xref: /linux/arch/x86/mm/fault.c (revision 2277ab4a1df50e05bc732fe9488d4e902bb8399a)
1 /*
2  *  Copyright (C) 1995  Linus Torvalds
3  *  Copyright (C) 2001, 2002 Andi Kleen, SuSE Labs.
4  *  Copyright (C) 2008-2009, Red Hat Inc., Ingo Molnar
5  */
6 #include <linux/magic.h>		/* STACK_END_MAGIC		*/
7 #include <linux/sched.h>		/* test_thread_flag(), ...	*/
8 #include <linux/kdebug.h>		/* oops_begin/end, ...		*/
9 #include <linux/module.h>		/* search_exception_table	*/
10 #include <linux/bootmem.h>		/* max_low_pfn			*/
11 #include <linux/kprobes.h>		/* __kprobes, ...		*/
12 #include <linux/mmiotrace.h>		/* kmmio_handler, ...		*/
13 #include <linux/perf_counter.h>		/* perf_swcounter_event		*/
14 
15 #include <asm/traps.h>			/* dotraplinkage, ...		*/
16 #include <asm/pgalloc.h>		/* pgd_*(), ...			*/
17 #include <asm/kmemcheck.h>		/* kmemcheck_*(), ...		*/
18 
19 /*
20  * Page fault error code bits:
21  *
22  *   bit 0 ==	 0: no page found	1: protection fault
23  *   bit 1 ==	 0: read access		1: write access
24  *   bit 2 ==	 0: kernel-mode access	1: user-mode access
25  *   bit 3 ==				1: use of reserved bit detected
26  *   bit 4 ==				1: fault was an instruction fetch
27  */
28 enum x86_pf_error_code {
29 
30 	PF_PROT		=		1 << 0,
31 	PF_WRITE	=		1 << 1,
32 	PF_USER		=		1 << 2,
33 	PF_RSVD		=		1 << 3,
34 	PF_INSTR	=		1 << 4,
35 };
36 
37 /*
38  * Returns 0 if mmiotrace is disabled, or if the fault is not
39  * handled by mmiotrace:
40  */
41 static inline int kmmio_fault(struct pt_regs *regs, unsigned long addr)
42 {
43 	if (unlikely(is_kmmio_active()))
44 		if (kmmio_handler(regs, addr) == 1)
45 			return -1;
46 	return 0;
47 }
48 
49 static inline int notify_page_fault(struct pt_regs *regs)
50 {
51 	int ret = 0;
52 
53 	/* kprobe_running() needs smp_processor_id() */
54 	if (kprobes_built_in() && !user_mode_vm(regs)) {
55 		preempt_disable();
56 		if (kprobe_running() && kprobe_fault_handler(regs, 14))
57 			ret = 1;
58 		preempt_enable();
59 	}
60 
61 	return ret;
62 }
63 
64 /*
65  * Prefetch quirks:
66  *
67  * 32-bit mode:
68  *
69  *   Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
70  *   Check that here and ignore it.
71  *
72  * 64-bit mode:
73  *
74  *   Sometimes the CPU reports invalid exceptions on prefetch.
75  *   Check that here and ignore it.
76  *
77  * Opcode checker based on code by Richard Brunner.
78  */
79 static inline int
80 check_prefetch_opcode(struct pt_regs *regs, unsigned char *instr,
81 		      unsigned char opcode, int *prefetch)
82 {
83 	unsigned char instr_hi = opcode & 0xf0;
84 	unsigned char instr_lo = opcode & 0x0f;
85 
86 	switch (instr_hi) {
87 	case 0x20:
88 	case 0x30:
89 		/*
90 		 * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes.
91 		 * In X86_64 long mode, the CPU will signal invalid
92 		 * opcode if some of these prefixes are present so
93 		 * X86_64 will never get here anyway
94 		 */
95 		return ((instr_lo & 7) == 0x6);
96 #ifdef CONFIG_X86_64
97 	case 0x40:
98 		/*
99 		 * In AMD64 long mode 0x40..0x4F are valid REX prefixes
100 		 * Need to figure out under what instruction mode the
101 		 * instruction was issued. Could check the LDT for lm,
102 		 * but for now it's good enough to assume that long
103 		 * mode only uses well known segments or kernel.
104 		 */
105 		return (!user_mode(regs)) || (regs->cs == __USER_CS);
106 #endif
107 	case 0x60:
108 		/* 0x64 thru 0x67 are valid prefixes in all modes. */
109 		return (instr_lo & 0xC) == 0x4;
110 	case 0xF0:
111 		/* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */
112 		return !instr_lo || (instr_lo>>1) == 1;
113 	case 0x00:
114 		/* Prefetch instruction is 0x0F0D or 0x0F18 */
115 		if (probe_kernel_address(instr, opcode))
116 			return 0;
117 
118 		*prefetch = (instr_lo == 0xF) &&
119 			(opcode == 0x0D || opcode == 0x18);
120 		return 0;
121 	default:
122 		return 0;
123 	}
124 }
125 
126 static int
127 is_prefetch(struct pt_regs *regs, unsigned long error_code, unsigned long addr)
128 {
129 	unsigned char *max_instr;
130 	unsigned char *instr;
131 	int prefetch = 0;
132 
133 	/*
134 	 * If it was a exec (instruction fetch) fault on NX page, then
135 	 * do not ignore the fault:
136 	 */
137 	if (error_code & PF_INSTR)
138 		return 0;
139 
140 	instr = (void *)convert_ip_to_linear(current, regs);
141 	max_instr = instr + 15;
142 
143 	if (user_mode(regs) && instr >= (unsigned char *)TASK_SIZE)
144 		return 0;
145 
146 	while (instr < max_instr) {
147 		unsigned char opcode;
148 
149 		if (probe_kernel_address(instr, opcode))
150 			break;
151 
152 		instr++;
153 
154 		if (!check_prefetch_opcode(regs, instr, opcode, &prefetch))
155 			break;
156 	}
157 	return prefetch;
158 }
159 
160 static void
161 force_sig_info_fault(int si_signo, int si_code, unsigned long address,
162 		     struct task_struct *tsk)
163 {
164 	siginfo_t info;
165 
166 	info.si_signo	= si_signo;
167 	info.si_errno	= 0;
168 	info.si_code	= si_code;
169 	info.si_addr	= (void __user *)address;
170 
171 	force_sig_info(si_signo, &info, tsk);
172 }
173 
174 DEFINE_SPINLOCK(pgd_lock);
175 LIST_HEAD(pgd_list);
176 
177 #ifdef CONFIG_X86_32
178 static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
179 {
180 	unsigned index = pgd_index(address);
181 	pgd_t *pgd_k;
182 	pud_t *pud, *pud_k;
183 	pmd_t *pmd, *pmd_k;
184 
185 	pgd += index;
186 	pgd_k = init_mm.pgd + index;
187 
188 	if (!pgd_present(*pgd_k))
189 		return NULL;
190 
191 	/*
192 	 * set_pgd(pgd, *pgd_k); here would be useless on PAE
193 	 * and redundant with the set_pmd() on non-PAE. As would
194 	 * set_pud.
195 	 */
196 	pud = pud_offset(pgd, address);
197 	pud_k = pud_offset(pgd_k, address);
198 	if (!pud_present(*pud_k))
199 		return NULL;
200 
201 	pmd = pmd_offset(pud, address);
202 	pmd_k = pmd_offset(pud_k, address);
203 	if (!pmd_present(*pmd_k))
204 		return NULL;
205 
206 	if (!pmd_present(*pmd))
207 		set_pmd(pmd, *pmd_k);
208 	else
209 		BUG_ON(pmd_page(*pmd) != pmd_page(*pmd_k));
210 
211 	return pmd_k;
212 }
213 
214 void vmalloc_sync_all(void)
215 {
216 	unsigned long address;
217 
218 	if (SHARED_KERNEL_PMD)
219 		return;
220 
221 	for (address = VMALLOC_START & PMD_MASK;
222 	     address >= TASK_SIZE && address < FIXADDR_TOP;
223 	     address += PMD_SIZE) {
224 
225 		unsigned long flags;
226 		struct page *page;
227 
228 		spin_lock_irqsave(&pgd_lock, flags);
229 		list_for_each_entry(page, &pgd_list, lru) {
230 			if (!vmalloc_sync_one(page_address(page), address))
231 				break;
232 		}
233 		spin_unlock_irqrestore(&pgd_lock, flags);
234 	}
235 }
236 
237 /*
238  * 32-bit:
239  *
240  *   Handle a fault on the vmalloc or module mapping area
241  */
242 static noinline int vmalloc_fault(unsigned long address)
243 {
244 	unsigned long pgd_paddr;
245 	pmd_t *pmd_k;
246 	pte_t *pte_k;
247 
248 	/* Make sure we are in vmalloc area: */
249 	if (!(address >= VMALLOC_START && address < VMALLOC_END))
250 		return -1;
251 
252 	/*
253 	 * Synchronize this task's top level page-table
254 	 * with the 'reference' page table.
255 	 *
256 	 * Do _not_ use "current" here. We might be inside
257 	 * an interrupt in the middle of a task switch..
258 	 */
259 	pgd_paddr = read_cr3();
260 	pmd_k = vmalloc_sync_one(__va(pgd_paddr), address);
261 	if (!pmd_k)
262 		return -1;
263 
264 	pte_k = pte_offset_kernel(pmd_k, address);
265 	if (!pte_present(*pte_k))
266 		return -1;
267 
268 	return 0;
269 }
270 
271 /*
272  * Did it hit the DOS screen memory VA from vm86 mode?
273  */
274 static inline void
275 check_v8086_mode(struct pt_regs *regs, unsigned long address,
276 		 struct task_struct *tsk)
277 {
278 	unsigned long bit;
279 
280 	if (!v8086_mode(regs))
281 		return;
282 
283 	bit = (address - 0xA0000) >> PAGE_SHIFT;
284 	if (bit < 32)
285 		tsk->thread.screen_bitmap |= 1 << bit;
286 }
287 
288 static void dump_pagetable(unsigned long address)
289 {
290 	__typeof__(pte_val(__pte(0))) page;
291 
292 	page = read_cr3();
293 	page = ((__typeof__(page) *) __va(page))[address >> PGDIR_SHIFT];
294 
295 #ifdef CONFIG_X86_PAE
296 	printk("*pdpt = %016Lx ", page);
297 	if ((page >> PAGE_SHIFT) < max_low_pfn
298 	    && page & _PAGE_PRESENT) {
299 		page &= PAGE_MASK;
300 		page = ((__typeof__(page) *) __va(page))[(address >> PMD_SHIFT)
301 							& (PTRS_PER_PMD - 1)];
302 		printk(KERN_CONT "*pde = %016Lx ", page);
303 		page &= ~_PAGE_NX;
304 	}
305 #else
306 	printk("*pde = %08lx ", page);
307 #endif
308 
309 	/*
310 	 * We must not directly access the pte in the highpte
311 	 * case if the page table is located in highmem.
312 	 * And let's rather not kmap-atomic the pte, just in case
313 	 * it's allocated already:
314 	 */
315 	if ((page >> PAGE_SHIFT) < max_low_pfn
316 	    && (page & _PAGE_PRESENT)
317 	    && !(page & _PAGE_PSE)) {
318 
319 		page &= PAGE_MASK;
320 		page = ((__typeof__(page) *) __va(page))[(address >> PAGE_SHIFT)
321 							& (PTRS_PER_PTE - 1)];
322 		printk("*pte = %0*Lx ", sizeof(page)*2, (u64)page);
323 	}
324 
325 	printk("\n");
326 }
327 
328 #else /* CONFIG_X86_64: */
329 
330 void vmalloc_sync_all(void)
331 {
332 	unsigned long address;
333 
334 	for (address = VMALLOC_START & PGDIR_MASK; address <= VMALLOC_END;
335 	     address += PGDIR_SIZE) {
336 
337 		const pgd_t *pgd_ref = pgd_offset_k(address);
338 		unsigned long flags;
339 		struct page *page;
340 
341 		if (pgd_none(*pgd_ref))
342 			continue;
343 
344 		spin_lock_irqsave(&pgd_lock, flags);
345 		list_for_each_entry(page, &pgd_list, lru) {
346 			pgd_t *pgd;
347 			pgd = (pgd_t *)page_address(page) + pgd_index(address);
348 			if (pgd_none(*pgd))
349 				set_pgd(pgd, *pgd_ref);
350 			else
351 				BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref));
352 		}
353 		spin_unlock_irqrestore(&pgd_lock, flags);
354 	}
355 }
356 
357 /*
358  * 64-bit:
359  *
360  *   Handle a fault on the vmalloc area
361  *
362  * This assumes no large pages in there.
363  */
364 static noinline int vmalloc_fault(unsigned long address)
365 {
366 	pgd_t *pgd, *pgd_ref;
367 	pud_t *pud, *pud_ref;
368 	pmd_t *pmd, *pmd_ref;
369 	pte_t *pte, *pte_ref;
370 
371 	/* Make sure we are in vmalloc area: */
372 	if (!(address >= VMALLOC_START && address < VMALLOC_END))
373 		return -1;
374 
375 	/*
376 	 * Copy kernel mappings over when needed. This can also
377 	 * happen within a race in page table update. In the later
378 	 * case just flush:
379 	 */
380 	pgd = pgd_offset(current->active_mm, address);
381 	pgd_ref = pgd_offset_k(address);
382 	if (pgd_none(*pgd_ref))
383 		return -1;
384 
385 	if (pgd_none(*pgd))
386 		set_pgd(pgd, *pgd_ref);
387 	else
388 		BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref));
389 
390 	/*
391 	 * Below here mismatches are bugs because these lower tables
392 	 * are shared:
393 	 */
394 
395 	pud = pud_offset(pgd, address);
396 	pud_ref = pud_offset(pgd_ref, address);
397 	if (pud_none(*pud_ref))
398 		return -1;
399 
400 	if (pud_none(*pud) || pud_page_vaddr(*pud) != pud_page_vaddr(*pud_ref))
401 		BUG();
402 
403 	pmd = pmd_offset(pud, address);
404 	pmd_ref = pmd_offset(pud_ref, address);
405 	if (pmd_none(*pmd_ref))
406 		return -1;
407 
408 	if (pmd_none(*pmd) || pmd_page(*pmd) != pmd_page(*pmd_ref))
409 		BUG();
410 
411 	pte_ref = pte_offset_kernel(pmd_ref, address);
412 	if (!pte_present(*pte_ref))
413 		return -1;
414 
415 	pte = pte_offset_kernel(pmd, address);
416 
417 	/*
418 	 * Don't use pte_page here, because the mappings can point
419 	 * outside mem_map, and the NUMA hash lookup cannot handle
420 	 * that:
421 	 */
422 	if (!pte_present(*pte) || pte_pfn(*pte) != pte_pfn(*pte_ref))
423 		BUG();
424 
425 	return 0;
426 }
427 
428 static const char errata93_warning[] =
429 KERN_ERR
430 "******* Your BIOS seems to not contain a fix for K8 errata #93\n"
431 "******* Working around it, but it may cause SEGVs or burn power.\n"
432 "******* Please consider a BIOS update.\n"
433 "******* Disabling USB legacy in the BIOS may also help.\n";
434 
435 /*
436  * No vm86 mode in 64-bit mode:
437  */
438 static inline void
439 check_v8086_mode(struct pt_regs *regs, unsigned long address,
440 		 struct task_struct *tsk)
441 {
442 }
443 
444 static int bad_address(void *p)
445 {
446 	unsigned long dummy;
447 
448 	return probe_kernel_address((unsigned long *)p, dummy);
449 }
450 
451 static void dump_pagetable(unsigned long address)
452 {
453 	pgd_t *pgd;
454 	pud_t *pud;
455 	pmd_t *pmd;
456 	pte_t *pte;
457 
458 	pgd = (pgd_t *)read_cr3();
459 
460 	pgd = __va((unsigned long)pgd & PHYSICAL_PAGE_MASK);
461 
462 	pgd += pgd_index(address);
463 	if (bad_address(pgd))
464 		goto bad;
465 
466 	printk("PGD %lx ", pgd_val(*pgd));
467 
468 	if (!pgd_present(*pgd))
469 		goto out;
470 
471 	pud = pud_offset(pgd, address);
472 	if (bad_address(pud))
473 		goto bad;
474 
475 	printk("PUD %lx ", pud_val(*pud));
476 	if (!pud_present(*pud) || pud_large(*pud))
477 		goto out;
478 
479 	pmd = pmd_offset(pud, address);
480 	if (bad_address(pmd))
481 		goto bad;
482 
483 	printk("PMD %lx ", pmd_val(*pmd));
484 	if (!pmd_present(*pmd) || pmd_large(*pmd))
485 		goto out;
486 
487 	pte = pte_offset_kernel(pmd, address);
488 	if (bad_address(pte))
489 		goto bad;
490 
491 	printk("PTE %lx", pte_val(*pte));
492 out:
493 	printk("\n");
494 	return;
495 bad:
496 	printk("BAD\n");
497 }
498 
499 #endif /* CONFIG_X86_64 */
500 
501 /*
502  * Workaround for K8 erratum #93 & buggy BIOS.
503  *
504  * BIOS SMM functions are required to use a specific workaround
505  * to avoid corruption of the 64bit RIP register on C stepping K8.
506  *
507  * A lot of BIOS that didn't get tested properly miss this.
508  *
509  * The OS sees this as a page fault with the upper 32bits of RIP cleared.
510  * Try to work around it here.
511  *
512  * Note we only handle faults in kernel here.
513  * Does nothing on 32-bit.
514  */
515 static int is_errata93(struct pt_regs *regs, unsigned long address)
516 {
517 #ifdef CONFIG_X86_64
518 	if (address != regs->ip)
519 		return 0;
520 
521 	if ((address >> 32) != 0)
522 		return 0;
523 
524 	address |= 0xffffffffUL << 32;
525 	if ((address >= (u64)_stext && address <= (u64)_etext) ||
526 	    (address >= MODULES_VADDR && address <= MODULES_END)) {
527 		printk_once(errata93_warning);
528 		regs->ip = address;
529 		return 1;
530 	}
531 #endif
532 	return 0;
533 }
534 
535 /*
536  * Work around K8 erratum #100 K8 in compat mode occasionally jumps
537  * to illegal addresses >4GB.
538  *
539  * We catch this in the page fault handler because these addresses
540  * are not reachable. Just detect this case and return.  Any code
541  * segment in LDT is compatibility mode.
542  */
543 static int is_errata100(struct pt_regs *regs, unsigned long address)
544 {
545 #ifdef CONFIG_X86_64
546 	if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) && (address >> 32))
547 		return 1;
548 #endif
549 	return 0;
550 }
551 
552 static int is_f00f_bug(struct pt_regs *regs, unsigned long address)
553 {
554 #ifdef CONFIG_X86_F00F_BUG
555 	unsigned long nr;
556 
557 	/*
558 	 * Pentium F0 0F C7 C8 bug workaround:
559 	 */
560 	if (boot_cpu_data.f00f_bug) {
561 		nr = (address - idt_descr.address) >> 3;
562 
563 		if (nr == 6) {
564 			do_invalid_op(regs, 0);
565 			return 1;
566 		}
567 	}
568 #endif
569 	return 0;
570 }
571 
572 static const char nx_warning[] = KERN_CRIT
573 "kernel tried to execute NX-protected page - exploit attempt? (uid: %d)\n";
574 
575 static void
576 show_fault_oops(struct pt_regs *regs, unsigned long error_code,
577 		unsigned long address)
578 {
579 	if (!oops_may_print())
580 		return;
581 
582 	if (error_code & PF_INSTR) {
583 		unsigned int level;
584 
585 		pte_t *pte = lookup_address(address, &level);
586 
587 		if (pte && pte_present(*pte) && !pte_exec(*pte))
588 			printk(nx_warning, current_uid());
589 	}
590 
591 	printk(KERN_ALERT "BUG: unable to handle kernel ");
592 	if (address < PAGE_SIZE)
593 		printk(KERN_CONT "NULL pointer dereference");
594 	else
595 		printk(KERN_CONT "paging request");
596 
597 	printk(KERN_CONT " at %p\n", (void *) address);
598 	printk(KERN_ALERT "IP:");
599 	printk_address(regs->ip, 1);
600 
601 	dump_pagetable(address);
602 }
603 
604 static noinline void
605 pgtable_bad(struct pt_regs *regs, unsigned long error_code,
606 	    unsigned long address)
607 {
608 	struct task_struct *tsk;
609 	unsigned long flags;
610 	int sig;
611 
612 	flags = oops_begin();
613 	tsk = current;
614 	sig = SIGKILL;
615 
616 	printk(KERN_ALERT "%s: Corrupted page table at address %lx\n",
617 	       tsk->comm, address);
618 	dump_pagetable(address);
619 
620 	tsk->thread.cr2		= address;
621 	tsk->thread.trap_no	= 14;
622 	tsk->thread.error_code	= error_code;
623 
624 	if (__die("Bad pagetable", regs, error_code))
625 		sig = 0;
626 
627 	oops_end(flags, regs, sig);
628 }
629 
630 static noinline void
631 no_context(struct pt_regs *regs, unsigned long error_code,
632 	   unsigned long address)
633 {
634 	struct task_struct *tsk = current;
635 	unsigned long *stackend;
636 	unsigned long flags;
637 	int sig;
638 
639 	/* Are we prepared to handle this kernel fault? */
640 	if (fixup_exception(regs))
641 		return;
642 
643 	/*
644 	 * 32-bit:
645 	 *
646 	 *   Valid to do another page fault here, because if this fault
647 	 *   had been triggered by is_prefetch fixup_exception would have
648 	 *   handled it.
649 	 *
650 	 * 64-bit:
651 	 *
652 	 *   Hall of shame of CPU/BIOS bugs.
653 	 */
654 	if (is_prefetch(regs, error_code, address))
655 		return;
656 
657 	if (is_errata93(regs, address))
658 		return;
659 
660 	/*
661 	 * Oops. The kernel tried to access some bad page. We'll have to
662 	 * terminate things with extreme prejudice:
663 	 */
664 	flags = oops_begin();
665 
666 	show_fault_oops(regs, error_code, address);
667 
668 	stackend = end_of_stack(tsk);
669 	if (*stackend != STACK_END_MAGIC)
670 		printk(KERN_ALERT "Thread overran stack, or stack corrupted\n");
671 
672 	tsk->thread.cr2		= address;
673 	tsk->thread.trap_no	= 14;
674 	tsk->thread.error_code	= error_code;
675 
676 	sig = SIGKILL;
677 	if (__die("Oops", regs, error_code))
678 		sig = 0;
679 
680 	/* Executive summary in case the body of the oops scrolled away */
681 	printk(KERN_EMERG "CR2: %016lx\n", address);
682 
683 	oops_end(flags, regs, sig);
684 }
685 
686 /*
687  * Print out info about fatal segfaults, if the show_unhandled_signals
688  * sysctl is set:
689  */
690 static inline void
691 show_signal_msg(struct pt_regs *regs, unsigned long error_code,
692 		unsigned long address, struct task_struct *tsk)
693 {
694 	if (!unhandled_signal(tsk, SIGSEGV))
695 		return;
696 
697 	if (!printk_ratelimit())
698 		return;
699 
700 	printk("%s%s[%d]: segfault at %lx ip %p sp %p error %lx",
701 		task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG,
702 		tsk->comm, task_pid_nr(tsk), address,
703 		(void *)regs->ip, (void *)regs->sp, error_code);
704 
705 	print_vma_addr(KERN_CONT " in ", regs->ip);
706 
707 	printk(KERN_CONT "\n");
708 }
709 
710 static void
711 __bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
712 		       unsigned long address, int si_code)
713 {
714 	struct task_struct *tsk = current;
715 
716 	/* User mode accesses just cause a SIGSEGV */
717 	if (error_code & PF_USER) {
718 		/*
719 		 * It's possible to have interrupts off here:
720 		 */
721 		local_irq_enable();
722 
723 		/*
724 		 * Valid to do another page fault here because this one came
725 		 * from user space:
726 		 */
727 		if (is_prefetch(regs, error_code, address))
728 			return;
729 
730 		if (is_errata100(regs, address))
731 			return;
732 
733 		if (unlikely(show_unhandled_signals))
734 			show_signal_msg(regs, error_code, address, tsk);
735 
736 		/* Kernel addresses are always protection faults: */
737 		tsk->thread.cr2		= address;
738 		tsk->thread.error_code	= error_code | (address >= TASK_SIZE);
739 		tsk->thread.trap_no	= 14;
740 
741 		force_sig_info_fault(SIGSEGV, si_code, address, tsk);
742 
743 		return;
744 	}
745 
746 	if (is_f00f_bug(regs, address))
747 		return;
748 
749 	no_context(regs, error_code, address);
750 }
751 
752 static noinline void
753 bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
754 		     unsigned long address)
755 {
756 	__bad_area_nosemaphore(regs, error_code, address, SEGV_MAPERR);
757 }
758 
759 static void
760 __bad_area(struct pt_regs *regs, unsigned long error_code,
761 	   unsigned long address, int si_code)
762 {
763 	struct mm_struct *mm = current->mm;
764 
765 	/*
766 	 * Something tried to access memory that isn't in our memory map..
767 	 * Fix it, but check if it's kernel or user first..
768 	 */
769 	up_read(&mm->mmap_sem);
770 
771 	__bad_area_nosemaphore(regs, error_code, address, si_code);
772 }
773 
774 static noinline void
775 bad_area(struct pt_regs *regs, unsigned long error_code, unsigned long address)
776 {
777 	__bad_area(regs, error_code, address, SEGV_MAPERR);
778 }
779 
780 static noinline void
781 bad_area_access_error(struct pt_regs *regs, unsigned long error_code,
782 		      unsigned long address)
783 {
784 	__bad_area(regs, error_code, address, SEGV_ACCERR);
785 }
786 
787 /* TODO: fixup for "mm-invoke-oom-killer-from-page-fault.patch" */
788 static void
789 out_of_memory(struct pt_regs *regs, unsigned long error_code,
790 	      unsigned long address)
791 {
792 	/*
793 	 * We ran out of memory, call the OOM killer, and return the userspace
794 	 * (which will retry the fault, or kill us if we got oom-killed):
795 	 */
796 	up_read(&current->mm->mmap_sem);
797 
798 	pagefault_out_of_memory();
799 }
800 
801 static void
802 do_sigbus(struct pt_regs *regs, unsigned long error_code, unsigned long address)
803 {
804 	struct task_struct *tsk = current;
805 	struct mm_struct *mm = tsk->mm;
806 
807 	up_read(&mm->mmap_sem);
808 
809 	/* Kernel mode? Handle exceptions or die: */
810 	if (!(error_code & PF_USER))
811 		no_context(regs, error_code, address);
812 
813 	/* User-space => ok to do another page fault: */
814 	if (is_prefetch(regs, error_code, address))
815 		return;
816 
817 	tsk->thread.cr2		= address;
818 	tsk->thread.error_code	= error_code;
819 	tsk->thread.trap_no	= 14;
820 
821 	force_sig_info_fault(SIGBUS, BUS_ADRERR, address, tsk);
822 }
823 
824 static noinline void
825 mm_fault_error(struct pt_regs *regs, unsigned long error_code,
826 	       unsigned long address, unsigned int fault)
827 {
828 	if (fault & VM_FAULT_OOM) {
829 		out_of_memory(regs, error_code, address);
830 	} else {
831 		if (fault & VM_FAULT_SIGBUS)
832 			do_sigbus(regs, error_code, address);
833 		else
834 			BUG();
835 	}
836 }
837 
838 static int spurious_fault_check(unsigned long error_code, pte_t *pte)
839 {
840 	if ((error_code & PF_WRITE) && !pte_write(*pte))
841 		return 0;
842 
843 	if ((error_code & PF_INSTR) && !pte_exec(*pte))
844 		return 0;
845 
846 	return 1;
847 }
848 
849 /*
850  * Handle a spurious fault caused by a stale TLB entry.
851  *
852  * This allows us to lazily refresh the TLB when increasing the
853  * permissions of a kernel page (RO -> RW or NX -> X).  Doing it
854  * eagerly is very expensive since that implies doing a full
855  * cross-processor TLB flush, even if no stale TLB entries exist
856  * on other processors.
857  *
858  * There are no security implications to leaving a stale TLB when
859  * increasing the permissions on a page.
860  */
861 static noinline int
862 spurious_fault(unsigned long error_code, unsigned long address)
863 {
864 	pgd_t *pgd;
865 	pud_t *pud;
866 	pmd_t *pmd;
867 	pte_t *pte;
868 	int ret;
869 
870 	/* Reserved-bit violation or user access to kernel space? */
871 	if (error_code & (PF_USER | PF_RSVD))
872 		return 0;
873 
874 	pgd = init_mm.pgd + pgd_index(address);
875 	if (!pgd_present(*pgd))
876 		return 0;
877 
878 	pud = pud_offset(pgd, address);
879 	if (!pud_present(*pud))
880 		return 0;
881 
882 	if (pud_large(*pud))
883 		return spurious_fault_check(error_code, (pte_t *) pud);
884 
885 	pmd = pmd_offset(pud, address);
886 	if (!pmd_present(*pmd))
887 		return 0;
888 
889 	if (pmd_large(*pmd))
890 		return spurious_fault_check(error_code, (pte_t *) pmd);
891 
892 	pte = pte_offset_kernel(pmd, address);
893 	if (!pte_present(*pte))
894 		return 0;
895 
896 	ret = spurious_fault_check(error_code, pte);
897 	if (!ret)
898 		return 0;
899 
900 	/*
901 	 * Make sure we have permissions in PMD.
902 	 * If not, then there's a bug in the page tables:
903 	 */
904 	ret = spurious_fault_check(error_code, (pte_t *) pmd);
905 	WARN_ONCE(!ret, "PMD has incorrect permission bits\n");
906 
907 	return ret;
908 }
909 
910 int show_unhandled_signals = 1;
911 
912 static inline int
913 access_error(unsigned long error_code, int write, struct vm_area_struct *vma)
914 {
915 	if (write) {
916 		/* write, present and write, not present: */
917 		if (unlikely(!(vma->vm_flags & VM_WRITE)))
918 			return 1;
919 		return 0;
920 	}
921 
922 	/* read, present: */
923 	if (unlikely(error_code & PF_PROT))
924 		return 1;
925 
926 	/* read, not present: */
927 	if (unlikely(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))))
928 		return 1;
929 
930 	return 0;
931 }
932 
933 static int fault_in_kernel_space(unsigned long address)
934 {
935 	return address >= TASK_SIZE_MAX;
936 }
937 
938 /*
939  * This routine handles page faults.  It determines the address,
940  * and the problem, and then passes it off to one of the appropriate
941  * routines.
942  */
943 dotraplinkage void __kprobes
944 do_page_fault(struct pt_regs *regs, unsigned long error_code)
945 {
946 	struct vm_area_struct *vma;
947 	struct task_struct *tsk;
948 	unsigned long address;
949 	struct mm_struct *mm;
950 	int write;
951 	int fault;
952 
953 	tsk = current;
954 	mm = tsk->mm;
955 
956 	/* Get the faulting address: */
957 	address = read_cr2();
958 
959 	/*
960 	 * Detect and handle instructions that would cause a page fault for
961 	 * both a tracked kernel page and a userspace page.
962 	 */
963 	if (kmemcheck_active(regs))
964 		kmemcheck_hide(regs);
965 	prefetchw(&mm->mmap_sem);
966 
967 	if (unlikely(kmmio_fault(regs, address)))
968 		return;
969 
970 	/*
971 	 * We fault-in kernel-space virtual memory on-demand. The
972 	 * 'reference' page table is init_mm.pgd.
973 	 *
974 	 * NOTE! We MUST NOT take any locks for this case. We may
975 	 * be in an interrupt or a critical region, and should
976 	 * only copy the information from the master page table,
977 	 * nothing more.
978 	 *
979 	 * This verifies that the fault happens in kernel space
980 	 * (error_code & 4) == 0, and that the fault was not a
981 	 * protection error (error_code & 9) == 0.
982 	 */
983 	if (unlikely(fault_in_kernel_space(address))) {
984 		if (!(error_code & (PF_RSVD | PF_USER | PF_PROT))) {
985 			if (vmalloc_fault(address) >= 0)
986 				return;
987 
988 			if (kmemcheck_fault(regs, address, error_code))
989 				return;
990 		}
991 
992 		/* Can handle a stale RO->RW TLB: */
993 		if (spurious_fault(error_code, address))
994 			return;
995 
996 		/* kprobes don't want to hook the spurious faults: */
997 		if (notify_page_fault(regs))
998 			return;
999 		/*
1000 		 * Don't take the mm semaphore here. If we fixup a prefetch
1001 		 * fault we could otherwise deadlock:
1002 		 */
1003 		bad_area_nosemaphore(regs, error_code, address);
1004 
1005 		return;
1006 	}
1007 
1008 	/* kprobes don't want to hook the spurious faults: */
1009 	if (unlikely(notify_page_fault(regs)))
1010 		return;
1011 	/*
1012 	 * It's safe to allow irq's after cr2 has been saved and the
1013 	 * vmalloc fault has been handled.
1014 	 *
1015 	 * User-mode registers count as a user access even for any
1016 	 * potential system fault or CPU buglet:
1017 	 */
1018 	if (user_mode_vm(regs)) {
1019 		local_irq_enable();
1020 		error_code |= PF_USER;
1021 	} else {
1022 		if (regs->flags & X86_EFLAGS_IF)
1023 			local_irq_enable();
1024 	}
1025 
1026 	if (unlikely(error_code & PF_RSVD))
1027 		pgtable_bad(regs, error_code, address);
1028 
1029 	perf_swcounter_event(PERF_COUNT_SW_PAGE_FAULTS, 1, 0, regs, address);
1030 
1031 	/*
1032 	 * If we're in an interrupt, have no user context or are running
1033 	 * in an atomic region then we must not take the fault:
1034 	 */
1035 	if (unlikely(in_atomic() || !mm)) {
1036 		bad_area_nosemaphore(regs, error_code, address);
1037 		return;
1038 	}
1039 
1040 	/*
1041 	 * When running in the kernel we expect faults to occur only to
1042 	 * addresses in user space.  All other faults represent errors in
1043 	 * the kernel and should generate an OOPS.  Unfortunately, in the
1044 	 * case of an erroneous fault occurring in a code path which already
1045 	 * holds mmap_sem we will deadlock attempting to validate the fault
1046 	 * against the address space.  Luckily the kernel only validly
1047 	 * references user space from well defined areas of code, which are
1048 	 * listed in the exceptions table.
1049 	 *
1050 	 * As the vast majority of faults will be valid we will only perform
1051 	 * the source reference check when there is a possibility of a
1052 	 * deadlock. Attempt to lock the address space, if we cannot we then
1053 	 * validate the source. If this is invalid we can skip the address
1054 	 * space check, thus avoiding the deadlock:
1055 	 */
1056 	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
1057 		if ((error_code & PF_USER) == 0 &&
1058 		    !search_exception_tables(regs->ip)) {
1059 			bad_area_nosemaphore(regs, error_code, address);
1060 			return;
1061 		}
1062 		down_read(&mm->mmap_sem);
1063 	} else {
1064 		/*
1065 		 * The above down_read_trylock() might have succeeded in
1066 		 * which case we'll have missed the might_sleep() from
1067 		 * down_read():
1068 		 */
1069 		might_sleep();
1070 	}
1071 
1072 	vma = find_vma(mm, address);
1073 	if (unlikely(!vma)) {
1074 		bad_area(regs, error_code, address);
1075 		return;
1076 	}
1077 	if (likely(vma->vm_start <= address))
1078 		goto good_area;
1079 	if (unlikely(!(vma->vm_flags & VM_GROWSDOWN))) {
1080 		bad_area(regs, error_code, address);
1081 		return;
1082 	}
1083 	if (error_code & PF_USER) {
1084 		/*
1085 		 * Accessing the stack below %sp is always a bug.
1086 		 * The large cushion allows instructions like enter
1087 		 * and pusha to work. ("enter $65535, $31" pushes
1088 		 * 32 pointers and then decrements %sp by 65535.)
1089 		 */
1090 		if (unlikely(address + 65536 + 32 * sizeof(unsigned long) < regs->sp)) {
1091 			bad_area(regs, error_code, address);
1092 			return;
1093 		}
1094 	}
1095 	if (unlikely(expand_stack(vma, address))) {
1096 		bad_area(regs, error_code, address);
1097 		return;
1098 	}
1099 
1100 	/*
1101 	 * Ok, we have a good vm_area for this memory access, so
1102 	 * we can handle it..
1103 	 */
1104 good_area:
1105 	write = error_code & PF_WRITE;
1106 
1107 	if (unlikely(access_error(error_code, write, vma))) {
1108 		bad_area_access_error(regs, error_code, address);
1109 		return;
1110 	}
1111 
1112 	/*
1113 	 * If for any reason at all we couldn't handle the fault,
1114 	 * make sure we exit gracefully rather than endlessly redo
1115 	 * the fault:
1116 	 */
1117 	fault = handle_mm_fault(mm, vma, address, write ? FAULT_FLAG_WRITE : 0);
1118 
1119 	if (unlikely(fault & VM_FAULT_ERROR)) {
1120 		mm_fault_error(regs, error_code, address, fault);
1121 		return;
1122 	}
1123 
1124 	if (fault & VM_FAULT_MAJOR) {
1125 		tsk->maj_flt++;
1126 		perf_swcounter_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, 0,
1127 				     regs, address);
1128 	} else {
1129 		tsk->min_flt++;
1130 		perf_swcounter_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, 0,
1131 				     regs, address);
1132 	}
1133 
1134 	check_v8086_mode(regs, address, tsk);
1135 
1136 	up_read(&mm->mmap_sem);
1137 }
1138