,
820 	   unsigned long address, int si_code)
821 {
822 	struct mm_struct *mm = current->mm;
823 
824 	/*
825 	 * Something tried to access memory that isn't in our memory map..
826 	 * Fix it, but check if it's kernel or user first..
827 	 */
828 	up_read(&mm->mmap_sem);
829 
830 	__bad_area_nosemaphore(regs, error_code, address, si_code);
831 }
832 
833 static noinline void
834 bad_area(struct pt_regs *regs, unsigned long error_code, unsigned long address)
835 {
836 	__bad_area(regs, error_code, address, SEGV_MAPERR);
837 }
838 
839 static noinline void
840 bad_area_access_error(struct pt_regs *regs, unsigned long error_code,
841 		      unsigned long address)
842 {
843 	__bad_area(regs, error_code, address, SEGV_ACCERR);
844 }
845 
846 static void
847 do_sigbus(struct pt_regs *regs, unsigned long error_code, unsigned long address,
848 	  unsigned int fault)
849 {
850 	struct task_struct *tsk = current;
851 	int code = BUS_ADRERR;
852 
853 	/* Kernel mode? Handle exceptions or die: */
854 	if (!(error_code & PF_USER)) {
855 		no_context(regs, error_code, address, SIGBUS, BUS_ADRERR);
856 		return;
857 	}
858 
859 	/* User-space => ok to do another page fault: */
860 	if (is_prefetch(regs, error_code, address))
861 		return;
862 
863 	tsk->thread.cr2		= address;
864 	tsk->thread.error_code	= error_code;
865 	tsk->thread.trap_nr	= X86_TRAP_PF;
866 
867 #ifdef CONFIG_MEMORY_FAILURE
868 	if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
869 		printk(KERN_ERR
870 	"MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
871 			tsk->comm, tsk->pid, address);
872 		code = BUS_MCEERR_AR;
873 	}
874 #endif
875 	force_sig_info_fault(SIGBUS, code, address, tsk, fault);
876 }
877 
878 static noinline void
879 mm_fault_error(struct pt_regs *regs, unsigned long error_code,
880 	       unsigned long address, unsigned int fault)
881 {
882 	if (fatal_signal_pending(current) && !(error_code & PF_USER)) {
883 		no_context(regs, error_code, address, 0, 0);
884 		return;
885 	}
886 
887 	if (fault & VM_FAULT_OOM) {
888 		/* Kernel mode? Handle exceptions or die: */
889 		if (!(error_code & PF_USER)) {
890 			no_context(regs, error_code, address,
891 				   SIGSEGV, SEGV_MAPERR);
892 			return;
893 		}
894 
895 		/*
896 		 * We ran out of memory, call the OOM killer, and return the
897 		 * userspace (which will retry the fault, or kill us if we got
898 		 * oom-killed):
899 		 */
900 		pagefault_out_of_memory();
901 	} else {
902 		if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
903 			     VM_FAULT_HWPOISON_LARGE))
904 			do_sigbus(regs, error_code, address, fault);
905 		else if (fault & VM_FAULT_SIGSEGV)
906 			bad_area_nosemaphore(regs, error_code, address);
907 		else
908 			BUG();
909 	}
910 }
911 
912 static int spurious_fault_check(unsigned long error_code, pte_t *pte)
913 {
914 	if ((error_code & PF_WRITE) && !pte_write(*pte))
915 		return 0;
916 
917 	if ((error_code & PF_INSTR) && !pte_exec(*pte))
918 		return 0;
919 
920 	return 1;
921 }
922 
923 /*
924  * Handle a spurious fault caused by a stale TLB entry.
925  *
926  * This allows us to lazily refresh the TLB when increasing the
927  * permissions of a kernel page (RO -> RW or NX -> X).  Doing it
928  * eagerly is very expensive since that implies doing a full
929  * cross-processor TLB flush, even if no stale TLB entries exist
930  * on other processors.
931  *
932  * Spurious faults may only occur if the TLB contains an entry with
933  * fewer permission than the page table entry.  Non-present (P = 0)
934  * and reserved bit (R = 1) faults are never spurious.
935  *
936  * There are no security implications to leaving a stale TLB when
937  * increasing the permissions on a page.
938  *
939  * Returns non-zero if a spurious fault was handled, zero otherwise.
940  *
941  * See Intel Developer's Manual Vol 3 Section 4.10.4.3, bullet 3
942  * (Optional Invalidation).
943  */
944 static noinline int
945 spurious_fault(unsigned long error_code, unsigned long address)
946 {
947 	pgd_t *pgd;
948 	pud_t *pud;
949 	pmd_t *pmd;
950 	pte_t *pte;
951 	int ret;
952 
953 	/*
954 	 * Only writes to RO or instruction fetches from NX may cause
955 	 * spurious faults.
956 	 *
957 	 * These could be from user or supervisor accesses but the TLB
958 	 * is only lazily flushed after a kernel mapping protection
959 	 * change, so user accesses are not expected to cause spurious
960 	 * faults.
961 	 */
962 	if (error_code != (PF_WRITE | PF_PROT)
963 	    && error_code != (PF_INSTR | PF_PROT))
964 		return 0;
965 
966 	pgd = init_mm.pgd + pgd_index(address);
967 	if (!pgd_present(*pgd))
968 		return 0;
969 
970 	pud = pud_offset(pgd, address);
971 	if (!pud_present(*pud))
972 		return 0;
973 
974 	if (pud_large(*pud))
975 		return spurious_fault_check(error_code, (pte_t *) pud);
976 
977 	pmd = pmd_offset(pud, address);
978 	if (!pmd_present(*pmd))
979 		return 0;
980 
981 	if (pmd_large(*pmd))
982 		return spurious_fault_check(error_code, (pte_t *) pmd);
983 
984 	pte = pte_offset_kernel(pmd, address);
985 	if (!pte_present(*pte))
986 		return 0;
987 
988 	ret = spurious_fault_check(error_code, pte);
989 	if (!ret)
990 		return 0;
991 
992 	/*
993 	 * Make sure we have permissions in PMD.
994 	 * If not, then there's a bug in the page tables:
995 	 */
996 	ret = spurious_fault_check(error_code, (pte_t *) pmd);
997 	WARN_ONCE(!ret, "PMD has incorrect permission bits\n");
998 
999 	return ret;
1000 }
1001 NOKPROBE_SYMBOL(spurious_fault);
1002 
1003 int show_unhandled_signals = 1;
1004 
1005 static inline int
1006 access_error(unsigned long error_code, struct vm_area_struct *vma)
1007 {
1008 	if (error_code & PF_WRITE) {
1009 		/* write, present and write, not present: */
1010 		if (unlikely(!(vma->vm_flags & VM_WRITE)))
1011 			return 1;
1012 		return 0;
1013 	}
1014 
1015 	/* read, present: */
1016 	if (unlikely(error_code & PF_PROT))
1017 		return 1;
1018 
1019 	/* read, not present: */
1020 	if (unlikely(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))))
1021 		return 1;
1022 
1023 	return 0;
1024 }
1025 
1026 static int fault_in_kernel_space(unsigned long address)
1027 {
1028 	return address >= TASK_SIZE_MAX;
1029 }
1030 
1031 static inline bool smap_violation(int error_code, struct pt_regs *regs)
1032 {
1033 	if (!IS_ENABLED(CONFIG_X86_SMAP))
1034 		return false;
1035 
1036 	if (!static_cpu_has(X86_FEATURE_SMAP))
1037 		return false;
1038 
1039 	if (error_code & PF_USER)
1040 		return false;
1041 
1042 	if (!user_mode(regs) && (regs->flags & X86_EFLAGS_AC))
1043 		return false;
1044 
1045 	return true;
1046 }
1047 
1048 /*
1049  * This routine handles page faults.  It determines the address,
1050  * and the problem, and then passes it off to one of the appropriate
1051  * routines.
1052  *
1053  * This function must have noinline because both callers
1054  * {,trace_}do_page_fault() have notrace on. Having this an actual function
1055  * guarantees there's a function trace entry.
1056  */
1057 static noinline void
1058 __do_page_fault(struct pt_regs *regs, unsigned long error_code,
1059 		unsigned long address)
1060 {
1061 	struct vm_area_struct *vma;
1062 	struct task_struct *tsk;
1063 	struct mm_struct *mm;
1064 	int fault, major = 0;
1065 	unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
1066 
1067 	tsk = current;
1068 	mm = tsk->mm;
1069 
1070 	/*
1071 	 * Detect and handle instructions that would cause a page fault for
1072 	 * both a tracked kernel page and a userspace page.
1073 	 */
1074 	if (kmemcheck_active(regs))
1075 		kmemcheck_hide(regs);
1076 	prefetchw(&mm->mmap_sem);
1077 
1078 	if (unlikely(kmmio_fault(regs, address)))
1079 		return;
1080 
1081 	/*
1082 	 * We fault-in kernel-space virtual memory on-demand. The
1083 	 * 'reference' page table is init_mm.pgd.
1084 	 *
1085 	 * NOTE! We MUST NOT take any locks for this case. We may
1086 	 * be in an interrupt or a critical region, and should
1087 	 * only copy the information from the master page table,
1088 	 * nothing more.
1089 	 *
1090 	 * This verifies that the fault happens in kernel space
1091 	 * (error_code & 4) == 0, and that the fault was not a
1092 	 * protection error (error_code & 9) == 0.
1093 	 */
1094 	if (unlikely(fault_in_kernel_space(address))) {
1095 		if (!(error_code & (PF_RSVD | PF_USER | PF_PROT))) {
1096 			if (vmalloc_fault(address) >= 0)
1097 				return;
1098 
1099 			if (kmemcheck_fault(regs, address, error_code))
1100 				return;
1101 		}
1102 
1103 		/* Can handle a stale RO->RW TLB: */
1104 		if (spurious_fault(error_code, address))
1105 			return;
1106 
1107 		/* kprobes don't want to hook the spurious faults: */
1108 		if (kprobes_fault(regs))
1109 			return;
1110 		/*
1111 		 * Don't take the mm semaphore here. If we fixup a prefetch
1112 		 * fault we could otherwise deadlock:
1113 		 */
1114 		bad_area_nosemaphore(regs, error_code, address);
1115 
1116 		return;
1117 	}
1118 
1119 	/* kprobes don't want to hook the spurious faults: */
1120 	if (unlikely(kprobes_fault(regs)))
1121 		return;
1122 
1123 	if (unlikely(error_code & PF_RSVD))
1124 		pgtable_bad(regs, error_code, address);
1125 
1126 	if (unlikely(smap_violation(error_code, regs))) {
1127 		bad_area_nosemaphore(regs, error_code, address);
1128 		return;
1129 	}
1130 
1131 	/*
1132 	 * If we're in an interrupt, have no user context or are running
1133 	 * in a region with pagefaults disabled then we must not take the fault
1134 	 */
1135 	if (unlikely(faulthandler_disabled() || !mm)) {
1136 		bad_area_nosemaphore(regs, error_code, address);
1137 		return;
1138 	}
1139 
1140 	/*
1141 	 * It's safe to allow irq's after cr2 has been saved and the
1142 	 * vmalloc fault has been handled.
1143 	 *
1144 	 * User-mode registers count as a user access even for any
1145 	 * potential system fault or CPU buglet:
1146 	 */
1147 	if (user_mode(regs)) {
1148 		local_irq_enable();
1149 		error_code |= PF_USER;
1150 		flags |= FAULT_FLAG_USER;
1151 	} else {
1152 		if (regs->flags & X86_EFLAGS_IF)
1153 			local_irq_enable();
1154 	}
1155 
1156 	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
1157 
1158 	if (error_code & PF_WRITE)
1159 		flags |= FAULT_FLAG_WRITE;
1160 
1161 	/*
1162 	 * When running in the kernel we expect faults to occur only to
1163 	 * addresses in user space.  All other faults represent errors in
1164 	 * the kernel and should generate an OOPS.  Unfortunately, in the
1165 	 * case of an erroneous fault occurring in a code path which already
1166 	 * holds mmap_sem we will deadlock attempting to validate the fault
1167 	 * against the address space.  Luckily the kernel only validly
1168 	 * references user space from well defined areas of code, which are
1169 	 * listed in the exceptions table.
1170 	 *
1171 	 * As the vast majority of faults will be valid we will only perform
1172 	 * the source reference check when there is a possibility of a
1173 	 * deadlock. Attempt to lock the address space, if we cannot we then
1174 	 * validate the source. If this is invalid we can skip the address
1175 	 * space check, thus avoiding the deadlock:
1176 	 */
1177 	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
1178 		if ((error_code & PF_USER) == 0 &&
1179 		    !search_exception_tables(regs->ip)) {
1180 			bad_area_nosemaphore(regs, error_code, address);
1181 			return;
1182 		}
1183 retry:
1184 		down_read(&mm->mmap_sem);
1185 	} else {
1186 		/*
1187 		 * The above down_read_trylock() might have succeeded in
1188 		 * which case we'll have missed the might_sleep() from
1189 		 * down_read():
1190 		 */
1191 		might_sleep();
1192 	}
1193 
1194 	vma = find_vma(mm, address);
1195 	if (unlikely(!vma)) {
1196 		bad_area(regs, error_code, address);
1197 		return;
1198 	}
1199 	if (likely(vma->vm_start <= address))
1200 		goto good_area;
1201 	if (unlikely(!(vma->vm_flags & VM_GROWSDOWN))) {
1202 		bad_area(regs, error_code, address);
1203 		return;
1204 	}
1205 	if (error_code & PF_USER) {
1206 		/*
1207 		 * Accessing the stack below %sp is always a bug.
1208 		 * The large cushion allows instructions like enter
1209 		 * and pusha to work. ("enter $65535, $31" pushes
1210 		 * 32 pointers and then decrements %sp by 65535.)
1211 		 */
1212 		if (unlikely(address + 65536 + 32 * sizeof(unsigned long) < regs->sp)) {
1213 			bad_area(regs, error_code, address);
1214 			return;
1215 		}
1216 	}
1217 	if (unlikely(expand_stack(vma, address))) {
1218 		bad_area(regs, error_code, address);
1219 		return;
1220 	}
1221 
1222 	/*
1223 	 * Ok, we have a good vm_area for this memory access, so
1224 	 * we can handle it..
1225 	 */
1226 good_area:
1227 	if (unlikely(access_error(error_code, vma))) {
1228 		bad_area_access_error(regs, error_code, address);
1229 		return;
1230 	}
1231 
1232 	/*
1233 	 * If for any reason at all we couldn't handle the fault,
1234 	 * make sure we exit gracefully rather than endlessly redo
1235 	 * the fault.  Since we never set FAULT_FLAG_RETRY_NOWAIT, if
1236 	 * we get VM_FAULT_RETRY back, the mmap_sem has been unlocked.
1237 	 */
1238 	fault = handle_mm_fault(mm, vma, address, flags);
1239 	major |= fault & VM_FAULT_MAJOR;
1240 
1241 	/*
1242 	 * If we need to retry the mmap_sem has already been released,
1243 	 * and if there is a fatal signal pending there is no guarantee
1244 	 * that we made any progress. Handle this case first.
1245 	 */
1246 	if (unlikely(fault & VM_FAULT_RETRY)) {
1247 		/* Retry at most once */
1248 		if (flags & FAULT_FLAG_ALLOW_RETRY) {
1249 			flags &= ~FAULT_FLAG_ALLOW_RETRY;
1250 			flags |= FAULT_FLAG_TRIED;
1251 			if (!fatal_signal_pending(tsk))
1252 				goto retry;
1253 		}
1254 
1255 		/* User mode? Just return to handle the fatal exception */
1256 		if (flags & FAULT_FLAG_USER)
1257 			return;
1258 
1259 		/* Not returning to user mode? Handle exceptions or die: */
1260 		no_context(regs, error_code, address, SIGBUS, BUS_ADRERR);
1261 		return;
1262 	}
1263 
1264 	up_read(&mm->mmap_sem);
1265 	if (unlikely(fault & VM_FAULT_ERROR)) {
1266 		mm_fault_error(regs, error_code, address, fault);
1267 		return;
1268 	}
1269 
1270 	/*
1271 	 * Major/minor page fault accounting. If any of the events
1272 	 * returned VM_FAULT_MAJOR, we account it as a major fault.
1273 	 */
1274 	if (major) {
1275 		tsk->maj_flt++;
1276 		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
1277 	} else {
1278 		tsk->min_flt++;
1279 		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
1280 	}
1281 
1282 	check_v8086_mode(regs, address, tsk);
1283 }
1284 NOKPROBE_SYMBOL(__do_page_fault);
1285 
1286 dotraplinkage void notrace
1287 do_page_fault(struct pt_regs *regs, unsigned long error_code)
1288 {
1289 	unsigned long address = read_cr2(); /* Get the faulting address */
1290 	enum ctx_state prev_state;
1291 
1292 	/*
1293 	 * We must have this function tagged with __kprobes, notrace and call
1294 	 * read_cr2() before calling anything else. To avoid calling any kind
1295 	 * of tracing machinery before we've observed the CR2 value.
1296 	 *
1297 	 * exception_{enter,exit}() contain all sorts of tracepoints.
1298 	 */
1299 
1300 	prev_state = exception_enter();
1301 	__do_page_fault(regs, error_code, address);
1302 	exception_exit(prev_state);
1303 }
1304 NOKPROBE_SYMBOL(do_page_fault);
1305 
1306 #ifdef CONFIG_TRACING
1307 static nokprobe_inline void
1308 trace_page_fault_entries(unsigned long address, struct pt_regs *regs,
1309 			 unsigned long error_code)
1310 {
1311 	if (user_mode(regs))
1312 		trace_page_fault_user(address, regs, error_code);
1313 	else
1314 		trace_page_fault_kernel(address, regs, error_code);
1315 }
1316 
1317 dotraplinkage void notrace
1318 trace_do_page_fault(struct pt_regs *regs, unsigned long error_code)
1319 {
1320 	/*
1321 	 * The exception_enter and tracepoint processing could
1322 	 * trigger another page faults (user space callchain
1323 	 * reading) and destroy the original cr2 value, so read
1324 	 * the faulting address now.
1325 	 */
1326 	unsigned long address = read_cr2();
1327 	enum ctx_state prev_state;
1328 
1329 	prev_state = exception_enter();
1330 	trace_page_fault_entries(address, regs, error_code);
1331 	__do_page_fault(regs, error_code, address);
1332 	exception_exit(prev_state);
1333 }
1334 NOKPROBE_SYMBOL(trace_do_page_fault);
1335 #endif /* CONFIG_TRACING */
1336