1 /* 2 * Copyright (C) 1995 Linus Torvalds 3 * Copyright (C) 2001, 2002 Andi Kleen, SuSE Labs. 4 * Copyright (C) 2008-2009, Red Hat Inc., Ingo Molnar 5 */ 6 #include <linux/magic.h> /* STACK_END_MAGIC */ 7 #include <linux/sched.h> /* test_thread_flag(), ... */ 8 #include <linux/kdebug.h> /* oops_begin/end, ... */ 9 #include <linux/module.h> /* search_exception_table */ 10 #include <linux/bootmem.h> /* max_low_pfn */ 11 #include <linux/kprobes.h> /* __kprobes, ... */ 12 #include <linux/mmiotrace.h> /* kmmio_handler, ... */ 13 #include <linux/perf_counter.h> /* perf_swcounter_event */ 14 15 #include <asm/traps.h> /* dotraplinkage, ... */ 16 #include <asm/pgalloc.h> /* pgd_*(), ... */ 17 #include <asm/kmemcheck.h> /* kmemcheck_*(), ... */ 18 19 /* 20 * Page fault error code bits: 21 * 22 * bit 0 == 0: no page found 1: protection fault 23 * bit 1 == 0: read access 1: write access 24 * bit 2 == 0: kernel-mode access 1: user-mode access 25 * bit 3 == 1: use of reserved bit detected 26 * bit 4 == 1: fault was an instruction fetch 27 */ 28 enum x86_pf_error_code { 29 30 PF_PROT = 1 << 0, 31 PF_WRITE = 1 << 1, 32 PF_USER = 1 << 2, 33 PF_RSVD = 1 << 3, 34 PF_INSTR = 1 << 4, 35 }; 36 37 /* 38 * Returns 0 if mmiotrace is disabled, or if the fault is not 39 * handled by mmiotrace: 40 */ 41 static inline int kmmio_fault(struct pt_regs *regs, unsigned long addr) 42 { 43 if (unlikely(is_kmmio_active())) 44 if (kmmio_handler(regs, addr) == 1) 45 return -1; 46 return 0; 47 } 48 49 static inline int notify_page_fault(struct pt_regs *regs) 50 { 51 int ret = 0; 52 53 /* kprobe_running() needs smp_processor_id() */ 54 if (kprobes_built_in() && !user_mode_vm(regs)) { 55 preempt_disable(); 56 if (kprobe_running() && kprobe_fault_handler(regs, 14)) 57 ret = 1; 58 preempt_enable(); 59 } 60 61 return ret; 62 } 63 64 /* 65 * Prefetch quirks: 66 * 67 * 32-bit mode: 68 * 69 * Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch. 70 * Check that here and ignore it. 71 * 72 * 64-bit mode: 73 * 74 * Sometimes the CPU reports invalid exceptions on prefetch. 75 * Check that here and ignore it. 76 * 77 * Opcode checker based on code by Richard Brunner. 78 */ 79 static inline int 80 check_prefetch_opcode(struct pt_regs *regs, unsigned char *instr, 81 unsigned char opcode, int *prefetch) 82 { 83 unsigned char instr_hi = opcode & 0xf0; 84 unsigned char instr_lo = opcode & 0x0f; 85 86 switch (instr_hi) { 87 case 0x20: 88 case 0x30: 89 /* 90 * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes. 91 * In X86_64 long mode, the CPU will signal invalid 92 * opcode if some of these prefixes are present so 93 * X86_64 will never get here anyway 94 */ 95 return ((instr_lo & 7) == 0x6); 96 #ifdef CONFIG_X86_64 97 case 0x40: 98 /* 99 * In AMD64 long mode 0x40..0x4F are valid REX prefixes 100 * Need to figure out under what instruction mode the 101 * instruction was issued. Could check the LDT for lm, 102 * but for now it's good enough to assume that long 103 * mode only uses well known segments or kernel. 104 */ 105 return (!user_mode(regs)) || (regs->cs == __USER_CS); 106 #endif 107 case 0x60: 108 /* 0x64 thru 0x67 are valid prefixes in all modes. */ 109 return (instr_lo & 0xC) == 0x4; 110 case 0xF0: 111 /* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */ 112 return !instr_lo || (instr_lo>>1) == 1; 113 case 0x00: 114 /* Prefetch instruction is 0x0F0D or 0x0F18 */ 115 if (probe_kernel_address(instr, opcode)) 116 return 0; 117 118 *prefetch = (instr_lo == 0xF) && 119 (opcode == 0x0D || opcode == 0x18); 120 return 0; 121 default: 122 return 0; 123 } 124 } 125 126 static int 127 is_prefetch(struct pt_regs *regs, unsigned long error_code, unsigned long addr) 128 { 129 unsigned char *max_instr; 130 unsigned char *instr; 131 int prefetch = 0; 132 133 /* 134 * If it was a exec (instruction fetch) fault on NX page, then 135 * do not ignore the fault: 136 */ 137 if (error_code & PF_INSTR) 138 return 0; 139 140 instr = (void *)convert_ip_to_linear(current, regs); 141 max_instr = instr + 15; 142 143 if (user_mode(regs) && instr >= (unsigned char *)TASK_SIZE) 144 return 0; 145 146 while (instr < max_instr) { 147 unsigned char opcode; 148 149 if (probe_kernel_address(instr, opcode)) 150 break; 151 152 instr++; 153 154 if (!check_prefetch_opcode(regs, instr, opcode, &prefetch)) 155 break; 156 } 157 return prefetch; 158 } 159 160 static void 161 force_sig_info_fault(int si_signo, int si_code, unsigned long address, 162 struct task_struct *tsk) 163 { 164 siginfo_t info; 165 166 info.si_signo = si_signo; 167 info.si_errno = 0; 168 info.si_code = si_code; 169 info.si_addr = (void __user *)address; 170 171 force_sig_info(si_signo, &info, tsk); 172 } 173 174 DEFINE_SPINLOCK(pgd_lock); 175 LIST_HEAD(pgd_list); 176 177 #ifdef CONFIG_X86_32 178 static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address) 179 { 180 unsigned index = pgd_index(address); 181 pgd_t *pgd_k; 182 pud_t *pud, *pud_k; 183 pmd_t *pmd, *pmd_k; 184 185 pgd += index; 186 pgd_k = init_mm.pgd + index; 187 188 if (!pgd_present(*pgd_k)) 189 return NULL; 190 191 /* 192 * set_pgd(pgd, *pgd_k); here would be useless on PAE 193 * and redundant with the set_pmd() on non-PAE. As would 194 * set_pud. 195 */ 196 pud = pud_offset(pgd, address); 197 pud_k = pud_offset(pgd_k, address); 198 if (!pud_present(*pud_k)) 199 return NULL; 200 201 pmd = pmd_offset(pud, address); 202 pmd_k = pmd_offset(pud_k, address); 203 if (!pmd_present(*pmd_k)) 204 return NULL; 205 206 if (!pmd_present(*pmd)) 207 set_pmd(pmd, *pmd_k); 208 else 209 BUG_ON(pmd_page(*pmd) != pmd_page(*pmd_k)); 210 211 return pmd_k; 212 } 213 214 void vmalloc_sync_all(void) 215 { 216 unsigned long address; 217 218 if (SHARED_KERNEL_PMD) 219 return; 220 221 for (address = VMALLOC_START & PMD_MASK; 222 address >= TASK_SIZE && address < FIXADDR_TOP; 223 address += PMD_SIZE) { 224 225 unsigned long flags; 226 struct page *page; 227 228 spin_lock_irqsave(&pgd_lock, flags); 229 list_for_each_entry(page, &pgd_list, lru) { 230 if (!vmalloc_sync_one(page_address(page), address)) 231 break; 232 } 233 spin_unlock_irqrestore(&pgd_lock, flags); 234 } 235 } 236 237 /* 238 * 32-bit: 239 * 240 * Handle a fault on the vmalloc or module mapping area 241 */ 242 static noinline int vmalloc_fault(unsigned long address) 243 { 244 unsigned long pgd_paddr; 245 pmd_t *pmd_k; 246 pte_t *pte_k; 247 248 /* Make sure we are in vmalloc area: */ 249 if (!(address >= VMALLOC_START && address < VMALLOC_END)) 250 return -1; 251 252 /* 253 * Synchronize this task's top level page-table 254 * with the 'reference' page table. 255 * 256 * Do _not_ use "current" here. We might be inside 257 * an interrupt in the middle of a task switch.. 258 */ 259 pgd_paddr = read_cr3(); 260 pmd_k = vmalloc_sync_one(__va(pgd_paddr), address); 261 if (!pmd_k) 262 return -1; 263 264 pte_k = pte_offset_kernel(pmd_k, address); 265 if (!pte_present(*pte_k)) 266 return -1; 267 268 return 0; 269 } 270 271 /* 272 * Did it hit the DOS screen memory VA from vm86 mode? 273 */ 274 static inline void 275 check_v8086_mode(struct pt_regs *regs, unsigned long address, 276 struct task_struct *tsk) 277 { 278 unsigned long bit; 279 280 if (!v8086_mode(regs)) 281 return; 282 283 bit = (address - 0xA0000) >> PAGE_SHIFT; 284 if (bit < 32) 285 tsk->thread.screen_bitmap |= 1 << bit; 286 } 287 288 static void dump_pagetable(unsigned long address) 289 { 290 __typeof__(pte_val(__pte(0))) page; 291 292 page = read_cr3(); 293 page = ((__typeof__(page) *) __va(page))[address >> PGDIR_SHIFT]; 294 295 #ifdef CONFIG_X86_PAE 296 printk("*pdpt = %016Lx ", page); 297 if ((page >> PAGE_SHIFT) < max_low_pfn 298 && page & _PAGE_PRESENT) { 299 page &= PAGE_MASK; 300 page = ((__typeof__(page) *) __va(page))[(address >> PMD_SHIFT) 301 & (PTRS_PER_PMD - 1)]; 302 printk(KERN_CONT "*pde = %016Lx ", page); 303 page &= ~_PAGE_NX; 304 } 305 #else 306 printk("*pde = %08lx ", page); 307 #endif 308 309 /* 310 * We must not directly access the pte in the highpte 311 * case if the page table is located in highmem. 312 * And let's rather not kmap-atomic the pte, just in case 313 * it's allocated already: 314 */ 315 if ((page >> PAGE_SHIFT) < max_low_pfn 316 && (page & _PAGE_PRESENT) 317 && !(page & _PAGE_PSE)) { 318 319 page &= PAGE_MASK; 320 page = ((__typeof__(page) *) __va(page))[(address >> PAGE_SHIFT) 321 & (PTRS_PER_PTE - 1)]; 322 printk("*pte = %0*Lx ", sizeof(page)*2, (u64)page); 323 } 324 325 printk("\n"); 326 } 327 328 #else /* CONFIG_X86_64: */ 329 330 void vmalloc_sync_all(void) 331 { 332 unsigned long address; 333 334 for (address = VMALLOC_START & PGDIR_MASK; address <= VMALLOC_END; 335 address += PGDIR_SIZE) { 336 337 const pgd_t *pgd_ref = pgd_offset_k(address); 338 unsigned long flags; 339 struct page *page; 340 341 if (pgd_none(*pgd_ref)) 342 continue; 343 344 spin_lock_irqsave(&pgd_lock, flags); 345 list_for_each_entry(page, &pgd_list, lru) { 346 pgd_t *pgd; 347 pgd = (pgd_t *)page_address(page) + pgd_index(address); 348 if (pgd_none(*pgd)) 349 set_pgd(pgd, *pgd_ref); 350 else 351 BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref)); 352 } 353 spin_unlock_irqrestore(&pgd_lock, flags); 354 } 355 } 356 357 /* 358 * 64-bit: 359 * 360 * Handle a fault on the vmalloc area 361 * 362 * This assumes no large pages in there. 363 */ 364 static noinline int vmalloc_fault(unsigned long address) 365 { 366 pgd_t *pgd, *pgd_ref; 367 pud_t *pud, *pud_ref; 368 pmd_t *pmd, *pmd_ref; 369 pte_t *pte, *pte_ref; 370 371 /* Make sure we are in vmalloc area: */ 372 if (!(address >= VMALLOC_START && address < VMALLOC_END)) 373 return -1; 374 375 /* 376 * Copy kernel mappings over when needed. This can also 377 * happen within a race in page table update. In the later 378 * case just flush: 379 */ 380 pgd = pgd_offset(current->active_mm, address); 381 pgd_ref = pgd_offset_k(address); 382 if (pgd_none(*pgd_ref)) 383 return -1; 384 385 if (pgd_none(*pgd)) 386 set_pgd(pgd, *pgd_ref); 387 else 388 BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref)); 389 390 /* 391 * Below here mismatches are bugs because these lower tables 392 * are shared: 393 */ 394 395 pud = pud_offset(pgd, address); 396 pud_ref = pud_offset(pgd_ref, address); 397 if (pud_none(*pud_ref)) 398 return -1; 399 400 if (pud_none(*pud) || pud_page_vaddr(*pud) != pud_page_vaddr(*pud_ref)) 401 BUG(); 402 403 pmd = pmd_offset(pud, address); 404 pmd_ref = pmd_offset(pud_ref, address); 405 if (pmd_none(*pmd_ref)) 406 return -1; 407 408 if (pmd_none(*pmd) || pmd_page(*pmd) != pmd_page(*pmd_ref)) 409 BUG(); 410 411 pte_ref = pte_offset_kernel(pmd_ref, address); 412 if (!pte_present(*pte_ref)) 413 return -1; 414 415 pte = pte_offset_kernel(pmd, address); 416 417 /* 418 * Don't use pte_page here, because the mappings can point 419 * outside mem_map, and the NUMA hash lookup cannot handle 420 * that: 421 */ 422 if (!pte_present(*pte) || pte_pfn(*pte) != pte_pfn(*pte_ref)) 423 BUG(); 424 425 return 0; 426 } 427 428 static const char errata93_warning[] = 429 KERN_ERR 430 "******* Your BIOS seems to not contain a fix for K8 errata #93\n" 431 "******* Working around it, but it may cause SEGVs or burn power.\n" 432 "******* Please consider a BIOS update.\n" 433 "******* Disabling USB legacy in the BIOS may also help.\n"; 434 435 /* 436 * No vm86 mode in 64-bit mode: 437 */ 438 static inline void 439 check_v8086_mode(struct pt_regs *regs, unsigned long address, 440 struct task_struct *tsk) 441 { 442 } 443 444 static int bad_address(void *p) 445 { 446 unsigned long dummy; 447 448 return probe_kernel_address((unsigned long *)p, dummy); 449 } 450 451 static void dump_pagetable(unsigned long address) 452 { 453 pgd_t *pgd; 454 pud_t *pud; 455 pmd_t *pmd; 456 pte_t *pte; 457 458 pgd = (pgd_t *)read_cr3(); 459 460 pgd = __va((unsigned long)pgd & PHYSICAL_PAGE_MASK); 461 462 pgd += pgd_index(address); 463 if (bad_address(pgd)) 464 goto bad; 465 466 printk("PGD %lx ", pgd_val(*pgd)); 467 468 if (!pgd_present(*pgd)) 469 goto out; 470 471 pud = pud_offset(pgd, address); 472 if (bad_address(pud)) 473 goto bad; 474 475 printk("PUD %lx ", pud_val(*pud)); 476 if (!pud_present(*pud) || pud_large(*pud)) 477 goto out; 478 479 pmd = pmd_offset(pud, address); 480 if (bad_address(pmd)) 481 goto bad; 482 483 printk("PMD %lx ", pmd_val(*pmd)); 484 if (!pmd_present(*pmd) || pmd_large(*pmd)) 485 goto out; 486 487 pte = pte_offset_kernel(pmd, address); 488 if (bad_address(pte)) 489 goto bad; 490 491 printk("PTE %lx", pte_val(*pte)); 492 out: 493 printk("\n"); 494 return; 495 bad: 496 printk("BAD\n"); 497 } 498 499 #endif /* CONFIG_X86_64 */ 500 501 /* 502 * Workaround for K8 erratum #93 & buggy BIOS. 503 * 504 * BIOS SMM functions are required to use a specific workaround 505 * to avoid corruption of the 64bit RIP register on C stepping K8. 506 * 507 * A lot of BIOS that didn't get tested properly miss this. 508 * 509 * The OS sees this as a page fault with the upper 32bits of RIP cleared. 510 * Try to work around it here. 511 * 512 * Note we only handle faults in kernel here. 513 * Does nothing on 32-bit. 514 */ 515 static int is_errata93(struct pt_regs *regs, unsigned long address) 516 { 517 #ifdef CONFIG_X86_64 518 if (address != regs->ip) 519 return 0; 520 521 if ((address >> 32) != 0) 522 return 0; 523 524 address |= 0xffffffffUL << 32; 525 if ((address >= (u64)_stext && address <= (u64)_etext) || 526 (address >= MODULES_VADDR && address <= MODULES_END)) { 527 printk_once(errata93_warning); 528 regs->ip = address; 529 return 1; 530 } 531 #endif 532 return 0; 533 } 534 535 /* 536 * Work around K8 erratum #100 K8 in compat mode occasionally jumps 537 * to illegal addresses >4GB. 538 * 539 * We catch this in the page fault handler because these addresses 540 * are not reachable. Just detect this case and return. Any code 541 * segment in LDT is compatibility mode. 542 */ 543 static int is_errata100(struct pt_regs *regs, unsigned long address) 544 { 545 #ifdef CONFIG_X86_64 546 if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) && (address >> 32)) 547 return 1; 548 #endif 549 return 0; 550 } 551 552 static int is_f00f_bug(struct pt_regs *regs, unsigned long address) 553 { 554 #ifdef CONFIG_X86_F00F_BUG 555 unsigned long nr; 556 557 /* 558 * Pentium F0 0F C7 C8 bug workaround: 559 */ 560 if (boot_cpu_data.f00f_bug) { 561 nr = (address - idt_descr.address) >> 3; 562 563 if (nr == 6) { 564 do_invalid_op(regs, 0); 565 return 1; 566 } 567 } 568 #endif 569 return 0; 570 } 571 572 static const char nx_warning[] = KERN_CRIT 573 "kernel tried to execute NX-protected page - exploit attempt? (uid: %d)\n"; 574 575 static void 576 show_fault_oops(struct pt_regs *regs, unsigned long error_code, 577 unsigned long address) 578 { 579 if (!oops_may_print()) 580 return; 581 582 if (error_code & PF_INSTR) { 583 unsigned int level; 584 585 pte_t *pte = lookup_address(address, &level); 586 587 if (pte && pte_present(*pte) && !pte_exec(*pte)) 588 printk(nx_warning, current_uid()); 589 } 590 591 printk(KERN_ALERT "BUG: unable to handle kernel "); 592 if (address < PAGE_SIZE) 593 printk(KERN_CONT "NULL pointer dereference"); 594 else 595 printk(KERN_CONT "paging request"); 596 597 printk(KERN_CONT " at %p\n", (void *) address); 598 printk(KERN_ALERT "IP:"); 599 printk_address(regs->ip, 1); 600 601 dump_pagetable(address); 602 } 603 604 static noinline void 605 pgtable_bad(struct pt_regs *regs, unsigned long error_code, 606 unsigned long address) 607 { 608 struct task_struct *tsk; 609 unsigned long flags; 610 int sig; 611 612 flags = oops_begin(); 613 tsk = current; 614 sig = SIGKILL; 615 616 printk(KERN_ALERT "%s: Corrupted page table at address %lx\n", 617 tsk->comm, address); 618 dump_pagetable(address); 619 620 tsk->thread.cr2 = address; 621 tsk->thread.trap_no = 14; 622 tsk->thread.error_code = error_code; 623 624 if (__die("Bad pagetable", regs, error_code)) 625 sig = 0; 626 627 oops_end(flags, regs, sig); 628 } 629 630 static noinline void 631 no_context(struct pt_regs *regs, unsigned long error_code, 632 unsigned long address) 633 { 634 struct task_struct *tsk = current; 635 unsigned long *stackend; 636 unsigned long flags; 637 int sig; 638 639 /* Are we prepared to handle this kernel fault? */ 640 if (fixup_exception(regs)) 641 return; 642 643 /* 644 * 32-bit: 645 * 646 * Valid to do another page fault here, because if this fault 647 * had been triggered by is_prefetch fixup_exception would have 648 * handled it. 649 * 650 * 64-bit: 651 * 652 * Hall of shame of CPU/BIOS bugs. 653 */ 654 if (is_prefetch(regs, error_code, address)) 655 return; 656 657 if (is_errata93(regs, address)) 658 return; 659 660 /* 661 * Oops. The kernel tried to access some bad page. We'll have to 662 * terminate things with extreme prejudice: 663 */ 664 flags = oops_begin(); 665 666 show_fault_oops(regs, error_code, address); 667 668 stackend = end_of_stack(tsk); 669 if (*stackend != STACK_END_MAGIC) 670 printk(KERN_ALERT "Thread overran stack, or stack corrupted\n"); 671 672 tsk->thread.cr2 = address; 673 tsk->thread.trap_no = 14; 674 tsk->thread.error_code = error_code; 675 676 sig = SIGKILL; 677 if (__die("Oops", regs, error_code)) 678 sig = 0; 679 680 /* Executive summary in case the body of the oops scrolled away */ 681 printk(KERN_EMERG "CR2: %016lx\n", address); 682 683 oops_end(flags, regs, sig); 684 } 685 686 /* 687 * Print out info about fatal segfaults, if the show_unhandled_signals 688 * sysctl is set: 689 */ 690 static inline void 691 show_signal_msg(struct pt_regs *regs, unsigned long error_code, 692 unsigned long address, struct task_struct *tsk) 693 { 694 if (!unhandled_signal(tsk, SIGSEGV)) 695 return; 696 697 if (!printk_ratelimit()) 698 return; 699 700 printk("%s%s[%d]: segfault at %lx ip %p sp %p error %lx", 701 task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG, 702 tsk->comm, task_pid_nr(tsk), address, 703 (void *)regs->ip, (void *)regs->sp, error_code); 704 705 print_vma_addr(KERN_CONT " in ", regs->ip); 706 707 printk(KERN_CONT "\n"); 708 } 709 710 static void 711 __bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code, 712 unsigned long address, int si_code) 713 { 714 struct task_struct *tsk = current; 715 716 /* User mode accesses just cause a SIGSEGV */ 717 if (error_code & PF_USER) { 718 /* 719 * It's possible to have interrupts off here: 720 */ 721 local_irq_enable(); 722 723 /* 724 * Valid to do another page fault here because this one came 725 * from user space: 726 */ 727 if (is_prefetch(regs, error_code, address)) 728 return; 729 730 if (is_errata100(regs, address)) 731 return; 732 733 if (unlikely(show_unhandled_signals)) 734 show_signal_msg(regs, error_code, address, tsk); 735 736 /* Kernel addresses are always protection faults: */ 737 tsk->thread.cr2 = address; 738 tsk->thread.error_code = error_code | (address >= TASK_SIZE); 739 tsk->thread.trap_no = 14; 740 741 force_sig_info_fault(SIGSEGV, si_code, address, tsk); 742 743 return; 744 } 745 746 if (is_f00f_bug(regs, address)) 747 return; 748 749 no_context(regs, error_code, address); 750 } 751 752 static noinline void 753 bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code, 754 unsigned long address) 755 { 756 __bad_area_nosemaphore(regs, error_code, address, SEGV_MAPERR); 757 } 758 759 static void 760 __bad_area(struct pt_regs *regs, unsigned long error_code, 761 unsigned long address, int si_code) 762 { 763 struct mm_struct *mm = current->mm; 764 765 /* 766 * Something tried to access memory that isn't in our memory map.. 767 * Fix it, but check if it's kernel or user first.. 768 */ 769 up_read(&mm->mmap_sem); 770 771 __bad_area_nosemaphore(regs, error_code, address, si_code); 772 } 773 774 static noinline void 775 bad_area(struct pt_regs *regs, unsigned long error_code, unsigned long address) 776 { 777 __bad_area(regs, error_code, address, SEGV_MAPERR); 778 } 779 780 static noinline void 781 bad_area_access_error(struct pt_regs *regs, unsigned long error_code, 782 unsigned long address) 783 { 784 __bad_area(regs, error_code, address, SEGV_ACCERR); 785 } 786 787 /* TODO: fixup for "mm-invoke-oom-killer-from-page-fault.patch" */ 788 static void 789 out_of_memory(struct pt_regs *regs, unsigned long error_code, 790 unsigned long address) 791 { 792 /* 793 * We ran out of memory, call the OOM killer, and return the userspace 794 * (which will retry the fault, or kill us if we got oom-killed): 795 */ 796 up_read(¤t->mm->mmap_sem); 797 798 pagefault_out_of_memory(); 799 } 800 801 static void 802 do_sigbus(struct pt_regs *regs, unsigned long error_code, unsigned long address) 803 { 804 struct task_struct *tsk = current; 805 struct mm_struct *mm = tsk->mm; 806 807 up_read(&mm->mmap_sem); 808 809 /* Kernel mode? Handle exceptions or die: */ 810 if (!(error_code & PF_USER)) 811 no_context(regs, error_code, address); 812 813 /* User-space => ok to do another page fault: */ 814 if (is_prefetch(regs, error_code, address)) 815 return; 816 817 tsk->thread.cr2 = address; 818 tsk->thread.error_code = error_code; 819 tsk->thread.trap_no = 14; 820 821 force_sig_info_fault(SIGBUS, BUS_ADRERR, address, tsk); 822 } 823 824 static noinline void 825 mm_fault_error(struct pt_regs *regs, unsigned long error_code, 826 unsigned long address, unsigned int fault) 827 { 828 if (fault & VM_FAULT_OOM) { 829 out_of_memory(regs, error_code, address); 830 } else { 831 if (fault & VM_FAULT_SIGBUS) 832 do_sigbus(regs, error_code, address); 833 else 834 BUG(); 835 } 836 } 837 838 static int spurious_fault_check(unsigned long error_code, pte_t *pte) 839 { 840 if ((error_code & PF_WRITE) && !pte_write(*pte)) 841 return 0; 842 843 if ((error_code & PF_INSTR) && !pte_exec(*pte)) 844 return 0; 845 846 return 1; 847 } 848 849 /* 850 * Handle a spurious fault caused by a stale TLB entry. 851 * 852 * This allows us to lazily refresh the TLB when increasing the 853 * permissions of a kernel page (RO -> RW or NX -> X). Doing it 854 * eagerly is very expensive since that implies doing a full 855 * cross-processor TLB flush, even if no stale TLB entries exist 856 * on other processors. 857 * 858 * There are no security implications to leaving a stale TLB when 859 * increasing the permissions on a page. 860 */ 861 static noinline int 862 spurious_fault(unsigned long error_code, unsigned long address) 863 { 864 pgd_t *pgd; 865 pud_t *pud; 866 pmd_t *pmd; 867 pte_t *pte; 868 int ret; 869 870 /* Reserved-bit violation or user access to kernel space? */ 871 if (error_code & (PF_USER | PF_RSVD)) 872 return 0; 873 874 pgd = init_mm.pgd + pgd_index(address); 875 if (!pgd_present(*pgd)) 876 return 0; 877 878 pud = pud_offset(pgd, address); 879 if (!pud_present(*pud)) 880 return 0; 881 882 if (pud_large(*pud)) 883 return spurious_fault_check(error_code, (pte_t *) pud); 884 885 pmd = pmd_offset(pud, address); 886 if (!pmd_present(*pmd)) 887 return 0; 888 889 if (pmd_large(*pmd)) 890 return spurious_fault_check(error_code, (pte_t *) pmd); 891 892 pte = pte_offset_kernel(pmd, address); 893 if (!pte_present(*pte)) 894 return 0; 895 896 ret = spurious_fault_check(error_code, pte); 897 if (!ret) 898 return 0; 899 900 /* 901 * Make sure we have permissions in PMD. 902 * If not, then there's a bug in the page tables: 903 */ 904 ret = spurious_fault_check(error_code, (pte_t *) pmd); 905 WARN_ONCE(!ret, "PMD has incorrect permission bits\n"); 906 907 return ret; 908 } 909 910 int show_unhandled_signals = 1; 911 912 static inline int 913 access_error(unsigned long error_code, int write, struct vm_area_struct *vma) 914 { 915 if (write) { 916 /* write, present and write, not present: */ 917 if (unlikely(!(vma->vm_flags & VM_WRITE))) 918 return 1; 919 return 0; 920 } 921 922 /* read, present: */ 923 if (unlikely(error_code & PF_PROT)) 924 return 1; 925 926 /* read, not present: */ 927 if (unlikely(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))) 928 return 1; 929 930 return 0; 931 } 932 933 static int fault_in_kernel_space(unsigned long address) 934 { 935 return address >= TASK_SIZE_MAX; 936 } 937 938 /* 939 * This routine handles page faults. It determines the address, 940 * and the problem, and then passes it off to one of the appropriate 941 * routines. 942 */ 943 dotraplinkage void __kprobes 944 do_page_fault(struct pt_regs *regs, unsigned long error_code) 945 { 946 struct vm_area_struct *vma; 947 struct task_struct *tsk; 948 unsigned long address; 949 struct mm_struct *mm; 950 int write; 951 int fault; 952 953 tsk = current; 954 mm = tsk->mm; 955 956 /* Get the faulting address: */ 957 address = read_cr2(); 958 959 /* 960 * Detect and handle instructions that would cause a page fault for 961 * both a tracked kernel page and a userspace page. 962 */ 963 if (kmemcheck_active(regs)) 964 kmemcheck_hide(regs); 965 prefetchw(&mm->mmap_sem); 966 967 if (unlikely(kmmio_fault(regs, address))) 968 return; 969 970 /* 971 * We fault-in kernel-space virtual memory on-demand. The 972 * 'reference' page table is init_mm.pgd. 973 * 974 * NOTE! We MUST NOT take any locks for this case. We may 975 * be in an interrupt or a critical region, and should 976 * only copy the information from the master page table, 977 * nothing more. 978 * 979 * This verifies that the fault happens in kernel space 980 * (error_code & 4) == 0, and that the fault was not a 981 * protection error (error_code & 9) == 0. 982 */ 983 if (unlikely(fault_in_kernel_space(address))) { 984 if (!(error_code & (PF_RSVD | PF_USER | PF_PROT))) { 985 if (vmalloc_fault(address) >= 0) 986 return; 987 988 if (kmemcheck_fault(regs, address, error_code)) 989 return; 990 } 991 992 /* Can handle a stale RO->RW TLB: */ 993 if (spurious_fault(error_code, address)) 994 return; 995 996 /* kprobes don't want to hook the spurious faults: */ 997 if (notify_page_fault(regs)) 998 return; 999 /* 1000 * Don't take the mm semaphore here. If we fixup a prefetch 1001 * fault we could otherwise deadlock: 1002 */ 1003 bad_area_nosemaphore(regs, error_code, address); 1004 1005 return; 1006 } 1007 1008 /* kprobes don't want to hook the spurious faults: */ 1009 if (unlikely(notify_page_fault(regs))) 1010 return; 1011 /* 1012 * It's safe to allow irq's after cr2 has been saved and the 1013 * vmalloc fault has been handled. 1014 * 1015 * User-mode registers count as a user access even for any 1016 * potential system fault or CPU buglet: 1017 */ 1018 if (user_mode_vm(regs)) { 1019 local_irq_enable(); 1020 error_code |= PF_USER; 1021 } else { 1022 if (regs->flags & X86_EFLAGS_IF) 1023 local_irq_enable(); 1024 } 1025 1026 if (unlikely(error_code & PF_RSVD)) 1027 pgtable_bad(regs, error_code, address); 1028 1029 perf_swcounter_event(PERF_COUNT_SW_PAGE_FAULTS, 1, 0, regs, address); 1030 1031 /* 1032 * If we're in an interrupt, have no user context or are running 1033 * in an atomic region then we must not take the fault: 1034 */ 1035 if (unlikely(in_atomic() || !mm)) { 1036 bad_area_nosemaphore(regs, error_code, address); 1037 return; 1038 } 1039 1040 /* 1041 * When running in the kernel we expect faults to occur only to 1042 * addresses in user space. All other faults represent errors in 1043 * the kernel and should generate an OOPS. Unfortunately, in the 1044 * case of an erroneous fault occurring in a code path which already 1045 * holds mmap_sem we will deadlock attempting to validate the fault 1046 * against the address space. Luckily the kernel only validly 1047 * references user space from well defined areas of code, which are 1048 * listed in the exceptions table. 1049 * 1050 * As the vast majority of faults will be valid we will only perform 1051 * the source reference check when there is a possibility of a 1052 * deadlock. Attempt to lock the address space, if we cannot we then 1053 * validate the source. If this is invalid we can skip the address 1054 * space check, thus avoiding the deadlock: 1055 */ 1056 if (unlikely(!down_read_trylock(&mm->mmap_sem))) { 1057 if ((error_code & PF_USER) == 0 && 1058 !search_exception_tables(regs->ip)) { 1059 bad_area_nosemaphore(regs, error_code, address); 1060 return; 1061 } 1062 down_read(&mm->mmap_sem); 1063 } else { 1064 /* 1065 * The above down_read_trylock() might have succeeded in 1066 * which case we'll have missed the might_sleep() from 1067 * down_read(): 1068 */ 1069 might_sleep(); 1070 } 1071 1072 vma = find_vma(mm, address); 1073 if (unlikely(!vma)) { 1074 bad_area(regs, error_code, address); 1075 return; 1076 } 1077 if (likely(vma->vm_start <= address)) 1078 goto good_area; 1079 if (unlikely(!(vma->vm_flags & VM_GROWSDOWN))) { 1080 bad_area(regs, error_code, address); 1081 return; 1082 } 1083 if (error_code & PF_USER) { 1084 /* 1085 * Accessing the stack below %sp is always a bug. 1086 * The large cushion allows instructions like enter 1087 * and pusha to work. ("enter $65535, $31" pushes 1088 * 32 pointers and then decrements %sp by 65535.) 1089 */ 1090 if (unlikely(address + 65536 + 32 * sizeof(unsigned long) < regs->sp)) { 1091 bad_area(regs, error_code, address); 1092 return; 1093 } 1094 } 1095 if (unlikely(expand_stack(vma, address))) { 1096 bad_area(regs, error_code, address); 1097 return; 1098 } 1099 1100 /* 1101 * Ok, we have a good vm_area for this memory access, so 1102 * we can handle it.. 1103 */ 1104 good_area: 1105 write = error_code & PF_WRITE; 1106 1107 if (unlikely(access_error(error_code, write, vma))) { 1108 bad_area_access_error(regs, error_code, address); 1109 return; 1110 } 1111 1112 /* 1113 * If for any reason at all we couldn't handle the fault, 1114 * make sure we exit gracefully rather than endlessly redo 1115 * the fault: 1116 */ 1117 fault = handle_mm_fault(mm, vma, address, write ? FAULT_FLAG_WRITE : 0); 1118 1119 if (unlikely(fault & VM_FAULT_ERROR)) { 1120 mm_fault_error(regs, error_code, address, fault); 1121 return; 1122 } 1123 1124 if (fault & VM_FAULT_MAJOR) { 1125 tsk->maj_flt++; 1126 perf_swcounter_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, 0, 1127 regs, address); 1128 } else { 1129 tsk->min_flt++; 1130 perf_swcounter_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, 0, 1131 regs, address); 1132 } 1133 1134 check_v8086_mode(regs, address, tsk); 1135 1136 up_read(&mm->mmap_sem); 1137 } 1138