xref: /linux/arch/x86/mm/fault.c (revision 160b8e75932fd51a49607d32dbfa1d417977b79c)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  Copyright (C) 1995  Linus Torvalds
4  *  Copyright (C) 2001, 2002 Andi Kleen, SuSE Labs.
5  *  Copyright (C) 2008-2009, Red Hat Inc., Ingo Molnar
6  */
7 #include <linux/sched.h>		/* test_thread_flag(), ...	*/
8 #include <linux/sched/task_stack.h>	/* task_stack_*(), ...		*/
9 #include <linux/kdebug.h>		/* oops_begin/end, ...		*/
10 #include <linux/extable.h>		/* search_exception_tables	*/
11 #include <linux/bootmem.h>		/* max_low_pfn			*/
12 #include <linux/kprobes.h>		/* NOKPROBE_SYMBOL, ...		*/
13 #include <linux/mmiotrace.h>		/* kmmio_handler, ...		*/
14 #include <linux/perf_event.h>		/* perf_sw_event		*/
15 #include <linux/hugetlb.h>		/* hstate_index_to_shift	*/
16 #include <linux/prefetch.h>		/* prefetchw			*/
17 #include <linux/context_tracking.h>	/* exception_enter(), ...	*/
18 #include <linux/uaccess.h>		/* faulthandler_disabled()	*/
19 
20 #include <asm/cpufeature.h>		/* boot_cpu_has, ...		*/
21 #include <asm/traps.h>			/* dotraplinkage, ...		*/
22 #include <asm/pgalloc.h>		/* pgd_*(), ...			*/
23 #include <asm/fixmap.h>			/* VSYSCALL_ADDR		*/
24 #include <asm/vsyscall.h>		/* emulate_vsyscall		*/
25 #include <asm/vm86.h>			/* struct vm86			*/
26 #include <asm/mmu_context.h>		/* vma_pkey()			*/
27 
28 #define CREATE_TRACE_POINTS
29 #include <asm/trace/exceptions.h>
30 
31 /*
32  * Returns 0 if mmiotrace is disabled, or if the fault is not
33  * handled by mmiotrace:
34  */
35 static nokprobe_inline int
36 kmmio_fault(struct pt_regs *regs, unsigned long addr)
37 {
38 	if (unlikely(is_kmmio_active()))
39 		if (kmmio_handler(regs, addr) == 1)
40 			return -1;
41 	return 0;
42 }
43 
44 static nokprobe_inline int kprobes_fault(struct pt_regs *regs)
45 {
46 	int ret = 0;
47 
48 	/* kprobe_running() needs smp_processor_id() */
49 	if (kprobes_built_in() && !user_mode(regs)) {
50 		preempt_disable();
51 		if (kprobe_running() && kprobe_fault_handler(regs, 14))
52 			ret = 1;
53 		preempt_enable();
54 	}
55 
56 	return ret;
57 }
58 
59 /*
60  * Prefetch quirks:
61  *
62  * 32-bit mode:
63  *
64  *   Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
65  *   Check that here and ignore it.
66  *
67  * 64-bit mode:
68  *
69  *   Sometimes the CPU reports invalid exceptions on prefetch.
70  *   Check that here and ignore it.
71  *
72  * Opcode checker based on code by Richard Brunner.
73  */
74 static inline int
75 check_prefetch_opcode(struct pt_regs *regs, unsigned char *instr,
76 		      unsigned char opcode, int *prefetch)
77 {
78 	unsigned char instr_hi = opcode & 0xf0;
79 	unsigned char instr_lo = opcode & 0x0f;
80 
81 	switch (instr_hi) {
82 	case 0x20:
83 	case 0x30:
84 		/*
85 		 * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes.
86 		 * In X86_64 long mode, the CPU will signal invalid
87 		 * opcode if some of these prefixes are present so
88 		 * X86_64 will never get here anyway
89 		 */
90 		return ((instr_lo & 7) == 0x6);
91 #ifdef CONFIG_X86_64
92 	case 0x40:
93 		/*
94 		 * In AMD64 long mode 0x40..0x4F are valid REX prefixes
95 		 * Need to figure out under what instruction mode the
96 		 * instruction was issued. Could check the LDT for lm,
97 		 * but for now it's good enough to assume that long
98 		 * mode only uses well known segments or kernel.
99 		 */
100 		return (!user_mode(regs) || user_64bit_mode(regs));
101 #endif
102 	case 0x60:
103 		/* 0x64 thru 0x67 are valid prefixes in all modes. */
104 		return (instr_lo & 0xC) == 0x4;
105 	case 0xF0:
106 		/* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */
107 		return !instr_lo || (instr_lo>>1) == 1;
108 	case 0x00:
109 		/* Prefetch instruction is 0x0F0D or 0x0F18 */
110 		if (probe_kernel_address(instr, opcode))
111 			return 0;
112 
113 		*prefetch = (instr_lo == 0xF) &&
114 			(opcode == 0x0D || opcode == 0x18);
115 		return 0;
116 	default:
117 		return 0;
118 	}
119 }
120 
121 static int
122 is_prefetch(struct pt_regs *regs, unsigned long error_code, unsigned long addr)
123 {
124 	unsigned char *max_instr;
125 	unsigned char *instr;
126 	int prefetch = 0;
127 
128 	/*
129 	 * If it was a exec (instruction fetch) fault on NX page, then
130 	 * do not ignore the fault:
131 	 */
132 	if (error_code & X86_PF_INSTR)
133 		return 0;
134 
135 	instr = (void *)convert_ip_to_linear(current, regs);
136 	max_instr = instr + 15;
137 
138 	if (user_mode(regs) && instr >= (unsigned char *)TASK_SIZE_MAX)
139 		return 0;
140 
141 	while (instr < max_instr) {
142 		unsigned char opcode;
143 
144 		if (probe_kernel_address(instr, opcode))
145 			break;
146 
147 		instr++;
148 
149 		if (!check_prefetch_opcode(regs, instr, opcode, &prefetch))
150 			break;
151 	}
152 	return prefetch;
153 }
154 
155 /*
156  * A protection key fault means that the PKRU value did not allow
157  * access to some PTE.  Userspace can figure out what PKRU was
158  * from the XSAVE state, and this function fills out a field in
159  * siginfo so userspace can discover which protection key was set
160  * on the PTE.
161  *
162  * If we get here, we know that the hardware signaled a X86_PF_PK
163  * fault and that there was a VMA once we got in the fault
164  * handler.  It does *not* guarantee that the VMA we find here
165  * was the one that we faulted on.
166  *
167  * 1. T1   : mprotect_key(foo, PAGE_SIZE, pkey=4);
168  * 2. T1   : set PKRU to deny access to pkey=4, touches page
169  * 3. T1   : faults...
170  * 4.    T2: mprotect_key(foo, PAGE_SIZE, pkey=5);
171  * 5. T1   : enters fault handler, takes mmap_sem, etc...
172  * 6. T1   : reaches here, sees vma_pkey(vma)=5, when we really
173  *	     faulted on a pte with its pkey=4.
174  */
175 static void fill_sig_info_pkey(int si_signo, int si_code, siginfo_t *info,
176 		u32 *pkey)
177 {
178 	/* This is effectively an #ifdef */
179 	if (!boot_cpu_has(X86_FEATURE_OSPKE))
180 		return;
181 
182 	/* Fault not from Protection Keys: nothing to do */
183 	if ((si_code != SEGV_PKUERR) || (si_signo != SIGSEGV))
184 		return;
185 	/*
186 	 * force_sig_info_fault() is called from a number of
187 	 * contexts, some of which have a VMA and some of which
188 	 * do not.  The X86_PF_PK handing happens after we have a
189 	 * valid VMA, so we should never reach this without a
190 	 * valid VMA.
191 	 */
192 	if (!pkey) {
193 		WARN_ONCE(1, "PKU fault with no VMA passed in");
194 		info->si_pkey = 0;
195 		return;
196 	}
197 	/*
198 	 * si_pkey should be thought of as a strong hint, but not
199 	 * absolutely guranteed to be 100% accurate because of
200 	 * the race explained above.
201 	 */
202 	info->si_pkey = *pkey;
203 }
204 
205 static void
206 force_sig_info_fault(int si_signo, int si_code, unsigned long address,
207 		     struct task_struct *tsk, u32 *pkey, int fault)
208 {
209 	unsigned lsb = 0;
210 	siginfo_t info;
211 
212 	info.si_signo	= si_signo;
213 	info.si_errno	= 0;
214 	info.si_code	= si_code;
215 	info.si_addr	= (void __user *)address;
216 	if (fault & VM_FAULT_HWPOISON_LARGE)
217 		lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
218 	if (fault & VM_FAULT_HWPOISON)
219 		lsb = PAGE_SHIFT;
220 	info.si_addr_lsb = lsb;
221 
222 	fill_sig_info_pkey(si_signo, si_code, &info, pkey);
223 
224 	force_sig_info(si_signo, &info, tsk);
225 }
226 
227 DEFINE_SPINLOCK(pgd_lock);
228 LIST_HEAD(pgd_list);
229 
230 #ifdef CONFIG_X86_32
231 static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
232 {
233 	unsigned index = pgd_index(address);
234 	pgd_t *pgd_k;
235 	p4d_t *p4d, *p4d_k;
236 	pud_t *pud, *pud_k;
237 	pmd_t *pmd, *pmd_k;
238 
239 	pgd += index;
240 	pgd_k = init_mm.pgd + index;
241 
242 	if (!pgd_present(*pgd_k))
243 		return NULL;
244 
245 	/*
246 	 * set_pgd(pgd, *pgd_k); here would be useless on PAE
247 	 * and redundant with the set_pmd() on non-PAE. As would
248 	 * set_p4d/set_pud.
249 	 */
250 	p4d = p4d_offset(pgd, address);
251 	p4d_k = p4d_offset(pgd_k, address);
252 	if (!p4d_present(*p4d_k))
253 		return NULL;
254 
255 	pud = pud_offset(p4d, address);
256 	pud_k = pud_offset(p4d_k, address);
257 	if (!pud_present(*pud_k))
258 		return NULL;
259 
260 	pmd = pmd_offset(pud, address);
261 	pmd_k = pmd_offset(pud_k, address);
262 	if (!pmd_present(*pmd_k))
263 		return NULL;
264 
265 	if (!pmd_present(*pmd))
266 		set_pmd(pmd, *pmd_k);
267 	else
268 		BUG_ON(pmd_page(*pmd) != pmd_page(*pmd_k));
269 
270 	return pmd_k;
271 }
272 
273 void vmalloc_sync_all(void)
274 {
275 	unsigned long address;
276 
277 	if (SHARED_KERNEL_PMD)
278 		return;
279 
280 	for (address = VMALLOC_START & PMD_MASK;
281 	     address >= TASK_SIZE_MAX && address < FIXADDR_TOP;
282 	     address += PMD_SIZE) {
283 		struct page *page;
284 
285 		spin_lock(&pgd_lock);
286 		list_for_each_entry(page, &pgd_list, lru) {
287 			spinlock_t *pgt_lock;
288 			pmd_t *ret;
289 
290 			/* the pgt_lock only for Xen */
291 			pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
292 
293 			spin_lock(pgt_lock);
294 			ret = vmalloc_sync_one(page_address(page), address);
295 			spin_unlock(pgt_lock);
296 
297 			if (!ret)
298 				break;
299 		}
300 		spin_unlock(&pgd_lock);
301 	}
302 }
303 
304 /*
305  * 32-bit:
306  *
307  *   Handle a fault on the vmalloc or module mapping area
308  */
309 static noinline int vmalloc_fault(unsigned long address)
310 {
311 	unsigned long pgd_paddr;
312 	pmd_t *pmd_k;
313 	pte_t *pte_k;
314 
315 	/* Make sure we are in vmalloc area: */
316 	if (!(address >= VMALLOC_START && address < VMALLOC_END))
317 		return -1;
318 
319 	WARN_ON_ONCE(in_nmi());
320 
321 	/*
322 	 * Synchronize this task's top level page-table
323 	 * with the 'reference' page table.
324 	 *
325 	 * Do _not_ use "current" here. We might be inside
326 	 * an interrupt in the middle of a task switch..
327 	 */
328 	pgd_paddr = read_cr3_pa();
329 	pmd_k = vmalloc_sync_one(__va(pgd_paddr), address);
330 	if (!pmd_k)
331 		return -1;
332 
333 	if (pmd_huge(*pmd_k))
334 		return 0;
335 
336 	pte_k = pte_offset_kernel(pmd_k, address);
337 	if (!pte_present(*pte_k))
338 		return -1;
339 
340 	return 0;
341 }
342 NOKPROBE_SYMBOL(vmalloc_fault);
343 
344 /*
345  * Did it hit the DOS screen memory VA from vm86 mode?
346  */
347 static inline void
348 check_v8086_mode(struct pt_regs *regs, unsigned long address,
349 		 struct task_struct *tsk)
350 {
351 #ifdef CONFIG_VM86
352 	unsigned long bit;
353 
354 	if (!v8086_mode(regs) || !tsk->thread.vm86)
355 		return;
356 
357 	bit = (address - 0xA0000) >> PAGE_SHIFT;
358 	if (bit < 32)
359 		tsk->thread.vm86->screen_bitmap |= 1 << bit;
360 #endif
361 }
362 
363 static bool low_pfn(unsigned long pfn)
364 {
365 	return pfn < max_low_pfn;
366 }
367 
368 static void dump_pagetable(unsigned long address)
369 {
370 	pgd_t *base = __va(read_cr3_pa());
371 	pgd_t *pgd = &base[pgd_index(address)];
372 	p4d_t *p4d;
373 	pud_t *pud;
374 	pmd_t *pmd;
375 	pte_t *pte;
376 
377 #ifdef CONFIG_X86_PAE
378 	pr_info("*pdpt = %016Lx ", pgd_val(*pgd));
379 	if (!low_pfn(pgd_val(*pgd) >> PAGE_SHIFT) || !pgd_present(*pgd))
380 		goto out;
381 #define pr_pde pr_cont
382 #else
383 #define pr_pde pr_info
384 #endif
385 	p4d = p4d_offset(pgd, address);
386 	pud = pud_offset(p4d, address);
387 	pmd = pmd_offset(pud, address);
388 	pr_pde("*pde = %0*Lx ", sizeof(*pmd) * 2, (u64)pmd_val(*pmd));
389 #undef pr_pde
390 
391 	/*
392 	 * We must not directly access the pte in the highpte
393 	 * case if the page table is located in highmem.
394 	 * And let's rather not kmap-atomic the pte, just in case
395 	 * it's allocated already:
396 	 */
397 	if (!low_pfn(pmd_pfn(*pmd)) || !pmd_present(*pmd) || pmd_large(*pmd))
398 		goto out;
399 
400 	pte = pte_offset_kernel(pmd, address);
401 	pr_cont("*pte = %0*Lx ", sizeof(*pte) * 2, (u64)pte_val(*pte));
402 out:
403 	pr_cont("\n");
404 }
405 
406 #else /* CONFIG_X86_64: */
407 
408 void vmalloc_sync_all(void)
409 {
410 	sync_global_pgds(VMALLOC_START & PGDIR_MASK, VMALLOC_END);
411 }
412 
413 /*
414  * 64-bit:
415  *
416  *   Handle a fault on the vmalloc area
417  */
418 static noinline int vmalloc_fault(unsigned long address)
419 {
420 	pgd_t *pgd, *pgd_ref;
421 	p4d_t *p4d, *p4d_ref;
422 	pud_t *pud, *pud_ref;
423 	pmd_t *pmd, *pmd_ref;
424 	pte_t *pte, *pte_ref;
425 
426 	/* Make sure we are in vmalloc area: */
427 	if (!(address >= VMALLOC_START && address < VMALLOC_END))
428 		return -1;
429 
430 	WARN_ON_ONCE(in_nmi());
431 
432 	/*
433 	 * Copy kernel mappings over when needed. This can also
434 	 * happen within a race in page table update. In the later
435 	 * case just flush:
436 	 */
437 	pgd = (pgd_t *)__va(read_cr3_pa()) + pgd_index(address);
438 	pgd_ref = pgd_offset_k(address);
439 	if (pgd_none(*pgd_ref))
440 		return -1;
441 
442 	if (CONFIG_PGTABLE_LEVELS > 4) {
443 		if (pgd_none(*pgd)) {
444 			set_pgd(pgd, *pgd_ref);
445 			arch_flush_lazy_mmu_mode();
446 		} else {
447 			BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref));
448 		}
449 	}
450 
451 	/* With 4-level paging, copying happens on the p4d level. */
452 	p4d = p4d_offset(pgd, address);
453 	p4d_ref = p4d_offset(pgd_ref, address);
454 	if (p4d_none(*p4d_ref))
455 		return -1;
456 
457 	if (p4d_none(*p4d) && CONFIG_PGTABLE_LEVELS == 4) {
458 		set_p4d(p4d, *p4d_ref);
459 		arch_flush_lazy_mmu_mode();
460 	} else {
461 		BUG_ON(p4d_pfn(*p4d) != p4d_pfn(*p4d_ref));
462 	}
463 
464 	/*
465 	 * Below here mismatches are bugs because these lower tables
466 	 * are shared:
467 	 */
468 	BUILD_BUG_ON(CONFIG_PGTABLE_LEVELS < 4);
469 
470 	pud = pud_offset(p4d, address);
471 	pud_ref = pud_offset(p4d_ref, address);
472 	if (pud_none(*pud_ref))
473 		return -1;
474 
475 	if (pud_none(*pud) || pud_pfn(*pud) != pud_pfn(*pud_ref))
476 		BUG();
477 
478 	if (pud_huge(*pud))
479 		return 0;
480 
481 	pmd = pmd_offset(pud, address);
482 	pmd_ref = pmd_offset(pud_ref, address);
483 	if (pmd_none(*pmd_ref))
484 		return -1;
485 
486 	if (pmd_none(*pmd) || pmd_pfn(*pmd) != pmd_pfn(*pmd_ref))
487 		BUG();
488 
489 	if (pmd_huge(*pmd))
490 		return 0;
491 
492 	pte_ref = pte_offset_kernel(pmd_ref, address);
493 	if (!pte_present(*pte_ref))
494 		return -1;
495 
496 	pte = pte_offset_kernel(pmd, address);
497 
498 	/*
499 	 * Don't use pte_page here, because the mappings can point
500 	 * outside mem_map, and the NUMA hash lookup cannot handle
501 	 * that:
502 	 */
503 	if (!pte_present(*pte) || pte_pfn(*pte) != pte_pfn(*pte_ref))
504 		BUG();
505 
506 	return 0;
507 }
508 NOKPROBE_SYMBOL(vmalloc_fault);
509 
510 #ifdef CONFIG_CPU_SUP_AMD
511 static const char errata93_warning[] =
512 KERN_ERR
513 "******* Your BIOS seems to not contain a fix for K8 errata #93\n"
514 "******* Working around it, but it may cause SEGVs or burn power.\n"
515 "******* Please consider a BIOS update.\n"
516 "******* Disabling USB legacy in the BIOS may also help.\n";
517 #endif
518 
519 /*
520  * No vm86 mode in 64-bit mode:
521  */
522 static inline void
523 check_v8086_mode(struct pt_regs *regs, unsigned long address,
524 		 struct task_struct *tsk)
525 {
526 }
527 
528 static int bad_address(void *p)
529 {
530 	unsigned long dummy;
531 
532 	return probe_kernel_address((unsigned long *)p, dummy);
533 }
534 
535 static void dump_pagetable(unsigned long address)
536 {
537 	pgd_t *base = __va(read_cr3_pa());
538 	pgd_t *pgd = base + pgd_index(address);
539 	p4d_t *p4d;
540 	pud_t *pud;
541 	pmd_t *pmd;
542 	pte_t *pte;
543 
544 	if (bad_address(pgd))
545 		goto bad;
546 
547 	pr_info("PGD %lx ", pgd_val(*pgd));
548 
549 	if (!pgd_present(*pgd))
550 		goto out;
551 
552 	p4d = p4d_offset(pgd, address);
553 	if (bad_address(p4d))
554 		goto bad;
555 
556 	pr_cont("P4D %lx ", p4d_val(*p4d));
557 	if (!p4d_present(*p4d) || p4d_large(*p4d))
558 		goto out;
559 
560 	pud = pud_offset(p4d, address);
561 	if (bad_address(pud))
562 		goto bad;
563 
564 	pr_cont("PUD %lx ", pud_val(*pud));
565 	if (!pud_present(*pud) || pud_large(*pud))
566 		goto out;
567 
568 	pmd = pmd_offset(pud, address);
569 	if (bad_address(pmd))
570 		goto bad;
571 
572 	pr_cont("PMD %lx ", pmd_val(*pmd));
573 	if (!pmd_present(*pmd) || pmd_large(*pmd))
574 		goto out;
575 
576 	pte = pte_offset_kernel(pmd, address);
577 	if (bad_address(pte))
578 		goto bad;
579 
580 	pr_cont("PTE %lx", pte_val(*pte));
581 out:
582 	pr_cont("\n");
583 	return;
584 bad:
585 	pr_info("BAD\n");
586 }
587 
588 #endif /* CONFIG_X86_64 */
589 
590 /*
591  * Workaround for K8 erratum #93 & buggy BIOS.
592  *
593  * BIOS SMM functions are required to use a specific workaround
594  * to avoid corruption of the 64bit RIP register on C stepping K8.
595  *
596  * A lot of BIOS that didn't get tested properly miss this.
597  *
598  * The OS sees this as a page fault with the upper 32bits of RIP cleared.
599  * Try to work around it here.
600  *
601  * Note we only handle faults in kernel here.
602  * Does nothing on 32-bit.
603  */
604 static int is_errata93(struct pt_regs *regs, unsigned long address)
605 {
606 #if defined(CONFIG_X86_64) && defined(CONFIG_CPU_SUP_AMD)
607 	if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD
608 	    || boot_cpu_data.x86 != 0xf)
609 		return 0;
610 
611 	if (address != regs->ip)
612 		return 0;
613 
614 	if ((address >> 32) != 0)
615 		return 0;
616 
617 	address |= 0xffffffffUL << 32;
618 	if ((address >= (u64)_stext && address <= (u64)_etext) ||
619 	    (address >= MODULES_VADDR && address <= MODULES_END)) {
620 		printk_once(errata93_warning);
621 		regs->ip = address;
622 		return 1;
623 	}
624 #endif
625 	return 0;
626 }
627 
628 /*
629  * Work around K8 erratum #100 K8 in compat mode occasionally jumps
630  * to illegal addresses >4GB.
631  *
632  * We catch this in the page fault handler because these addresses
633  * are not reachable. Just detect this case and return.  Any code
634  * segment in LDT is compatibility mode.
635  */
636 static int is_errata100(struct pt_regs *regs, unsigned long address)
637 {
638 #ifdef CONFIG_X86_64
639 	if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) && (address >> 32))
640 		return 1;
641 #endif
642 	return 0;
643 }
644 
645 static int is_f00f_bug(struct pt_regs *regs, unsigned long address)
646 {
647 #ifdef CONFIG_X86_F00F_BUG
648 	unsigned long nr;
649 
650 	/*
651 	 * Pentium F0 0F C7 C8 bug workaround:
652 	 */
653 	if (boot_cpu_has_bug(X86_BUG_F00F)) {
654 		nr = (address - idt_descr.address) >> 3;
655 
656 		if (nr == 6) {
657 			do_invalid_op(regs, 0);
658 			return 1;
659 		}
660 	}
661 #endif
662 	return 0;
663 }
664 
665 static const char nx_warning[] = KERN_CRIT
666 "kernel tried to execute NX-protected page - exploit attempt? (uid: %d)\n";
667 static const char smep_warning[] = KERN_CRIT
668 "unable to execute userspace code (SMEP?) (uid: %d)\n";
669 
670 static void
671 show_fault_oops(struct pt_regs *regs, unsigned long error_code,
672 		unsigned long address)
673 {
674 	if (!oops_may_print())
675 		return;
676 
677 	if (error_code & X86_PF_INSTR) {
678 		unsigned int level;
679 		pgd_t *pgd;
680 		pte_t *pte;
681 
682 		pgd = __va(read_cr3_pa());
683 		pgd += pgd_index(address);
684 
685 		pte = lookup_address_in_pgd(pgd, address, &level);
686 
687 		if (pte && pte_present(*pte) && !pte_exec(*pte))
688 			printk(nx_warning, from_kuid(&init_user_ns, current_uid()));
689 		if (pte && pte_present(*pte) && pte_exec(*pte) &&
690 				(pgd_flags(*pgd) & _PAGE_USER) &&
691 				(__read_cr4() & X86_CR4_SMEP))
692 			printk(smep_warning, from_kuid(&init_user_ns, current_uid()));
693 	}
694 
695 	printk(KERN_ALERT "BUG: unable to handle kernel ");
696 	if (address < PAGE_SIZE)
697 		printk(KERN_CONT "NULL pointer dereference");
698 	else
699 		printk(KERN_CONT "paging request");
700 
701 	printk(KERN_CONT " at %px\n", (void *) address);
702 	printk(KERN_ALERT "IP: %pS\n", (void *)regs->ip);
703 
704 	dump_pagetable(address);
705 }
706 
707 static noinline void
708 pgtable_bad(struct pt_regs *regs, unsigned long error_code,
709 	    unsigned long address)
710 {
711 	struct task_struct *tsk;
712 	unsigned long flags;
713 	int sig;
714 
715 	flags = oops_begin();
716 	tsk = current;
717 	sig = SIGKILL;
718 
719 	printk(KERN_ALERT "%s: Corrupted page table at address %lx\n",
720 	       tsk->comm, address);
721 	dump_pagetable(address);
722 
723 	tsk->thread.cr2		= address;
724 	tsk->thread.trap_nr	= X86_TRAP_PF;
725 	tsk->thread.error_code	= error_code;
726 
727 	if (__die("Bad pagetable", regs, error_code))
728 		sig = 0;
729 
730 	oops_end(flags, regs, sig);
731 }
732 
733 static noinline void
734 no_context(struct pt_regs *regs, unsigned long error_code,
735 	   unsigned long address, int signal, int si_code)
736 {
737 	struct task_struct *tsk = current;
738 	unsigned long flags;
739 	int sig;
740 
741 	/* Are we prepared to handle this kernel fault? */
742 	if (fixup_exception(regs, X86_TRAP_PF)) {
743 		/*
744 		 * Any interrupt that takes a fault gets the fixup. This makes
745 		 * the below recursive fault logic only apply to a faults from
746 		 * task context.
747 		 */
748 		if (in_interrupt())
749 			return;
750 
751 		/*
752 		 * Per the above we're !in_interrupt(), aka. task context.
753 		 *
754 		 * In this case we need to make sure we're not recursively
755 		 * faulting through the emulate_vsyscall() logic.
756 		 */
757 		if (current->thread.sig_on_uaccess_err && signal) {
758 			tsk->thread.trap_nr = X86_TRAP_PF;
759 			tsk->thread.error_code = error_code | X86_PF_USER;
760 			tsk->thread.cr2 = address;
761 
762 			/* XXX: hwpoison faults will set the wrong code. */
763 			force_sig_info_fault(signal, si_code, address,
764 					     tsk, NULL, 0);
765 		}
766 
767 		/*
768 		 * Barring that, we can do the fixup and be happy.
769 		 */
770 		return;
771 	}
772 
773 #ifdef CONFIG_VMAP_STACK
774 	/*
775 	 * Stack overflow?  During boot, we can fault near the initial
776 	 * stack in the direct map, but that's not an overflow -- check
777 	 * that we're in vmalloc space to avoid this.
778 	 */
779 	if (is_vmalloc_addr((void *)address) &&
780 	    (((unsigned long)tsk->stack - 1 - address < PAGE_SIZE) ||
781 	     address - ((unsigned long)tsk->stack + THREAD_SIZE) < PAGE_SIZE)) {
782 		unsigned long stack = this_cpu_read(orig_ist.ist[DOUBLEFAULT_STACK]) - sizeof(void *);
783 		/*
784 		 * We're likely to be running with very little stack space
785 		 * left.  It's plausible that we'd hit this condition but
786 		 * double-fault even before we get this far, in which case
787 		 * we're fine: the double-fault handler will deal with it.
788 		 *
789 		 * We don't want to make it all the way into the oops code
790 		 * and then double-fault, though, because we're likely to
791 		 * break the console driver and lose most of the stack dump.
792 		 */
793 		asm volatile ("movq %[stack], %%rsp\n\t"
794 			      "call handle_stack_overflow\n\t"
795 			      "1: jmp 1b"
796 			      : ASM_CALL_CONSTRAINT
797 			      : "D" ("kernel stack overflow (page fault)"),
798 				"S" (regs), "d" (address),
799 				[stack] "rm" (stack));
800 		unreachable();
801 	}
802 #endif
803 
804 	/*
805 	 * 32-bit:
806 	 *
807 	 *   Valid to do another page fault here, because if this fault
808 	 *   had been triggered by is_prefetch fixup_exception would have
809 	 *   handled it.
810 	 *
811 	 * 64-bit:
812 	 *
813 	 *   Hall of shame of CPU/BIOS bugs.
814 	 */
815 	if (is_prefetch(regs, error_code, address))
816 		return;
817 
818 	if (is_errata93(regs, address))
819 		return;
820 
821 	/*
822 	 * Oops. The kernel tried to access some bad page. We'll have to
823 	 * terminate things with extreme prejudice:
824 	 */
825 	flags = oops_begin();
826 
827 	show_fault_oops(regs, error_code, address);
828 
829 	if (task_stack_end_corrupted(tsk))
830 		printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
831 
832 	tsk->thread.cr2		= address;
833 	tsk->thread.trap_nr	= X86_TRAP_PF;
834 	tsk->thread.error_code	= error_code;
835 
836 	sig = SIGKILL;
837 	if (__die("Oops", regs, error_code))
838 		sig = 0;
839 
840 	/* Executive summary in case the body of the oops scrolled away */
841 	printk(KERN_DEFAULT "CR2: %016lx\n", address);
842 
843 	oops_end(flags, regs, sig);
844 }
845 
846 /*
847  * Print out info about fatal segfaults, if the show_unhandled_signals
848  * sysctl is set:
849  */
850 static inline void
851 show_signal_msg(struct pt_regs *regs, unsigned long error_code,
852 		unsigned long address, struct task_struct *tsk)
853 {
854 	if (!unhandled_signal(tsk, SIGSEGV))
855 		return;
856 
857 	if (!printk_ratelimit())
858 		return;
859 
860 	printk("%s%s[%d]: segfault at %lx ip %px sp %px error %lx",
861 		task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG,
862 		tsk->comm, task_pid_nr(tsk), address,
863 		(void *)regs->ip, (void *)regs->sp, error_code);
864 
865 	print_vma_addr(KERN_CONT " in ", regs->ip);
866 
867 	printk(KERN_CONT "\n");
868 }
869 
870 static void
871 __bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
872 		       unsigned long address, u32 *pkey, int si_code)
873 {
874 	struct task_struct *tsk = current;
875 
876 	/* User mode accesses just cause a SIGSEGV */
877 	if (error_code & X86_PF_USER) {
878 		/*
879 		 * It's possible to have interrupts off here:
880 		 */
881 		local_irq_enable();
882 
883 		/*
884 		 * Valid to do another page fault here because this one came
885 		 * from user space:
886 		 */
887 		if (is_prefetch(regs, error_code, address))
888 			return;
889 
890 		if (is_errata100(regs, address))
891 			return;
892 
893 #ifdef CONFIG_X86_64
894 		/*
895 		 * Instruction fetch faults in the vsyscall page might need
896 		 * emulation.
897 		 */
898 		if (unlikely((error_code & X86_PF_INSTR) &&
899 			     ((address & ~0xfff) == VSYSCALL_ADDR))) {
900 			if (emulate_vsyscall(regs, address))
901 				return;
902 		}
903 #endif
904 
905 		/*
906 		 * To avoid leaking information about the kernel page table
907 		 * layout, pretend that user-mode accesses to kernel addresses
908 		 * are always protection faults.
909 		 */
910 		if (address >= TASK_SIZE_MAX)
911 			error_code |= X86_PF_PROT;
912 
913 		if (likely(show_unhandled_signals))
914 			show_signal_msg(regs, error_code, address, tsk);
915 
916 		tsk->thread.cr2		= address;
917 		tsk->thread.error_code	= error_code;
918 		tsk->thread.trap_nr	= X86_TRAP_PF;
919 
920 		force_sig_info_fault(SIGSEGV, si_code, address, tsk, pkey, 0);
921 
922 		return;
923 	}
924 
925 	if (is_f00f_bug(regs, address))
926 		return;
927 
928 	no_context(regs, error_code, address, SIGSEGV, si_code);
929 }
930 
931 static noinline void
932 bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
933 		     unsigned long address, u32 *pkey)
934 {
935 	__bad_area_nosemaphore(regs, error_code, address, pkey, SEGV_MAPERR);
936 }
937 
938 static void
939 __bad_area(struct pt_regs *regs, unsigned long error_code,
940 	   unsigned long address,  struct vm_area_struct *vma, int si_code)
941 {
942 	struct mm_struct *mm = current->mm;
943 	u32 pkey;
944 
945 	if (vma)
946 		pkey = vma_pkey(vma);
947 
948 	/*
949 	 * Something tried to access memory that isn't in our memory map..
950 	 * Fix it, but check if it's kernel or user first..
951 	 */
952 	up_read(&mm->mmap_sem);
953 
954 	__bad_area_nosemaphore(regs, error_code, address,
955 			       (vma) ? &pkey : NULL, si_code);
956 }
957 
958 static noinline void
959 bad_area(struct pt_regs *regs, unsigned long error_code, unsigned long address)
960 {
961 	__bad_area(regs, error_code, address, NULL, SEGV_MAPERR);
962 }
963 
964 static inline bool bad_area_access_from_pkeys(unsigned long error_code,
965 		struct vm_area_struct *vma)
966 {
967 	/* This code is always called on the current mm */
968 	bool foreign = false;
969 
970 	if (!boot_cpu_has(X86_FEATURE_OSPKE))
971 		return false;
972 	if (error_code & X86_PF_PK)
973 		return true;
974 	/* this checks permission keys on the VMA: */
975 	if (!arch_vma_access_permitted(vma, (error_code & X86_PF_WRITE),
976 				       (error_code & X86_PF_INSTR), foreign))
977 		return true;
978 	return false;
979 }
980 
981 static noinline void
982 bad_area_access_error(struct pt_regs *regs, unsigned long error_code,
983 		      unsigned long address, struct vm_area_struct *vma)
984 {
985 	/*
986 	 * This OSPKE check is not strictly necessary at runtime.
987 	 * But, doing it this way allows compiler optimizations
988 	 * if pkeys are compiled out.
989 	 */
990 	if (bad_area_access_from_pkeys(error_code, vma))
991 		__bad_area(regs, error_code, address, vma, SEGV_PKUERR);
992 	else
993 		__bad_area(regs, error_code, address, vma, SEGV_ACCERR);
994 }
995 
996 static void
997 do_sigbus(struct pt_regs *regs, unsigned long error_code, unsigned long address,
998 	  u32 *pkey, unsigned int fault)
999 {
1000 	struct task_struct *tsk = current;
1001 	int code = BUS_ADRERR;
1002 
1003 	/* Kernel mode? Handle exceptions or die: */
1004 	if (!(error_code & X86_PF_USER)) {
1005 		no_context(regs, error_code, address, SIGBUS, BUS_ADRERR);
1006 		return;
1007 	}
1008 
1009 	/* User-space => ok to do another page fault: */
1010 	if (is_prefetch(regs, error_code, address))
1011 		return;
1012 
1013 	tsk->thread.cr2		= address;
1014 	tsk->thread.error_code	= error_code;
1015 	tsk->thread.trap_nr	= X86_TRAP_PF;
1016 
1017 #ifdef CONFIG_MEMORY_FAILURE
1018 	if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
1019 		printk(KERN_ERR
1020 	"MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
1021 			tsk->comm, tsk->pid, address);
1022 		code = BUS_MCEERR_AR;
1023 	}
1024 #endif
1025 	force_sig_info_fault(SIGBUS, code, address, tsk, pkey, fault);
1026 }
1027 
1028 static noinline void
1029 mm_fault_error(struct pt_regs *regs, unsigned long error_code,
1030 	       unsigned long address, u32 *pkey, unsigned int fault)
1031 {
1032 	if (fatal_signal_pending(current) && !(error_code & X86_PF_USER)) {
1033 		no_context(regs, error_code, address, 0, 0);
1034 		return;
1035 	}
1036 
1037 	if (fault & VM_FAULT_OOM) {
1038 		/* Kernel mode? Handle exceptions or die: */
1039 		if (!(error_code & X86_PF_USER)) {
1040 			no_context(regs, error_code, address,
1041 				   SIGSEGV, SEGV_MAPERR);
1042 			return;
1043 		}
1044 
1045 		/*
1046 		 * We ran out of memory, call the OOM killer, and return the
1047 		 * userspace (which will retry the fault, or kill us if we got
1048 		 * oom-killed):
1049 		 */
1050 		pagefault_out_of_memory();
1051 	} else {
1052 		if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
1053 			     VM_FAULT_HWPOISON_LARGE))
1054 			do_sigbus(regs, error_code, address, pkey, fault);
1055 		else if (fault & VM_FAULT_SIGSEGV)
1056 			bad_area_nosemaphore(regs, error_code, address, pkey);
1057 		else
1058 			BUG();
1059 	}
1060 }
1061 
1062 static int spurious_fault_check(unsigned long error_code, pte_t *pte)
1063 {
1064 	if ((error_code & X86_PF_WRITE) && !pte_write(*pte))
1065 		return 0;
1066 
1067 	if ((error_code & X86_PF_INSTR) && !pte_exec(*pte))
1068 		return 0;
1069 	/*
1070 	 * Note: We do not do lazy flushing on protection key
1071 	 * changes, so no spurious fault will ever set X86_PF_PK.
1072 	 */
1073 	if ((error_code & X86_PF_PK))
1074 		return 1;
1075 
1076 	return 1;
1077 }
1078 
1079 /*
1080  * Handle a spurious fault caused by a stale TLB entry.
1081  *
1082  * This allows us to lazily refresh the TLB when increasing the
1083  * permissions of a kernel page (RO -> RW or NX -> X).  Doing it
1084  * eagerly is very expensive since that implies doing a full
1085  * cross-processor TLB flush, even if no stale TLB entries exist
1086  * on other processors.
1087  *
1088  * Spurious faults may only occur if the TLB contains an entry with
1089  * fewer permission than the page table entry.  Non-present (P = 0)
1090  * and reserved bit (R = 1) faults are never spurious.
1091  *
1092  * There are no security implications to leaving a stale TLB when
1093  * increasing the permissions on a page.
1094  *
1095  * Returns non-zero if a spurious fault was handled, zero otherwise.
1096  *
1097  * See Intel Developer's Manual Vol 3 Section 4.10.4.3, bullet 3
1098  * (Optional Invalidation).
1099  */
1100 static noinline int
1101 spurious_fault(unsigned long error_code, unsigned long address)
1102 {
1103 	pgd_t *pgd;
1104 	p4d_t *p4d;
1105 	pud_t *pud;
1106 	pmd_t *pmd;
1107 	pte_t *pte;
1108 	int ret;
1109 
1110 	/*
1111 	 * Only writes to RO or instruction fetches from NX may cause
1112 	 * spurious faults.
1113 	 *
1114 	 * These could be from user or supervisor accesses but the TLB
1115 	 * is only lazily flushed after a kernel mapping protection
1116 	 * change, so user accesses are not expected to cause spurious
1117 	 * faults.
1118 	 */
1119 	if (error_code != (X86_PF_WRITE | X86_PF_PROT) &&
1120 	    error_code != (X86_PF_INSTR | X86_PF_PROT))
1121 		return 0;
1122 
1123 	pgd = init_mm.pgd + pgd_index(address);
1124 	if (!pgd_present(*pgd))
1125 		return 0;
1126 
1127 	p4d = p4d_offset(pgd, address);
1128 	if (!p4d_present(*p4d))
1129 		return 0;
1130 
1131 	if (p4d_large(*p4d))
1132 		return spurious_fault_check(error_code, (pte_t *) p4d);
1133 
1134 	pud = pud_offset(p4d, address);
1135 	if (!pud_present(*pud))
1136 		return 0;
1137 
1138 	if (pud_large(*pud))
1139 		return spurious_fault_check(error_code, (pte_t *) pud);
1140 
1141 	pmd = pmd_offset(pud, address);
1142 	if (!pmd_present(*pmd))
1143 		return 0;
1144 
1145 	if (pmd_large(*pmd))
1146 		return spurious_fault_check(error_code, (pte_t *) pmd);
1147 
1148 	pte = pte_offset_kernel(pmd, address);
1149 	if (!pte_present(*pte))
1150 		return 0;
1151 
1152 	ret = spurious_fault_check(error_code, pte);
1153 	if (!ret)
1154 		return 0;
1155 
1156 	/*
1157 	 * Make sure we have permissions in PMD.
1158 	 * If not, then there's a bug in the page tables:
1159 	 */
1160 	ret = spurious_fault_check(error_code, (pte_t *) pmd);
1161 	WARN_ONCE(!ret, "PMD has incorrect permission bits\n");
1162 
1163 	return ret;
1164 }
1165 NOKPROBE_SYMBOL(spurious_fault);
1166 
1167 int show_unhandled_signals = 1;
1168 
1169 static inline int
1170 access_error(unsigned long error_code, struct vm_area_struct *vma)
1171 {
1172 	/* This is only called for the current mm, so: */
1173 	bool foreign = false;
1174 
1175 	/*
1176 	 * Read or write was blocked by protection keys.  This is
1177 	 * always an unconditional error and can never result in
1178 	 * a follow-up action to resolve the fault, like a COW.
1179 	 */
1180 	if (error_code & X86_PF_PK)
1181 		return 1;
1182 
1183 	/*
1184 	 * Make sure to check the VMA so that we do not perform
1185 	 * faults just to hit a X86_PF_PK as soon as we fill in a
1186 	 * page.
1187 	 */
1188 	if (!arch_vma_access_permitted(vma, (error_code & X86_PF_WRITE),
1189 				       (error_code & X86_PF_INSTR), foreign))
1190 		return 1;
1191 
1192 	if (error_code & X86_PF_WRITE) {
1193 		/* write, present and write, not present: */
1194 		if (unlikely(!(vma->vm_flags & VM_WRITE)))
1195 			return 1;
1196 		return 0;
1197 	}
1198 
1199 	/* read, present: */
1200 	if (unlikely(error_code & X86_PF_PROT))
1201 		return 1;
1202 
1203 	/* read, not present: */
1204 	if (unlikely(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))))
1205 		return 1;
1206 
1207 	return 0;
1208 }
1209 
1210 static int fault_in_kernel_space(unsigned long address)
1211 {
1212 	return address >= TASK_SIZE_MAX;
1213 }
1214 
1215 static inline bool smap_violation(int error_code, struct pt_regs *regs)
1216 {
1217 	if (!IS_ENABLED(CONFIG_X86_SMAP))
1218 		return false;
1219 
1220 	if (!static_cpu_has(X86_FEATURE_SMAP))
1221 		return false;
1222 
1223 	if (error_code & X86_PF_USER)
1224 		return false;
1225 
1226 	if (!user_mode(regs) && (regs->flags & X86_EFLAGS_AC))
1227 		return false;
1228 
1229 	return true;
1230 }
1231 
1232 /*
1233  * This routine handles page faults.  It determines the address,
1234  * and the problem, and then passes it off to one of the appropriate
1235  * routines.
1236  */
1237 static noinline void
1238 __do_page_fault(struct pt_regs *regs, unsigned long error_code,
1239 		unsigned long address)
1240 {
1241 	struct vm_area_struct *vma;
1242 	struct task_struct *tsk;
1243 	struct mm_struct *mm;
1244 	int fault, major = 0;
1245 	unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
1246 	u32 pkey;
1247 
1248 	tsk = current;
1249 	mm = tsk->mm;
1250 
1251 	/*
1252 	 * Detect and handle instructions that would cause a page fault for
1253 	 * both a tracked kernel page and a userspace page.
1254 	 */
1255 	prefetchw(&mm->mmap_sem);
1256 
1257 	if (unlikely(kmmio_fault(regs, address)))
1258 		return;
1259 
1260 	/*
1261 	 * We fault-in kernel-space virtual memory on-demand. The
1262 	 * 'reference' page table is init_mm.pgd.
1263 	 *
1264 	 * NOTE! We MUST NOT take any locks for this case. We may
1265 	 * be in an interrupt or a critical region, and should
1266 	 * only copy the information from the master page table,
1267 	 * nothing more.
1268 	 *
1269 	 * This verifies that the fault happens in kernel space
1270 	 * (error_code & 4) == 0, and that the fault was not a
1271 	 * protection error (error_code & 9) == 0.
1272 	 */
1273 	if (unlikely(fault_in_kernel_space(address))) {
1274 		if (!(error_code & (X86_PF_RSVD | X86_PF_USER | X86_PF_PROT))) {
1275 			if (vmalloc_fault(address) >= 0)
1276 				return;
1277 		}
1278 
1279 		/* Can handle a stale RO->RW TLB: */
1280 		if (spurious_fault(error_code, address))
1281 			return;
1282 
1283 		/* kprobes don't want to hook the spurious faults: */
1284 		if (kprobes_fault(regs))
1285 			return;
1286 		/*
1287 		 * Don't take the mm semaphore here. If we fixup a prefetch
1288 		 * fault we could otherwise deadlock:
1289 		 */
1290 		bad_area_nosemaphore(regs, error_code, address, NULL);
1291 
1292 		return;
1293 	}
1294 
1295 	/* kprobes don't want to hook the spurious faults: */
1296 	if (unlikely(kprobes_fault(regs)))
1297 		return;
1298 
1299 	if (unlikely(error_code & X86_PF_RSVD))
1300 		pgtable_bad(regs, error_code, address);
1301 
1302 	if (unlikely(smap_violation(error_code, regs))) {
1303 		bad_area_nosemaphore(regs, error_code, address, NULL);
1304 		return;
1305 	}
1306 
1307 	/*
1308 	 * If we're in an interrupt, have no user context or are running
1309 	 * in a region with pagefaults disabled then we must not take the fault
1310 	 */
1311 	if (unlikely(faulthandler_disabled() || !mm)) {
1312 		bad_area_nosemaphore(regs, error_code, address, NULL);
1313 		return;
1314 	}
1315 
1316 	/*
1317 	 * It's safe to allow irq's after cr2 has been saved and the
1318 	 * vmalloc fault has been handled.
1319 	 *
1320 	 * User-mode registers count as a user access even for any
1321 	 * potential system fault or CPU buglet:
1322 	 */
1323 	if (user_mode(regs)) {
1324 		local_irq_enable();
1325 		error_code |= X86_PF_USER;
1326 		flags |= FAULT_FLAG_USER;
1327 	} else {
1328 		if (regs->flags & X86_EFLAGS_IF)
1329 			local_irq_enable();
1330 	}
1331 
1332 	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
1333 
1334 	if (error_code & X86_PF_WRITE)
1335 		flags |= FAULT_FLAG_WRITE;
1336 	if (error_code & X86_PF_INSTR)
1337 		flags |= FAULT_FLAG_INSTRUCTION;
1338 
1339 	/*
1340 	 * When running in the kernel we expect faults to occur only to
1341 	 * addresses in user space.  All other faults represent errors in
1342 	 * the kernel and should generate an OOPS.  Unfortunately, in the
1343 	 * case of an erroneous fault occurring in a code path which already
1344 	 * holds mmap_sem we will deadlock attempting to validate the fault
1345 	 * against the address space.  Luckily the kernel only validly
1346 	 * references user space from well defined areas of code, which are
1347 	 * listed in the exceptions table.
1348 	 *
1349 	 * As the vast majority of faults will be valid we will only perform
1350 	 * the source reference check when there is a possibility of a
1351 	 * deadlock. Attempt to lock the address space, if we cannot we then
1352 	 * validate the source. If this is invalid we can skip the address
1353 	 * space check, thus avoiding the deadlock:
1354 	 */
1355 	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
1356 		if (!(error_code & X86_PF_USER) &&
1357 		    !search_exception_tables(regs->ip)) {
1358 			bad_area_nosemaphore(regs, error_code, address, NULL);
1359 			return;
1360 		}
1361 retry:
1362 		down_read(&mm->mmap_sem);
1363 	} else {
1364 		/*
1365 		 * The above down_read_trylock() might have succeeded in
1366 		 * which case we'll have missed the might_sleep() from
1367 		 * down_read():
1368 		 */
1369 		might_sleep();
1370 	}
1371 
1372 	vma = find_vma(mm, address);
1373 	if (unlikely(!vma)) {
1374 		bad_area(regs, error_code, address);
1375 		return;
1376 	}
1377 	if (likely(vma->vm_start <= address))
1378 		goto good_area;
1379 	if (unlikely(!(vma->vm_flags & VM_GROWSDOWN))) {
1380 		bad_area(regs, error_code, address);
1381 		return;
1382 	}
1383 	if (error_code & X86_PF_USER) {
1384 		/*
1385 		 * Accessing the stack below %sp is always a bug.
1386 		 * The large cushion allows instructions like enter
1387 		 * and pusha to work. ("enter $65535, $31" pushes
1388 		 * 32 pointers and then decrements %sp by 65535.)
1389 		 */
1390 		if (unlikely(address + 65536 + 32 * sizeof(unsigned long) < regs->sp)) {
1391 			bad_area(regs, error_code, address);
1392 			return;
1393 		}
1394 	}
1395 	if (unlikely(expand_stack(vma, address))) {
1396 		bad_area(regs, error_code, address);
1397 		return;
1398 	}
1399 
1400 	/*
1401 	 * Ok, we have a good vm_area for this memory access, so
1402 	 * we can handle it..
1403 	 */
1404 good_area:
1405 	if (unlikely(access_error(error_code, vma))) {
1406 		bad_area_access_error(regs, error_code, address, vma);
1407 		return;
1408 	}
1409 
1410 	/*
1411 	 * If for any reason at all we couldn't handle the fault,
1412 	 * make sure we exit gracefully rather than endlessly redo
1413 	 * the fault.  Since we never set FAULT_FLAG_RETRY_NOWAIT, if
1414 	 * we get VM_FAULT_RETRY back, the mmap_sem has been unlocked.
1415 	 *
1416 	 * Note that handle_userfault() may also release and reacquire mmap_sem
1417 	 * (and not return with VM_FAULT_RETRY), when returning to userland to
1418 	 * repeat the page fault later with a VM_FAULT_NOPAGE retval
1419 	 * (potentially after handling any pending signal during the return to
1420 	 * userland). The return to userland is identified whenever
1421 	 * FAULT_FLAG_USER|FAULT_FLAG_KILLABLE are both set in flags.
1422 	 * Thus we have to be careful about not touching vma after handling the
1423 	 * fault, so we read the pkey beforehand.
1424 	 */
1425 	pkey = vma_pkey(vma);
1426 	fault = handle_mm_fault(vma, address, flags);
1427 	major |= fault & VM_FAULT_MAJOR;
1428 
1429 	/*
1430 	 * If we need to retry the mmap_sem has already been released,
1431 	 * and if there is a fatal signal pending there is no guarantee
1432 	 * that we made any progress. Handle this case first.
1433 	 */
1434 	if (unlikely(fault & VM_FAULT_RETRY)) {
1435 		/* Retry at most once */
1436 		if (flags & FAULT_FLAG_ALLOW_RETRY) {
1437 			flags &= ~FAULT_FLAG_ALLOW_RETRY;
1438 			flags |= FAULT_FLAG_TRIED;
1439 			if (!fatal_signal_pending(tsk))
1440 				goto retry;
1441 		}
1442 
1443 		/* User mode? Just return to handle the fatal exception */
1444 		if (flags & FAULT_FLAG_USER)
1445 			return;
1446 
1447 		/* Not returning to user mode? Handle exceptions or die: */
1448 		no_context(regs, error_code, address, SIGBUS, BUS_ADRERR);
1449 		return;
1450 	}
1451 
1452 	up_read(&mm->mmap_sem);
1453 	if (unlikely(fault & VM_FAULT_ERROR)) {
1454 		mm_fault_error(regs, error_code, address, &pkey, fault);
1455 		return;
1456 	}
1457 
1458 	/*
1459 	 * Major/minor page fault accounting. If any of the events
1460 	 * returned VM_FAULT_MAJOR, we account it as a major fault.
1461 	 */
1462 	if (major) {
1463 		tsk->maj_flt++;
1464 		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
1465 	} else {
1466 		tsk->min_flt++;
1467 		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
1468 	}
1469 
1470 	check_v8086_mode(regs, address, tsk);
1471 }
1472 NOKPROBE_SYMBOL(__do_page_fault);
1473 
1474 static nokprobe_inline void
1475 trace_page_fault_entries(unsigned long address, struct pt_regs *regs,
1476 			 unsigned long error_code)
1477 {
1478 	if (user_mode(regs))
1479 		trace_page_fault_user(address, regs, error_code);
1480 	else
1481 		trace_page_fault_kernel(address, regs, error_code);
1482 }
1483 
1484 /*
1485  * We must have this function blacklisted from kprobes, tagged with notrace
1486  * and call read_cr2() before calling anything else. To avoid calling any
1487  * kind of tracing machinery before we've observed the CR2 value.
1488  *
1489  * exception_{enter,exit}() contains all sorts of tracepoints.
1490  */
1491 dotraplinkage void notrace
1492 do_page_fault(struct pt_regs *regs, unsigned long error_code)
1493 {
1494 	unsigned long address = read_cr2(); /* Get the faulting address */
1495 	enum ctx_state prev_state;
1496 
1497 	prev_state = exception_enter();
1498 	if (trace_pagefault_enabled())
1499 		trace_page_fault_entries(address, regs, error_code);
1500 
1501 	__do_page_fault(regs, error_code, address);
1502 	exception_exit(prev_state);
1503 }
1504 NOKPROBE_SYMBOL(do_page_fault);
1505