xref: /linux/arch/x86/mm/fault.c (revision 43347d56c8d9dd732cee2f8efd384ad21dd1f6c4)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  Copyright (C) 1995  Linus Torvalds
4  *  Copyright (C) 2001, 2002 Andi Kleen, SuSE Labs.
5  *  Copyright (C) 2008-2009, Red Hat Inc., Ingo Molnar
6  */
7 #include <linux/sched.h>		/* test_thread_flag(), ...	*/
8 #include <linux/sched/task_stack.h>	/* task_stack_*(), ...		*/
9 #include <linux/kdebug.h>		/* oops_begin/end, ...		*/
10 #include <linux/extable.h>		/* search_exception_tables	*/
11 #include <linux/bootmem.h>		/* max_low_pfn			*/
12 #include <linux/kprobes.h>		/* NOKPROBE_SYMBOL, ...		*/
13 #include <linux/mmiotrace.h>		/* kmmio_handler, ...		*/
14 #include <linux/perf_event.h>		/* perf_sw_event		*/
15 #include <linux/hugetlb.h>		/* hstate_index_to_shift	*/
16 #include <linux/prefetch.h>		/* prefetchw			*/
17 #include <linux/context_tracking.h>	/* exception_enter(), ...	*/
18 #include <linux/uaccess.h>		/* faulthandler_disabled()	*/
19 
20 #include <asm/cpufeature.h>		/* boot_cpu_has, ...		*/
21 #include <asm/traps.h>			/* dotraplinkage, ...		*/
22 #include <asm/pgalloc.h>		/* pgd_*(), ...			*/
23 #include <asm/kmemcheck.h>		/* kmemcheck_*(), ...		*/
24 #include <asm/fixmap.h>			/* VSYSCALL_ADDR		*/
25 #include <asm/vsyscall.h>		/* emulate_vsyscall		*/
26 #include <asm/vm86.h>			/* struct vm86			*/
27 #include <asm/mmu_context.h>		/* vma_pkey()			*/
28 
29 #define CREATE_TRACE_POINTS
30 #include <asm/trace/exceptions.h>
31 
32 /*
33  * Returns 0 if mmiotrace is disabled, or if the fault is not
34  * handled by mmiotrace:
35  */
36 static nokprobe_inline int
37 kmmio_fault(struct pt_regs *regs, unsigned long addr)
38 {
39 	if (unlikely(is_kmmio_active()))
40 		if (kmmio_handler(regs, addr) == 1)
41 			return -1;
42 	return 0;
43 }
44 
45 static nokprobe_inline int kprobes_fault(struct pt_regs *regs)
46 {
47 	int ret = 0;
48 
49 	/* kprobe_running() needs smp_processor_id() */
50 	if (kprobes_built_in() && !user_mode(regs)) {
51 		preempt_disable();
52 		if (kprobe_running() && kprobe_fault_handler(regs, 14))
53 			ret = 1;
54 		preempt_enable();
55 	}
56 
57 	return ret;
58 }
59 
60 /*
61  * Prefetch quirks:
62  *
63  * 32-bit mode:
64  *
65  *   Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
66  *   Check that here and ignore it.
67  *
68  * 64-bit mode:
69  *
70  *   Sometimes the CPU reports invalid exceptions on prefetch.
71  *   Check that here and ignore it.
72  *
73  * Opcode checker based on code by Richard Brunner.
74  */
75 static inline int
76 check_prefetch_opcode(struct pt_regs *regs, unsigned char *instr,
77 		      unsigned char opcode, int *prefetch)
78 {
79 	unsigned char instr_hi = opcode & 0xf0;
80 	unsigned char instr_lo = opcode & 0x0f;
81 
82 	switch (instr_hi) {
83 	case 0x20:
84 	case 0x30:
85 		/*
86 		 * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes.
87 		 * In X86_64 long mode, the CPU will signal invalid
88 		 * opcode if some of these prefixes are present so
89 		 * X86_64 will never get here anyway
90 		 */
91 		return ((instr_lo & 7) == 0x6);
92 #ifdef CONFIG_X86_64
93 	case 0x40:
94 		/*
95 		 * In AMD64 long mode 0x40..0x4F are valid REX prefixes
96 		 * Need to figure out under what instruction mode the
97 		 * instruction was issued. Could check the LDT for lm,
98 		 * but for now it's good enough to assume that long
99 		 * mode only uses well known segments or kernel.
100 		 */
101 		return (!user_mode(regs) || user_64bit_mode(regs));
102 #endif
103 	case 0x60:
104 		/* 0x64 thru 0x67 are valid prefixes in all modes. */
105 		return (instr_lo & 0xC) == 0x4;
106 	case 0xF0:
107 		/* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */
108 		return !instr_lo || (instr_lo>>1) == 1;
109 	case 0x00:
110 		/* Prefetch instruction is 0x0F0D or 0x0F18 */
111 		if (probe_kernel_address(instr, opcode))
112 			return 0;
113 
114 		*prefetch = (instr_lo == 0xF) &&
115 			(opcode == 0x0D || opcode == 0x18);
116 		return 0;
117 	default:
118 		return 0;
119 	}
120 }
121 
122 static int
123 is_prefetch(struct pt_regs *regs, unsigned long error_code, unsigned long addr)
124 {
125 	unsigned char *max_instr;
126 	unsigned char *instr;
127 	int prefetch = 0;
128 
129 	/*
130 	 * If it was a exec (instruction fetch) fault on NX page, then
131 	 * do not ignore the fault:
132 	 */
133 	if (error_code & X86_PF_INSTR)
134 		return 0;
135 
136 	instr = (void *)convert_ip_to_linear(current, regs);
137 	max_instr = instr + 15;
138 
139 	if (user_mode(regs) && instr >= (unsigned char *)TASK_SIZE_MAX)
140 		return 0;
141 
142 	while (instr < max_instr) {
143 		unsigned char opcode;
144 
145 		if (probe_kernel_address(instr, opcode))
146 			break;
147 
148 		instr++;
149 
150 		if (!check_prefetch_opcode(regs, instr, opcode, &prefetch))
151 			break;
152 	}
153 	return prefetch;
154 }
155 
156 /*
157  * A protection key fault means that the PKRU value did not allow
158  * access to some PTE.  Userspace can figure out what PKRU was
159  * from the XSAVE state, and this function fills out a field in
160  * siginfo so userspace can discover which protection key was set
161  * on the PTE.
162  *
163  * If we get here, we know that the hardware signaled a X86_PF_PK
164  * fault and that there was a VMA once we got in the fault
165  * handler.  It does *not* guarantee that the VMA we find here
166  * was the one that we faulted on.
167  *
168  * 1. T1   : mprotect_key(foo, PAGE_SIZE, pkey=4);
169  * 2. T1   : set PKRU to deny access to pkey=4, touches page
170  * 3. T1   : faults...
171  * 4.    T2: mprotect_key(foo, PAGE_SIZE, pkey=5);
172  * 5. T1   : enters fault handler, takes mmap_sem, etc...
173  * 6. T1   : reaches here, sees vma_pkey(vma)=5, when we really
174  *	     faulted on a pte with its pkey=4.
175  */
176 static void fill_sig_info_pkey(int si_code, siginfo_t *info, u32 *pkey)
177 {
178 	/* This is effectively an #ifdef */
179 	if (!boot_cpu_has(X86_FEATURE_OSPKE))
180 		return;
181 
182 	/* Fault not from Protection Keys: nothing to do */
183 	if (si_code != SEGV_PKUERR)
184 		return;
185 	/*
186 	 * force_sig_info_fault() is called from a number of
187 	 * contexts, some of which have a VMA and some of which
188 	 * do not.  The X86_PF_PK handing happens after we have a
189 	 * valid VMA, so we should never reach this without a
190 	 * valid VMA.
191 	 */
192 	if (!pkey) {
193 		WARN_ONCE(1, "PKU fault with no VMA passed in");
194 		info->si_pkey = 0;
195 		return;
196 	}
197 	/*
198 	 * si_pkey should be thought of as a strong hint, but not
199 	 * absolutely guranteed to be 100% accurate because of
200 	 * the race explained above.
201 	 */
202 	info->si_pkey = *pkey;
203 }
204 
205 static void
206 force_sig_info_fault(int si_signo, int si_code, unsigned long address,
207 		     struct task_struct *tsk, u32 *pkey, int fault)
208 {
209 	unsigned lsb = 0;
210 	siginfo_t info;
211 
212 	info.si_signo	= si_signo;
213 	info.si_errno	= 0;
214 	info.si_code	= si_code;
215 	info.si_addr	= (void __user *)address;
216 	if (fault & VM_FAULT_HWPOISON_LARGE)
217 		lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
218 	if (fault & VM_FAULT_HWPOISON)
219 		lsb = PAGE_SHIFT;
220 	info.si_addr_lsb = lsb;
221 
222 	fill_sig_info_pkey(si_code, &info, pkey);
223 
224 	force_sig_info(si_signo, &info, tsk);
225 }
226 
227 DEFINE_SPINLOCK(pgd_lock);
228 LIST_HEAD(pgd_list);
229 
230 #ifdef CONFIG_X86_32
231 static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
232 {
233 	unsigned index = pgd_index(address);
234 	pgd_t *pgd_k;
235 	p4d_t *p4d, *p4d_k;
236 	pud_t *pud, *pud_k;
237 	pmd_t *pmd, *pmd_k;
238 
239 	pgd += index;
240 	pgd_k = init_mm.pgd + index;
241 
242 	if (!pgd_present(*pgd_k))
243 		return NULL;
244 
245 	/*
246 	 * set_pgd(pgd, *pgd_k); here would be useless on PAE
247 	 * and redundant with the set_pmd() on non-PAE. As would
248 	 * set_p4d/set_pud.
249 	 */
250 	p4d = p4d_offset(pgd, address);
251 	p4d_k = p4d_offset(pgd_k, address);
252 	if (!p4d_present(*p4d_k))
253 		return NULL;
254 
255 	pud = pud_offset(p4d, address);
256 	pud_k = pud_offset(p4d_k, address);
257 	if (!pud_present(*pud_k))
258 		return NULL;
259 
260 	pmd = pmd_offset(pud, address);
261 	pmd_k = pmd_offset(pud_k, address);
262 	if (!pmd_present(*pmd_k))
263 		return NULL;
264 
265 	if (!pmd_present(*pmd))
266 		set_pmd(pmd, *pmd_k);
267 	else
268 		BUG_ON(pmd_page(*pmd) != pmd_page(*pmd_k));
269 
270 	return pmd_k;
271 }
272 
273 void vmalloc_sync_all(void)
274 {
275 	unsigned long address;
276 
277 	if (SHARED_KERNEL_PMD)
278 		return;
279 
280 	for (address = VMALLOC_START & PMD_MASK;
281 	     address >= TASK_SIZE_MAX && address < FIXADDR_TOP;
282 	     address += PMD_SIZE) {
283 		struct page *page;
284 
285 		spin_lock(&pgd_lock);
286 		list_for_each_entry(page, &pgd_list, lru) {
287 			spinlock_t *pgt_lock;
288 			pmd_t *ret;
289 
290 			/* the pgt_lock only for Xen */
291 			pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
292 
293 			spin_lock(pgt_lock);
294 			ret = vmalloc_sync_one(page_address(page), address);
295 			spin_unlock(pgt_lock);
296 
297 			if (!ret)
298 				break;
299 		}
300 		spin_unlock(&pgd_lock);
301 	}
302 }
303 
304 /*
305  * 32-bit:
306  *
307  *   Handle a fault on the vmalloc or module mapping area
308  */
309 static noinline int vmalloc_fault(unsigned long address)
310 {
311 	unsigned long pgd_paddr;
312 	pmd_t *pmd_k;
313 	pte_t *pte_k;
314 
315 	/* Make sure we are in vmalloc area: */
316 	if (!(address >= VMALLOC_START && address < VMALLOC_END))
317 		return -1;
318 
319 	WARN_ON_ONCE(in_nmi());
320 
321 	/*
322 	 * Synchronize this task's top level page-table
323 	 * with the 'reference' page table.
324 	 *
325 	 * Do _not_ use "current" here. We might be inside
326 	 * an interrupt in the middle of a task switch..
327 	 */
328 	pgd_paddr = read_cr3_pa();
329 	pmd_k = vmalloc_sync_one(__va(pgd_paddr), address);
330 	if (!pmd_k)
331 		return -1;
332 
333 	if (pmd_huge(*pmd_k))
334 		return 0;
335 
336 	pte_k = pte_offset_kernel(pmd_k, address);
337 	if (!pte_present(*pte_k))
338 		return -1;
339 
340 	return 0;
341 }
342 NOKPROBE_SYMBOL(vmalloc_fault);
343 
344 /*
345  * Did it hit the DOS screen memory VA from vm86 mode?
346  */
347 static inline void
348 check_v8086_mode(struct pt_regs *regs, unsigned long address,
349 		 struct task_struct *tsk)
350 {
351 #ifdef CONFIG_VM86
352 	unsigned long bit;
353 
354 	if (!v8086_mode(regs) || !tsk->thread.vm86)
355 		return;
356 
357 	bit = (address - 0xA0000) >> PAGE_SHIFT;
358 	if (bit < 32)
359 		tsk->thread.vm86->screen_bitmap |= 1 << bit;
360 #endif
361 }
362 
363 static bool low_pfn(unsigned long pfn)
364 {
365 	return pfn < max_low_pfn;
366 }
367 
368 static void dump_pagetable(unsigned long address)
369 {
370 	pgd_t *base = __va(read_cr3_pa());
371 	pgd_t *pgd = &base[pgd_index(address)];
372 	p4d_t *p4d;
373 	pud_t *pud;
374 	pmd_t *pmd;
375 	pte_t *pte;
376 
377 #ifdef CONFIG_X86_PAE
378 	pr_info("*pdpt = %016Lx ", pgd_val(*pgd));
379 	if (!low_pfn(pgd_val(*pgd) >> PAGE_SHIFT) || !pgd_present(*pgd))
380 		goto out;
381 #define pr_pde pr_cont
382 #else
383 #define pr_pde pr_info
384 #endif
385 	p4d = p4d_offset(pgd, address);
386 	pud = pud_offset(p4d, address);
387 	pmd = pmd_offset(pud, address);
388 	pr_pde("*pde = %0*Lx ", sizeof(*pmd) * 2, (u64)pmd_val(*pmd));
389 #undef pr_pde
390 
391 	/*
392 	 * We must not directly access the pte in the highpte
393 	 * case if the page table is located in highmem.
394 	 * And let's rather not kmap-atomic the pte, just in case
395 	 * it's allocated already:
396 	 */
397 	if (!low_pfn(pmd_pfn(*pmd)) || !pmd_present(*pmd) || pmd_large(*pmd))
398 		goto out;
399 
400 	pte = pte_offset_kernel(pmd, address);
401 	pr_cont("*pte = %0*Lx ", sizeof(*pte) * 2, (u64)pte_val(*pte));
402 out:
403 	pr_cont("\n");
404 }
405 
406 #else /* CONFIG_X86_64: */
407 
408 void vmalloc_sync_all(void)
409 {
410 	sync_global_pgds(VMALLOC_START & PGDIR_MASK, VMALLOC_END);
411 }
412 
413 /*
414  * 64-bit:
415  *
416  *   Handle a fault on the vmalloc area
417  */
418 static noinline int vmalloc_fault(unsigned long address)
419 {
420 	pgd_t *pgd, *pgd_ref;
421 	p4d_t *p4d, *p4d_ref;
422 	pud_t *pud, *pud_ref;
423 	pmd_t *pmd, *pmd_ref;
424 	pte_t *pte, *pte_ref;
425 
426 	/* Make sure we are in vmalloc area: */
427 	if (!(address >= VMALLOC_START && address < VMALLOC_END))
428 		return -1;
429 
430 	WARN_ON_ONCE(in_nmi());
431 
432 	/*
433 	 * Copy kernel mappings over when needed. This can also
434 	 * happen within a race in page table update. In the later
435 	 * case just flush:
436 	 */
437 	pgd = (pgd_t *)__va(read_cr3_pa()) + pgd_index(address);
438 	pgd_ref = pgd_offset_k(address);
439 	if (pgd_none(*pgd_ref))
440 		return -1;
441 
442 	if (pgd_none(*pgd)) {
443 		set_pgd(pgd, *pgd_ref);
444 		arch_flush_lazy_mmu_mode();
445 	} else if (CONFIG_PGTABLE_LEVELS > 4) {
446 		/*
447 		 * With folded p4d, pgd_none() is always false, so the pgd may
448 		 * point to an empty page table entry and pgd_page_vaddr()
449 		 * will return garbage.
450 		 *
451 		 * We will do the correct sanity check on the p4d level.
452 		 */
453 		BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref));
454 	}
455 
456 	/* With 4-level paging, copying happens on the p4d level. */
457 	p4d = p4d_offset(pgd, address);
458 	p4d_ref = p4d_offset(pgd_ref, address);
459 	if (p4d_none(*p4d_ref))
460 		return -1;
461 
462 	if (p4d_none(*p4d)) {
463 		set_p4d(p4d, *p4d_ref);
464 		arch_flush_lazy_mmu_mode();
465 	} else {
466 		BUG_ON(p4d_pfn(*p4d) != p4d_pfn(*p4d_ref));
467 	}
468 
469 	/*
470 	 * Below here mismatches are bugs because these lower tables
471 	 * are shared:
472 	 */
473 
474 	pud = pud_offset(p4d, address);
475 	pud_ref = pud_offset(p4d_ref, address);
476 	if (pud_none(*pud_ref))
477 		return -1;
478 
479 	if (pud_none(*pud) || pud_pfn(*pud) != pud_pfn(*pud_ref))
480 		BUG();
481 
482 	if (pud_huge(*pud))
483 		return 0;
484 
485 	pmd = pmd_offset(pud, address);
486 	pmd_ref = pmd_offset(pud_ref, address);
487 	if (pmd_none(*pmd_ref))
488 		return -1;
489 
490 	if (pmd_none(*pmd) || pmd_pfn(*pmd) != pmd_pfn(*pmd_ref))
491 		BUG();
492 
493 	if (pmd_huge(*pmd))
494 		return 0;
495 
496 	pte_ref = pte_offset_kernel(pmd_ref, address);
497 	if (!pte_present(*pte_ref))
498 		return -1;
499 
500 	pte = pte_offset_kernel(pmd, address);
501 
502 	/*
503 	 * Don't use pte_page here, because the mappings can point
504 	 * outside mem_map, and the NUMA hash lookup cannot handle
505 	 * that:
506 	 */
507 	if (!pte_present(*pte) || pte_pfn(*pte) != pte_pfn(*pte_ref))
508 		BUG();
509 
510 	return 0;
511 }
512 NOKPROBE_SYMBOL(vmalloc_fault);
513 
514 #ifdef CONFIG_CPU_SUP_AMD
515 static const char errata93_warning[] =
516 KERN_ERR
517 "******* Your BIOS seems to not contain a fix for K8 errata #93\n"
518 "******* Working around it, but it may cause SEGVs or burn power.\n"
519 "******* Please consider a BIOS update.\n"
520 "******* Disabling USB legacy in the BIOS may also help.\n";
521 #endif
522 
523 /*
524  * No vm86 mode in 64-bit mode:
525  */
526 static inline void
527 check_v8086_mode(struct pt_regs *regs, unsigned long address,
528 		 struct task_struct *tsk)
529 {
530 }
531 
532 static int bad_address(void *p)
533 {
534 	unsigned long dummy;
535 
536 	return probe_kernel_address((unsigned long *)p, dummy);
537 }
538 
539 static void dump_pagetable(unsigned long address)
540 {
541 	pgd_t *base = __va(read_cr3_pa());
542 	pgd_t *pgd = base + pgd_index(address);
543 	p4d_t *p4d;
544 	pud_t *pud;
545 	pmd_t *pmd;
546 	pte_t *pte;
547 
548 	if (bad_address(pgd))
549 		goto bad;
550 
551 	pr_info("PGD %lx ", pgd_val(*pgd));
552 
553 	if (!pgd_present(*pgd))
554 		goto out;
555 
556 	p4d = p4d_offset(pgd, address);
557 	if (bad_address(p4d))
558 		goto bad;
559 
560 	pr_cont("P4D %lx ", p4d_val(*p4d));
561 	if (!p4d_present(*p4d) || p4d_large(*p4d))
562 		goto out;
563 
564 	pud = pud_offset(p4d, address);
565 	if (bad_address(pud))
566 		goto bad;
567 
568 	pr_cont("PUD %lx ", pud_val(*pud));
569 	if (!pud_present(*pud) || pud_large(*pud))
570 		goto out;
571 
572 	pmd = pmd_offset(pud, address);
573 	if (bad_address(pmd))
574 		goto bad;
575 
576 	pr_cont("PMD %lx ", pmd_val(*pmd));
577 	if (!pmd_present(*pmd) || pmd_large(*pmd))
578 		goto out;
579 
580 	pte = pte_offset_kernel(pmd, address);
581 	if (bad_address(pte))
582 		goto bad;
583 
584 	pr_cont("PTE %lx", pte_val(*pte));
585 out:
586 	pr_cont("\n");
587 	return;
588 bad:
589 	pr_info("BAD\n");
590 }
591 
592 #endif /* CONFIG_X86_64 */
593 
594 /*
595  * Workaround for K8 erratum #93 & buggy BIOS.
596  *
597  * BIOS SMM functions are required to use a specific workaround
598  * to avoid corruption of the 64bit RIP register on C stepping K8.
599  *
600  * A lot of BIOS that didn't get tested properly miss this.
601  *
602  * The OS sees this as a page fault with the upper 32bits of RIP cleared.
603  * Try to work around it here.
604  *
605  * Note we only handle faults in kernel here.
606  * Does nothing on 32-bit.
607  */
608 static int is_errata93(struct pt_regs *regs, unsigned long address)
609 {
610 #if defined(CONFIG_X86_64) && defined(CONFIG_CPU_SUP_AMD)
611 	if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD
612 	    || boot_cpu_data.x86 != 0xf)
613 		return 0;
614 
615 	if (address != regs->ip)
616 		return 0;
617 
618 	if ((address >> 32) != 0)
619 		return 0;
620 
621 	address |= 0xffffffffUL << 32;
622 	if ((address >= (u64)_stext && address <= (u64)_etext) ||
623 	    (address >= MODULES_VADDR && address <= MODULES_END)) {
624 		printk_once(errata93_warning);
625 		regs->ip = address;
626 		return 1;
627 	}
628 #endif
629 	return 0;
630 }
631 
632 /*
633  * Work around K8 erratum #100 K8 in compat mode occasionally jumps
634  * to illegal addresses >4GB.
635  *
636  * We catch this in the page fault handler because these addresses
637  * are not reachable. Just detect this case and return.  Any code
638  * segment in LDT is compatibility mode.
639  */
640 static int is_errata100(struct pt_regs *regs, unsigned long address)
641 {
642 #ifdef CONFIG_X86_64
643 	if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) && (address >> 32))
644 		return 1;
645 #endif
646 	return 0;
647 }
648 
649 static int is_f00f_bug(struct pt_regs *regs, unsigned long address)
650 {
651 #ifdef CONFIG_X86_F00F_BUG
652 	unsigned long nr;
653 
654 	/*
655 	 * Pentium F0 0F C7 C8 bug workaround:
656 	 */
657 	if (boot_cpu_has_bug(X86_BUG_F00F)) {
658 		nr = (address - idt_descr.address) >> 3;
659 
660 		if (nr == 6) {
661 			do_invalid_op(regs, 0);
662 			return 1;
663 		}
664 	}
665 #endif
666 	return 0;
667 }
668 
669 static const char nx_warning[] = KERN_CRIT
670 "kernel tried to execute NX-protected page - exploit attempt? (uid: %d)\n";
671 static const char smep_warning[] = KERN_CRIT
672 "unable to execute userspace code (SMEP?) (uid: %d)\n";
673 
674 static void
675 show_fault_oops(struct pt_regs *regs, unsigned long error_code,
676 		unsigned long address)
677 {
678 	if (!oops_may_print())
679 		return;
680 
681 	if (error_code & X86_PF_INSTR) {
682 		unsigned int level;
683 		pgd_t *pgd;
684 		pte_t *pte;
685 
686 		pgd = __va(read_cr3_pa());
687 		pgd += pgd_index(address);
688 
689 		pte = lookup_address_in_pgd(pgd, address, &level);
690 
691 		if (pte && pte_present(*pte) && !pte_exec(*pte))
692 			printk(nx_warning, from_kuid(&init_user_ns, current_uid()));
693 		if (pte && pte_present(*pte) && pte_exec(*pte) &&
694 				(pgd_flags(*pgd) & _PAGE_USER) &&
695 				(__read_cr4() & X86_CR4_SMEP))
696 			printk(smep_warning, from_kuid(&init_user_ns, current_uid()));
697 	}
698 
699 	printk(KERN_ALERT "BUG: unable to handle kernel ");
700 	if (address < PAGE_SIZE)
701 		printk(KERN_CONT "NULL pointer dereference");
702 	else
703 		printk(KERN_CONT "paging request");
704 
705 	printk(KERN_CONT " at %p\n", (void *) address);
706 	printk(KERN_ALERT "IP: %pS\n", (void *)regs->ip);
707 
708 	dump_pagetable(address);
709 }
710 
711 static noinline void
712 pgtable_bad(struct pt_regs *regs, unsigned long error_code,
713 	    unsigned long address)
714 {
715 	struct task_struct *tsk;
716 	unsigned long flags;
717 	int sig;
718 
719 	flags = oops_begin();
720 	tsk = current;
721 	sig = SIGKILL;
722 
723 	printk(KERN_ALERT "%s: Corrupted page table at address %lx\n",
724 	       tsk->comm, address);
725 	dump_pagetable(address);
726 
727 	tsk->thread.cr2		= address;
728 	tsk->thread.trap_nr	= X86_TRAP_PF;
729 	tsk->thread.error_code	= error_code;
730 
731 	if (__die("Bad pagetable", regs, error_code))
732 		sig = 0;
733 
734 	oops_end(flags, regs, sig);
735 }
736 
737 static noinline void
738 no_context(struct pt_regs *regs, unsigned long error_code,
739 	   unsigned long address, int signal, int si_code)
740 {
741 	struct task_struct *tsk = current;
742 	unsigned long flags;
743 	int sig;
744 
745 	/* Are we prepared to handle this kernel fault? */
746 	if (fixup_exception(regs, X86_TRAP_PF)) {
747 		/*
748 		 * Any interrupt that takes a fault gets the fixup. This makes
749 		 * the below recursive fault logic only apply to a faults from
750 		 * task context.
751 		 */
752 		if (in_interrupt())
753 			return;
754 
755 		/*
756 		 * Per the above we're !in_interrupt(), aka. task context.
757 		 *
758 		 * In this case we need to make sure we're not recursively
759 		 * faulting through the emulate_vsyscall() logic.
760 		 */
761 		if (current->thread.sig_on_uaccess_err && signal) {
762 			tsk->thread.trap_nr = X86_TRAP_PF;
763 			tsk->thread.error_code = error_code | X86_PF_USER;
764 			tsk->thread.cr2 = address;
765 
766 			/* XXX: hwpoison faults will set the wrong code. */
767 			force_sig_info_fault(signal, si_code, address,
768 					     tsk, NULL, 0);
769 		}
770 
771 		/*
772 		 * Barring that, we can do the fixup and be happy.
773 		 */
774 		return;
775 	}
776 
777 #ifdef CONFIG_VMAP_STACK
778 	/*
779 	 * Stack overflow?  During boot, we can fault near the initial
780 	 * stack in the direct map, but that's not an overflow -- check
781 	 * that we're in vmalloc space to avoid this.
782 	 */
783 	if (is_vmalloc_addr((void *)address) &&
784 	    (((unsigned long)tsk->stack - 1 - address < PAGE_SIZE) ||
785 	     address - ((unsigned long)tsk->stack + THREAD_SIZE) < PAGE_SIZE)) {
786 		unsigned long stack = this_cpu_read(orig_ist.ist[DOUBLEFAULT_STACK]) - sizeof(void *);
787 		/*
788 		 * We're likely to be running with very little stack space
789 		 * left.  It's plausible that we'd hit this condition but
790 		 * double-fault even before we get this far, in which case
791 		 * we're fine: the double-fault handler will deal with it.
792 		 *
793 		 * We don't want to make it all the way into the oops code
794 		 * and then double-fault, though, because we're likely to
795 		 * break the console driver and lose most of the stack dump.
796 		 */
797 		asm volatile ("movq %[stack], %%rsp\n\t"
798 			      "call handle_stack_overflow\n\t"
799 			      "1: jmp 1b"
800 			      : ASM_CALL_CONSTRAINT
801 			      : "D" ("kernel stack overflow (page fault)"),
802 				"S" (regs), "d" (address),
803 				[stack] "rm" (stack));
804 		unreachable();
805 	}
806 #endif
807 
808 	/*
809 	 * 32-bit:
810 	 *
811 	 *   Valid to do another page fault here, because if this fault
812 	 *   had been triggered by is_prefetch fixup_exception would have
813 	 *   handled it.
814 	 *
815 	 * 64-bit:
816 	 *
817 	 *   Hall of shame of CPU/BIOS bugs.
818 	 */
819 	if (is_prefetch(regs, error_code, address))
820 		return;
821 
822 	if (is_errata93(regs, address))
823 		return;
824 
825 	/*
826 	 * Oops. The kernel tried to access some bad page. We'll have to
827 	 * terminate things with extreme prejudice:
828 	 */
829 	flags = oops_begin();
830 
831 	show_fault_oops(regs, error_code, address);
832 
833 	if (task_stack_end_corrupted(tsk))
834 		printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
835 
836 	tsk->thread.cr2		= address;
837 	tsk->thread.trap_nr	= X86_TRAP_PF;
838 	tsk->thread.error_code	= error_code;
839 
840 	sig = SIGKILL;
841 	if (__die("Oops", regs, error_code))
842 		sig = 0;
843 
844 	/* Executive summary in case the body of the oops scrolled away */
845 	printk(KERN_DEFAULT "CR2: %016lx\n", address);
846 
847 	oops_end(flags, regs, sig);
848 }
849 
850 /*
851  * Print out info about fatal segfaults, if the show_unhandled_signals
852  * sysctl is set:
853  */
854 static inline void
855 show_signal_msg(struct pt_regs *regs, unsigned long error_code,
856 		unsigned long address, struct task_struct *tsk)
857 {
858 	if (!unhandled_signal(tsk, SIGSEGV))
859 		return;
860 
861 	if (!printk_ratelimit())
862 		return;
863 
864 	printk("%s%s[%d]: segfault at %lx ip %p sp %p error %lx",
865 		task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG,
866 		tsk->comm, task_pid_nr(tsk), address,
867 		(void *)regs->ip, (void *)regs->sp, error_code);
868 
869 	print_vma_addr(KERN_CONT " in ", regs->ip);
870 
871 	printk(KERN_CONT "\n");
872 }
873 
874 static void
875 __bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
876 		       unsigned long address, u32 *pkey, int si_code)
877 {
878 	struct task_struct *tsk = current;
879 
880 	/* User mode accesses just cause a SIGSEGV */
881 	if (error_code & X86_PF_USER) {
882 		/*
883 		 * It's possible to have interrupts off here:
884 		 */
885 		local_irq_enable();
886 
887 		/*
888 		 * Valid to do another page fault here because this one came
889 		 * from user space:
890 		 */
891 		if (is_prefetch(regs, error_code, address))
892 			return;
893 
894 		if (is_errata100(regs, address))
895 			return;
896 
897 #ifdef CONFIG_X86_64
898 		/*
899 		 * Instruction fetch faults in the vsyscall page might need
900 		 * emulation.
901 		 */
902 		if (unlikely((error_code & X86_PF_INSTR) &&
903 			     ((address & ~0xfff) == VSYSCALL_ADDR))) {
904 			if (emulate_vsyscall(regs, address))
905 				return;
906 		}
907 #endif
908 
909 		/*
910 		 * To avoid leaking information about the kernel page table
911 		 * layout, pretend that user-mode accesses to kernel addresses
912 		 * are always protection faults.
913 		 */
914 		if (address >= TASK_SIZE_MAX)
915 			error_code |= X86_PF_PROT;
916 
917 		if (likely(show_unhandled_signals))
918 			show_signal_msg(regs, error_code, address, tsk);
919 
920 		tsk->thread.cr2		= address;
921 		tsk->thread.error_code	= error_code;
922 		tsk->thread.trap_nr	= X86_TRAP_PF;
923 
924 		force_sig_info_fault(SIGSEGV, si_code, address, tsk, pkey, 0);
925 
926 		return;
927 	}
928 
929 	if (is_f00f_bug(regs, address))
930 		return;
931 
932 	no_context(regs, error_code, address, SIGSEGV, si_code);
933 }
934 
935 static noinline void
936 bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
937 		     unsigned long address, u32 *pkey)
938 {
939 	__bad_area_nosemaphore(regs, error_code, address, pkey, SEGV_MAPERR);
940 }
941 
942 static void
943 __bad_area(struct pt_regs *regs, unsigned long error_code,
944 	   unsigned long address,  struct vm_area_struct *vma, int si_code)
945 {
946 	struct mm_struct *mm = current->mm;
947 	u32 pkey;
948 
949 	if (vma)
950 		pkey = vma_pkey(vma);
951 
952 	/*
953 	 * Something tried to access memory that isn't in our memory map..
954 	 * Fix it, but check if it's kernel or user first..
955 	 */
956 	up_read(&mm->mmap_sem);
957 
958 	__bad_area_nosemaphore(regs, error_code, address,
959 			       (vma) ? &pkey : NULL, si_code);
960 }
961 
962 static noinline void
963 bad_area(struct pt_regs *regs, unsigned long error_code, unsigned long address)
964 {
965 	__bad_area(regs, error_code, address, NULL, SEGV_MAPERR);
966 }
967 
968 static inline bool bad_area_access_from_pkeys(unsigned long error_code,
969 		struct vm_area_struct *vma)
970 {
971 	/* This code is always called on the current mm */
972 	bool foreign = false;
973 
974 	if (!boot_cpu_has(X86_FEATURE_OSPKE))
975 		return false;
976 	if (error_code & X86_PF_PK)
977 		return true;
978 	/* this checks permission keys on the VMA: */
979 	if (!arch_vma_access_permitted(vma, (error_code & X86_PF_WRITE),
980 				       (error_code & X86_PF_INSTR), foreign))
981 		return true;
982 	return false;
983 }
984 
985 static noinline void
986 bad_area_access_error(struct pt_regs *regs, unsigned long error_code,
987 		      unsigned long address, struct vm_area_struct *vma)
988 {
989 	/*
990 	 * This OSPKE check is not strictly necessary at runtime.
991 	 * But, doing it this way allows compiler optimizations
992 	 * if pkeys are compiled out.
993 	 */
994 	if (bad_area_access_from_pkeys(error_code, vma))
995 		__bad_area(regs, error_code, address, vma, SEGV_PKUERR);
996 	else
997 		__bad_area(regs, error_code, address, vma, SEGV_ACCERR);
998 }
999 
1000 static void
1001 do_sigbus(struct pt_regs *regs, unsigned long error_code, unsigned long address,
1002 	  u32 *pkey, unsigned int fault)
1003 {
1004 	struct task_struct *tsk = current;
1005 	int code = BUS_ADRERR;
1006 
1007 	/* Kernel mode? Handle exceptions or die: */
1008 	if (!(error_code & X86_PF_USER)) {
1009 		no_context(regs, error_code, address, SIGBUS, BUS_ADRERR);
1010 		return;
1011 	}
1012 
1013 	/* User-space => ok to do another page fault: */
1014 	if (is_prefetch(regs, error_code, address))
1015 		return;
1016 
1017 	tsk->thread.cr2		= address;
1018 	tsk->thread.error_code	= error_code;
1019 	tsk->thread.trap_nr	= X86_TRAP_PF;
1020 
1021 #ifdef CONFIG_MEMORY_FAILURE
1022 	if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
1023 		printk(KERN_ERR
1024 	"MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
1025 			tsk->comm, tsk->pid, address);
1026 		code = BUS_MCEERR_AR;
1027 	}
1028 #endif
1029 	force_sig_info_fault(SIGBUS, code, address, tsk, pkey, fault);
1030 }
1031 
1032 static noinline void
1033 mm_fault_error(struct pt_regs *regs, unsigned long error_code,
1034 	       unsigned long address, u32 *pkey, unsigned int fault)
1035 {
1036 	if (fatal_signal_pending(current) && !(error_code & X86_PF_USER)) {
1037 		no_context(regs, error_code, address, 0, 0);
1038 		return;
1039 	}
1040 
1041 	if (fault & VM_FAULT_OOM) {
1042 		/* Kernel mode? Handle exceptions or die: */
1043 		if (!(error_code & X86_PF_USER)) {
1044 			no_context(regs, error_code, address,
1045 				   SIGSEGV, SEGV_MAPERR);
1046 			return;
1047 		}
1048 
1049 		/*
1050 		 * We ran out of memory, call the OOM killer, and return the
1051 		 * userspace (which will retry the fault, or kill us if we got
1052 		 * oom-killed):
1053 		 */
1054 		pagefault_out_of_memory();
1055 	} else {
1056 		if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
1057 			     VM_FAULT_HWPOISON_LARGE))
1058 			do_sigbus(regs, error_code, address, pkey, fault);
1059 		else if (fault & VM_FAULT_SIGSEGV)
1060 			bad_area_nosemaphore(regs, error_code, address, pkey);
1061 		else
1062 			BUG();
1063 	}
1064 }
1065 
1066 static int spurious_fault_check(unsigned long error_code, pte_t *pte)
1067 {
1068 	if ((error_code & X86_PF_WRITE) && !pte_write(*pte))
1069 		return 0;
1070 
1071 	if ((error_code & X86_PF_INSTR) && !pte_exec(*pte))
1072 		return 0;
1073 	/*
1074 	 * Note: We do not do lazy flushing on protection key
1075 	 * changes, so no spurious fault will ever set X86_PF_PK.
1076 	 */
1077 	if ((error_code & X86_PF_PK))
1078 		return 1;
1079 
1080 	return 1;
1081 }
1082 
1083 /*
1084  * Handle a spurious fault caused by a stale TLB entry.
1085  *
1086  * This allows us to lazily refresh the TLB when increasing the
1087  * permissions of a kernel page (RO -> RW or NX -> X).  Doing it
1088  * eagerly is very expensive since that implies doing a full
1089  * cross-processor TLB flush, even if no stale TLB entries exist
1090  * on other processors.
1091  *
1092  * Spurious faults may only occur if the TLB contains an entry with
1093  * fewer permission than the page table entry.  Non-present (P = 0)
1094  * and reserved bit (R = 1) faults are never spurious.
1095  *
1096  * There are no security implications to leaving a stale TLB when
1097  * increasing the permissions on a page.
1098  *
1099  * Returns non-zero if a spurious fault was handled, zero otherwise.
1100  *
1101  * See Intel Developer's Manual Vol 3 Section 4.10.4.3, bullet 3
1102  * (Optional Invalidation).
1103  */
1104 static noinline int
1105 spurious_fault(unsigned long error_code, unsigned long address)
1106 {
1107 	pgd_t *pgd;
1108 	p4d_t *p4d;
1109 	pud_t *pud;
1110 	pmd_t *pmd;
1111 	pte_t *pte;
1112 	int ret;
1113 
1114 	/*
1115 	 * Only writes to RO or instruction fetches from NX may cause
1116 	 * spurious faults.
1117 	 *
1118 	 * These could be from user or supervisor accesses but the TLB
1119 	 * is only lazily flushed after a kernel mapping protection
1120 	 * change, so user accesses are not expected to cause spurious
1121 	 * faults.
1122 	 */
1123 	if (error_code != (X86_PF_WRITE | X86_PF_PROT) &&
1124 	    error_code != (X86_PF_INSTR | X86_PF_PROT))
1125 		return 0;
1126 
1127 	pgd = init_mm.pgd + pgd_index(address);
1128 	if (!pgd_present(*pgd))
1129 		return 0;
1130 
1131 	p4d = p4d_offset(pgd, address);
1132 	if (!p4d_present(*p4d))
1133 		return 0;
1134 
1135 	if (p4d_large(*p4d))
1136 		return spurious_fault_check(error_code, (pte_t *) p4d);
1137 
1138 	pud = pud_offset(p4d, address);
1139 	if (!pud_present(*pud))
1140 		return 0;
1141 
1142 	if (pud_large(*pud))
1143 		return spurious_fault_check(error_code, (pte_t *) pud);
1144 
1145 	pmd = pmd_offset(pud, address);
1146 	if (!pmd_present(*pmd))
1147 		return 0;
1148 
1149 	if (pmd_large(*pmd))
1150 		return spurious_fault_check(error_code, (pte_t *) pmd);
1151 
1152 	pte = pte_offset_kernel(pmd, address);
1153 	if (!pte_present(*pte))
1154 		return 0;
1155 
1156 	ret = spurious_fault_check(error_code, pte);
1157 	if (!ret)
1158 		return 0;
1159 
1160 	/*
1161 	 * Make sure we have permissions in PMD.
1162 	 * If not, then there's a bug in the page tables:
1163 	 */
1164 	ret = spurious_fault_check(error_code, (pte_t *) pmd);
1165 	WARN_ONCE(!ret, "PMD has incorrect permission bits\n");
1166 
1167 	return ret;
1168 }
1169 NOKPROBE_SYMBOL(spurious_fault);
1170 
1171 int show_unhandled_signals = 1;
1172 
1173 static inline int
1174 access_error(unsigned long error_code, struct vm_area_struct *vma)
1175 {
1176 	/* This is only called for the current mm, so: */
1177 	bool foreign = false;
1178 
1179 	/*
1180 	 * Read or write was blocked by protection keys.  This is
1181 	 * always an unconditional error and can never result in
1182 	 * a follow-up action to resolve the fault, like a COW.
1183 	 */
1184 	if (error_code & X86_PF_PK)
1185 		return 1;
1186 
1187 	/*
1188 	 * Make sure to check the VMA so that we do not perform
1189 	 * faults just to hit a X86_PF_PK as soon as we fill in a
1190 	 * page.
1191 	 */
1192 	if (!arch_vma_access_permitted(vma, (error_code & X86_PF_WRITE),
1193 				       (error_code & X86_PF_INSTR), foreign))
1194 		return 1;
1195 
1196 	if (error_code & X86_PF_WRITE) {
1197 		/* write, present and write, not present: */
1198 		if (unlikely(!(vma->vm_flags & VM_WRITE)))
1199 			return 1;
1200 		return 0;
1201 	}
1202 
1203 	/* read, present: */
1204 	if (unlikely(error_code & X86_PF_PROT))
1205 		return 1;
1206 
1207 	/* read, not present: */
1208 	if (unlikely(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))))
1209 		return 1;
1210 
1211 	return 0;
1212 }
1213 
1214 static int fault_in_kernel_space(unsigned long address)
1215 {
1216 	return address >= TASK_SIZE_MAX;
1217 }
1218 
1219 static inline bool smap_violation(int error_code, struct pt_regs *regs)
1220 {
1221 	if (!IS_ENABLED(CONFIG_X86_SMAP))
1222 		return false;
1223 
1224 	if (!static_cpu_has(X86_FEATURE_SMAP))
1225 		return false;
1226 
1227 	if (error_code & X86_PF_USER)
1228 		return false;
1229 
1230 	if (!user_mode(regs) && (regs->flags & X86_EFLAGS_AC))
1231 		return false;
1232 
1233 	return true;
1234 }
1235 
1236 /*
1237  * This routine handles page faults.  It determines the address,
1238  * and the problem, and then passes it off to one of the appropriate
1239  * routines.
1240  */
1241 static noinline void
1242 __do_page_fault(struct pt_regs *regs, unsigned long error_code,
1243 		unsigned long address)
1244 {
1245 	struct vm_area_struct *vma;
1246 	struct task_struct *tsk;
1247 	struct mm_struct *mm;
1248 	int fault, major = 0;
1249 	unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
1250 	u32 pkey;
1251 
1252 	tsk = current;
1253 	mm = tsk->mm;
1254 
1255 	/*
1256 	 * Detect and handle instructions that would cause a page fault for
1257 	 * both a tracked kernel page and a userspace page.
1258 	 */
1259 	if (kmemcheck_active(regs))
1260 		kmemcheck_hide(regs);
1261 	prefetchw(&mm->mmap_sem);
1262 
1263 	if (unlikely(kmmio_fault(regs, address)))
1264 		return;
1265 
1266 	/*
1267 	 * We fault-in kernel-space virtual memory on-demand. The
1268 	 * 'reference' page table is init_mm.pgd.
1269 	 *
1270 	 * NOTE! We MUST NOT take any locks for this case. We may
1271 	 * be in an interrupt or a critical region, and should
1272 	 * only copy the information from the master page table,
1273 	 * nothing more.
1274 	 *
1275 	 * This verifies that the fault happens in kernel space
1276 	 * (error_code & 4) == 0, and that the fault was not a
1277 	 * protection error (error_code & 9) == 0.
1278 	 */
1279 	if (unlikely(fault_in_kernel_space(address))) {
1280 		if (!(error_code & (X86_PF_RSVD | X86_PF_USER | X86_PF_PROT))) {
1281 			if (vmalloc_fault(address) >= 0)
1282 				return;
1283 
1284 			if (kmemcheck_fault(regs, address, error_code))
1285 				return;
1286 		}
1287 
1288 		/* Can handle a stale RO->RW TLB: */
1289 		if (spurious_fault(error_code, address))
1290 			return;
1291 
1292 		/* kprobes don't want to hook the spurious faults: */
1293 		if (kprobes_fault(regs))
1294 			return;
1295 		/*
1296 		 * Don't take the mm semaphore here. If we fixup a prefetch
1297 		 * fault we could otherwise deadlock:
1298 		 */
1299 		bad_area_nosemaphore(regs, error_code, address, NULL);
1300 
1301 		return;
1302 	}
1303 
1304 	/* kprobes don't want to hook the spurious faults: */
1305 	if (unlikely(kprobes_fault(regs)))
1306 		return;
1307 
1308 	if (unlikely(error_code & X86_PF_RSVD))
1309 		pgtable_bad(regs, error_code, address);
1310 
1311 	if (unlikely(smap_violation(error_code, regs))) {
1312 		bad_area_nosemaphore(regs, error_code, address, NULL);
1313 		return;
1314 	}
1315 
1316 	/*
1317 	 * If we're in an interrupt, have no user context or are running
1318 	 * in a region with pagefaults disabled then we must not take the fault
1319 	 */
1320 	if (unlikely(faulthandler_disabled() || !mm)) {
1321 		bad_area_nosemaphore(regs, error_code, address, NULL);
1322 		return;
1323 	}
1324 
1325 	/*
1326 	 * It's safe to allow irq's after cr2 has been saved and the
1327 	 * vmalloc fault has been handled.
1328 	 *
1329 	 * User-mode registers count as a user access even for any
1330 	 * potential system fault or CPU buglet:
1331 	 */
1332 	if (user_mode(regs)) {
1333 		local_irq_enable();
1334 		error_code |= X86_PF_USER;
1335 		flags |= FAULT_FLAG_USER;
1336 	} else {
1337 		if (regs->flags & X86_EFLAGS_IF)
1338 			local_irq_enable();
1339 	}
1340 
1341 	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
1342 
1343 	if (error_code & X86_PF_WRITE)
1344 		flags |= FAULT_FLAG_WRITE;
1345 	if (error_code & X86_PF_INSTR)
1346 		flags |= FAULT_FLAG_INSTRUCTION;
1347 
1348 	/*
1349 	 * When running in the kernel we expect faults to occur only to
1350 	 * addresses in user space.  All other faults represent errors in
1351 	 * the kernel and should generate an OOPS.  Unfortunately, in the
1352 	 * case of an erroneous fault occurring in a code path which already
1353 	 * holds mmap_sem we will deadlock attempting to validate the fault
1354 	 * against the address space.  Luckily the kernel only validly
1355 	 * references user space from well defined areas of code, which are
1356 	 * listed in the exceptions table.
1357 	 *
1358 	 * As the vast majority of faults will be valid we will only perform
1359 	 * the source reference check when there is a possibility of a
1360 	 * deadlock. Attempt to lock the address space, if we cannot we then
1361 	 * validate the source. If this is invalid we can skip the address
1362 	 * space check, thus avoiding the deadlock:
1363 	 */
1364 	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
1365 		if (!(error_code & X86_PF_USER) &&
1366 		    !search_exception_tables(regs->ip)) {
1367 			bad_area_nosemaphore(regs, error_code, address, NULL);
1368 			return;
1369 		}
1370 retry:
1371 		down_read(&mm->mmap_sem);
1372 	} else {
1373 		/*
1374 		 * The above down_read_trylock() might have succeeded in
1375 		 * which case we'll have missed the might_sleep() from
1376 		 * down_read():
1377 		 */
1378 		might_sleep();
1379 	}
1380 
1381 	vma = find_vma(mm, address);
1382 	if (unlikely(!vma)) {
1383 		bad_area(regs, error_code, address);
1384 		return;
1385 	}
1386 	if (likely(vma->vm_start <= address))
1387 		goto good_area;
1388 	if (unlikely(!(vma->vm_flags & VM_GROWSDOWN))) {
1389 		bad_area(regs, error_code, address);
1390 		return;
1391 	}
1392 	if (error_code & X86_PF_USER) {
1393 		/*
1394 		 * Accessing the stack below %sp is always a bug.
1395 		 * The large cushion allows instructions like enter
1396 		 * and pusha to work. ("enter $65535, $31" pushes
1397 		 * 32 pointers and then decrements %sp by 65535.)
1398 		 */
1399 		if (unlikely(address + 65536 + 32 * sizeof(unsigned long) < regs->sp)) {
1400 			bad_area(regs, error_code, address);
1401 			return;
1402 		}
1403 	}
1404 	if (unlikely(expand_stack(vma, address))) {
1405 		bad_area(regs, error_code, address);
1406 		return;
1407 	}
1408 
1409 	/*
1410 	 * Ok, we have a good vm_area for this memory access, so
1411 	 * we can handle it..
1412 	 */
1413 good_area:
1414 	if (unlikely(access_error(error_code, vma))) {
1415 		bad_area_access_error(regs, error_code, address, vma);
1416 		return;
1417 	}
1418 
1419 	/*
1420 	 * If for any reason at all we couldn't handle the fault,
1421 	 * make sure we exit gracefully rather than endlessly redo
1422 	 * the fault.  Since we never set FAULT_FLAG_RETRY_NOWAIT, if
1423 	 * we get VM_FAULT_RETRY back, the mmap_sem has been unlocked.
1424 	 *
1425 	 * Note that handle_userfault() may also release and reacquire mmap_sem
1426 	 * (and not return with VM_FAULT_RETRY), when returning to userland to
1427 	 * repeat the page fault later with a VM_FAULT_NOPAGE retval
1428 	 * (potentially after handling any pending signal during the return to
1429 	 * userland). The return to userland is identified whenever
1430 	 * FAULT_FLAG_USER|FAULT_FLAG_KILLABLE are both set in flags.
1431 	 * Thus we have to be careful about not touching vma after handling the
1432 	 * fault, so we read the pkey beforehand.
1433 	 */
1434 	pkey = vma_pkey(vma);
1435 	fault = handle_mm_fault(vma, address, flags);
1436 	major |= fault & VM_FAULT_MAJOR;
1437 
1438 	/*
1439 	 * If we need to retry the mmap_sem has already been released,
1440 	 * and if there is a fatal signal pending there is no guarantee
1441 	 * that we made any progress. Handle this case first.
1442 	 */
1443 	if (unlikely(fault & VM_FAULT_RETRY)) {
1444 		/* Retry at most once */
1445 		if (flags & FAULT_FLAG_ALLOW_RETRY) {
1446 			flags &= ~FAULT_FLAG_ALLOW_RETRY;
1447 			flags |= FAULT_FLAG_TRIED;
1448 			if (!fatal_signal_pending(tsk))
1449 				goto retry;
1450 		}
1451 
1452 		/* User mode? Just return to handle the fatal exception */
1453 		if (flags & FAULT_FLAG_USER)
1454 			return;
1455 
1456 		/* Not returning to user mode? Handle exceptions or die: */
1457 		no_context(regs, error_code, address, SIGBUS, BUS_ADRERR);
1458 		return;
1459 	}
1460 
1461 	up_read(&mm->mmap_sem);
1462 	if (unlikely(fault & VM_FAULT_ERROR)) {
1463 		mm_fault_error(regs, error_code, address, &pkey, fault);
1464 		return;
1465 	}
1466 
1467 	/*
1468 	 * Major/minor page fault accounting. If any of the events
1469 	 * returned VM_FAULT_MAJOR, we account it as a major fault.
1470 	 */
1471 	if (major) {
1472 		tsk->maj_flt++;
1473 		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
1474 	} else {
1475 		tsk->min_flt++;
1476 		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
1477 	}
1478 
1479 	check_v8086_mode(regs, address, tsk);
1480 }
1481 NOKPROBE_SYMBOL(__do_page_fault);
1482 
1483 static nokprobe_inline void
1484 trace_page_fault_entries(unsigned long address, struct pt_regs *regs,
1485 			 unsigned long error_code)
1486 {
1487 	if (user_mode(regs))
1488 		trace_page_fault_user(address, regs, error_code);
1489 	else
1490 		trace_page_fault_kernel(address, regs, error_code);
1491 }
1492 
1493 /*
1494  * We must have this function blacklisted from kprobes, tagged with notrace
1495  * and call read_cr2() before calling anything else. To avoid calling any
1496  * kind of tracing machinery before we've observed the CR2 value.
1497  *
1498  * exception_{enter,exit}() contains all sorts of tracepoints.
1499  */
1500 dotraplinkage void notrace
1501 do_page_fault(struct pt_regs *regs, unsigned long error_code)
1502 {
1503 	unsigned long address = read_cr2(); /* Get the faulting address */
1504 	enum ctx_state prev_state;
1505 
1506 	prev_state = exception_enter();
1507 	if (trace_pagefault_enabled())
1508 		trace_page_fault_entries(address, regs, error_code);
1509 
1510 	__do_page_fault(regs, error_code, address);
1511 	exception_exit(prev_state);
1512 }
1513 NOKPROBE_SYMBOL(do_page_fault);
1514