1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 1995 Linus Torvalds 4 * Copyright (C) 2001, 2002 Andi Kleen, SuSE Labs. 5 * Copyright (C) 2008-2009, Red Hat Inc., Ingo Molnar 6 */ 7 #include <linux/sched.h> /* test_thread_flag(), ... */ 8 #include <linux/sched/task_stack.h> /* task_stack_*(), ... */ 9 #include <linux/kdebug.h> /* oops_begin/end, ... */ 10 #include <linux/extable.h> /* search_exception_tables */ 11 #include <linux/memblock.h> /* max_low_pfn */ 12 #include <linux/kfence.h> /* kfence_handle_page_fault */ 13 #include <linux/kprobes.h> /* NOKPROBE_SYMBOL, ... */ 14 #include <linux/mmiotrace.h> /* kmmio_handler, ... */ 15 #include <linux/perf_event.h> /* perf_sw_event */ 16 #include <linux/hugetlb.h> /* hstate_index_to_shift */ 17 #include <linux/prefetch.h> /* prefetchw */ 18 #include <linux/context_tracking.h> /* exception_enter(), ... */ 19 #include <linux/uaccess.h> /* faulthandler_disabled() */ 20 #include <linux/efi.h> /* efi_crash_gracefully_on_page_fault()*/ 21 #include <linux/mm_types.h> 22 23 #include <asm/cpufeature.h> /* boot_cpu_has, ... */ 24 #include <asm/traps.h> /* dotraplinkage, ... */ 25 #include <asm/fixmap.h> /* VSYSCALL_ADDR */ 26 #include <asm/vsyscall.h> /* emulate_vsyscall */ 27 #include <asm/vm86.h> /* struct vm86 */ 28 #include <asm/mmu_context.h> /* vma_pkey() */ 29 #include <asm/efi.h> /* efi_crash_gracefully_on_page_fault()*/ 30 #include <asm/desc.h> /* store_idt(), ... */ 31 #include <asm/cpu_entry_area.h> /* exception stack */ 32 #include <asm/pgtable_areas.h> /* VMALLOC_START, ... */ 33 #include <asm/kvm_para.h> /* kvm_handle_async_pf */ 34 #include <asm/vdso.h> /* fixup_vdso_exception() */ 35 #include <asm/irq_stack.h> 36 37 #define CREATE_TRACE_POINTS 38 #include <asm/trace/exceptions.h> 39 40 /* 41 * Returns 0 if mmiotrace is disabled, or if the fault is not 42 * handled by mmiotrace: 43 */ 44 static nokprobe_inline int 45 kmmio_fault(struct pt_regs *regs, unsigned long addr) 46 { 47 if (unlikely(is_kmmio_active())) 48 if (kmmio_handler(regs, addr) == 1) 49 return -1; 50 return 0; 51 } 52 53 /* 54 * Prefetch quirks: 55 * 56 * 32-bit mode: 57 * 58 * Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch. 59 * Check that here and ignore it. This is AMD erratum #91. 60 * 61 * 64-bit mode: 62 * 63 * Sometimes the CPU reports invalid exceptions on prefetch. 64 * Check that here and ignore it. 65 * 66 * Opcode checker based on code by Richard Brunner. 67 */ 68 static inline int 69 check_prefetch_opcode(struct pt_regs *regs, unsigned char *instr, 70 unsigned char opcode, int *prefetch) 71 { 72 unsigned char instr_hi = opcode & 0xf0; 73 unsigned char instr_lo = opcode & 0x0f; 74 75 switch (instr_hi) { 76 case 0x20: 77 case 0x30: 78 /* 79 * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes. 80 * In X86_64 long mode, the CPU will signal invalid 81 * opcode if some of these prefixes are present so 82 * X86_64 will never get here anyway 83 */ 84 return ((instr_lo & 7) == 0x6); 85 #ifdef CONFIG_X86_64 86 case 0x40: 87 /* 88 * In 64-bit mode 0x40..0x4F are valid REX prefixes 89 */ 90 return (!user_mode(regs) || user_64bit_mode(regs)); 91 #endif 92 case 0x60: 93 /* 0x64 thru 0x67 are valid prefixes in all modes. */ 94 return (instr_lo & 0xC) == 0x4; 95 case 0xF0: 96 /* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */ 97 return !instr_lo || (instr_lo>>1) == 1; 98 case 0x00: 99 /* Prefetch instruction is 0x0F0D or 0x0F18 */ 100 if (get_kernel_nofault(opcode, instr)) 101 return 0; 102 103 *prefetch = (instr_lo == 0xF) && 104 (opcode == 0x0D || opcode == 0x18); 105 return 0; 106 default: 107 return 0; 108 } 109 } 110 111 static bool is_amd_k8_pre_npt(void) 112 { 113 struct cpuinfo_x86 *c = &boot_cpu_data; 114 115 return unlikely(IS_ENABLED(CONFIG_CPU_SUP_AMD) && 116 c->x86_vendor == X86_VENDOR_AMD && 117 c->x86 == 0xf && c->x86_model < 0x40); 118 } 119 120 static int 121 is_prefetch(struct pt_regs *regs, unsigned long error_code, unsigned long addr) 122 { 123 unsigned char *max_instr; 124 unsigned char *instr; 125 int prefetch = 0; 126 127 /* Erratum #91 affects AMD K8, pre-NPT CPUs */ 128 if (!is_amd_k8_pre_npt()) 129 return 0; 130 131 /* 132 * If it was a exec (instruction fetch) fault on NX page, then 133 * do not ignore the fault: 134 */ 135 if (error_code & X86_PF_INSTR) 136 return 0; 137 138 instr = (void *)convert_ip_to_linear(current, regs); 139 max_instr = instr + 15; 140 141 /* 142 * This code has historically always bailed out if IP points to a 143 * not-present page (e.g. due to a race). No one has ever 144 * complained about this. 145 */ 146 pagefault_disable(); 147 148 while (instr < max_instr) { 149 unsigned char opcode; 150 151 if (user_mode(regs)) { 152 if (get_user(opcode, (unsigned char __user *) instr)) 153 break; 154 } else { 155 if (get_kernel_nofault(opcode, instr)) 156 break; 157 } 158 159 instr++; 160 161 if (!check_prefetch_opcode(regs, instr, opcode, &prefetch)) 162 break; 163 } 164 165 pagefault_enable(); 166 return prefetch; 167 } 168 169 DEFINE_SPINLOCK(pgd_lock); 170 LIST_HEAD(pgd_list); 171 172 #ifdef CONFIG_X86_32 173 static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address) 174 { 175 unsigned index = pgd_index(address); 176 pgd_t *pgd_k; 177 p4d_t *p4d, *p4d_k; 178 pud_t *pud, *pud_k; 179 pmd_t *pmd, *pmd_k; 180 181 pgd += index; 182 pgd_k = init_mm.pgd + index; 183 184 if (!pgd_present(*pgd_k)) 185 return NULL; 186 187 /* 188 * set_pgd(pgd, *pgd_k); here would be useless on PAE 189 * and redundant with the set_pmd() on non-PAE. As would 190 * set_p4d/set_pud. 191 */ 192 p4d = p4d_offset(pgd, address); 193 p4d_k = p4d_offset(pgd_k, address); 194 if (!p4d_present(*p4d_k)) 195 return NULL; 196 197 pud = pud_offset(p4d, address); 198 pud_k = pud_offset(p4d_k, address); 199 if (!pud_present(*pud_k)) 200 return NULL; 201 202 pmd = pmd_offset(pud, address); 203 pmd_k = pmd_offset(pud_k, address); 204 205 if (pmd_present(*pmd) != pmd_present(*pmd_k)) 206 set_pmd(pmd, *pmd_k); 207 208 if (!pmd_present(*pmd_k)) 209 return NULL; 210 else 211 BUG_ON(pmd_pfn(*pmd) != pmd_pfn(*pmd_k)); 212 213 return pmd_k; 214 } 215 216 /* 217 * Handle a fault on the vmalloc or module mapping area 218 * 219 * This is needed because there is a race condition between the time 220 * when the vmalloc mapping code updates the PMD to the point in time 221 * where it synchronizes this update with the other page-tables in the 222 * system. 223 * 224 * In this race window another thread/CPU can map an area on the same 225 * PMD, finds it already present and does not synchronize it with the 226 * rest of the system yet. As a result v[mz]alloc might return areas 227 * which are not mapped in every page-table in the system, causing an 228 * unhandled page-fault when they are accessed. 229 */ 230 static noinline int vmalloc_fault(unsigned long address) 231 { 232 unsigned long pgd_paddr; 233 pmd_t *pmd_k; 234 pte_t *pte_k; 235 236 /* Make sure we are in vmalloc area: */ 237 if (!(address >= VMALLOC_START && address < VMALLOC_END)) 238 return -1; 239 240 /* 241 * Synchronize this task's top level page-table 242 * with the 'reference' page table. 243 * 244 * Do _not_ use "current" here. We might be inside 245 * an interrupt in the middle of a task switch.. 246 */ 247 pgd_paddr = read_cr3_pa(); 248 pmd_k = vmalloc_sync_one(__va(pgd_paddr), address); 249 if (!pmd_k) 250 return -1; 251 252 if (pmd_large(*pmd_k)) 253 return 0; 254 255 pte_k = pte_offset_kernel(pmd_k, address); 256 if (!pte_present(*pte_k)) 257 return -1; 258 259 return 0; 260 } 261 NOKPROBE_SYMBOL(vmalloc_fault); 262 263 void arch_sync_kernel_mappings(unsigned long start, unsigned long end) 264 { 265 unsigned long addr; 266 267 for (addr = start & PMD_MASK; 268 addr >= TASK_SIZE_MAX && addr < VMALLOC_END; 269 addr += PMD_SIZE) { 270 struct page *page; 271 272 spin_lock(&pgd_lock); 273 list_for_each_entry(page, &pgd_list, lru) { 274 spinlock_t *pgt_lock; 275 276 /* the pgt_lock only for Xen */ 277 pgt_lock = &pgd_page_get_mm(page)->page_table_lock; 278 279 spin_lock(pgt_lock); 280 vmalloc_sync_one(page_address(page), addr); 281 spin_unlock(pgt_lock); 282 } 283 spin_unlock(&pgd_lock); 284 } 285 } 286 287 static bool low_pfn(unsigned long pfn) 288 { 289 return pfn < max_low_pfn; 290 } 291 292 static void dump_pagetable(unsigned long address) 293 { 294 pgd_t *base = __va(read_cr3_pa()); 295 pgd_t *pgd = &base[pgd_index(address)]; 296 p4d_t *p4d; 297 pud_t *pud; 298 pmd_t *pmd; 299 pte_t *pte; 300 301 #ifdef CONFIG_X86_PAE 302 pr_info("*pdpt = %016Lx ", pgd_val(*pgd)); 303 if (!low_pfn(pgd_val(*pgd) >> PAGE_SHIFT) || !pgd_present(*pgd)) 304 goto out; 305 #define pr_pde pr_cont 306 #else 307 #define pr_pde pr_info 308 #endif 309 p4d = p4d_offset(pgd, address); 310 pud = pud_offset(p4d, address); 311 pmd = pmd_offset(pud, address); 312 pr_pde("*pde = %0*Lx ", sizeof(*pmd) * 2, (u64)pmd_val(*pmd)); 313 #undef pr_pde 314 315 /* 316 * We must not directly access the pte in the highpte 317 * case if the page table is located in highmem. 318 * And let's rather not kmap-atomic the pte, just in case 319 * it's allocated already: 320 */ 321 if (!low_pfn(pmd_pfn(*pmd)) || !pmd_present(*pmd) || pmd_large(*pmd)) 322 goto out; 323 324 pte = pte_offset_kernel(pmd, address); 325 pr_cont("*pte = %0*Lx ", sizeof(*pte) * 2, (u64)pte_val(*pte)); 326 out: 327 pr_cont("\n"); 328 } 329 330 #else /* CONFIG_X86_64: */ 331 332 #ifdef CONFIG_CPU_SUP_AMD 333 static const char errata93_warning[] = 334 KERN_ERR 335 "******* Your BIOS seems to not contain a fix for K8 errata #93\n" 336 "******* Working around it, but it may cause SEGVs or burn power.\n" 337 "******* Please consider a BIOS update.\n" 338 "******* Disabling USB legacy in the BIOS may also help.\n"; 339 #endif 340 341 static int bad_address(void *p) 342 { 343 unsigned long dummy; 344 345 return get_kernel_nofault(dummy, (unsigned long *)p); 346 } 347 348 static void dump_pagetable(unsigned long address) 349 { 350 pgd_t *base = __va(read_cr3_pa()); 351 pgd_t *pgd = base + pgd_index(address); 352 p4d_t *p4d; 353 pud_t *pud; 354 pmd_t *pmd; 355 pte_t *pte; 356 357 if (bad_address(pgd)) 358 goto bad; 359 360 pr_info("PGD %lx ", pgd_val(*pgd)); 361 362 if (!pgd_present(*pgd)) 363 goto out; 364 365 p4d = p4d_offset(pgd, address); 366 if (bad_address(p4d)) 367 goto bad; 368 369 pr_cont("P4D %lx ", p4d_val(*p4d)); 370 if (!p4d_present(*p4d) || p4d_large(*p4d)) 371 goto out; 372 373 pud = pud_offset(p4d, address); 374 if (bad_address(pud)) 375 goto bad; 376 377 pr_cont("PUD %lx ", pud_val(*pud)); 378 if (!pud_present(*pud) || pud_large(*pud)) 379 goto out; 380 381 pmd = pmd_offset(pud, address); 382 if (bad_address(pmd)) 383 goto bad; 384 385 pr_cont("PMD %lx ", pmd_val(*pmd)); 386 if (!pmd_present(*pmd) || pmd_large(*pmd)) 387 goto out; 388 389 pte = pte_offset_kernel(pmd, address); 390 if (bad_address(pte)) 391 goto bad; 392 393 pr_cont("PTE %lx", pte_val(*pte)); 394 out: 395 pr_cont("\n"); 396 return; 397 bad: 398 pr_info("BAD\n"); 399 } 400 401 #endif /* CONFIG_X86_64 */ 402 403 /* 404 * Workaround for K8 erratum #93 & buggy BIOS. 405 * 406 * BIOS SMM functions are required to use a specific workaround 407 * to avoid corruption of the 64bit RIP register on C stepping K8. 408 * 409 * A lot of BIOS that didn't get tested properly miss this. 410 * 411 * The OS sees this as a page fault with the upper 32bits of RIP cleared. 412 * Try to work around it here. 413 * 414 * Note we only handle faults in kernel here. 415 * Does nothing on 32-bit. 416 */ 417 static int is_errata93(struct pt_regs *regs, unsigned long address) 418 { 419 #if defined(CONFIG_X86_64) && defined(CONFIG_CPU_SUP_AMD) 420 if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD 421 || boot_cpu_data.x86 != 0xf) 422 return 0; 423 424 if (user_mode(regs)) 425 return 0; 426 427 if (address != regs->ip) 428 return 0; 429 430 if ((address >> 32) != 0) 431 return 0; 432 433 address |= 0xffffffffUL << 32; 434 if ((address >= (u64)_stext && address <= (u64)_etext) || 435 (address >= MODULES_VADDR && address <= MODULES_END)) { 436 printk_once(errata93_warning); 437 regs->ip = address; 438 return 1; 439 } 440 #endif 441 return 0; 442 } 443 444 /* 445 * Work around K8 erratum #100 K8 in compat mode occasionally jumps 446 * to illegal addresses >4GB. 447 * 448 * We catch this in the page fault handler because these addresses 449 * are not reachable. Just detect this case and return. Any code 450 * segment in LDT is compatibility mode. 451 */ 452 static int is_errata100(struct pt_regs *regs, unsigned long address) 453 { 454 #ifdef CONFIG_X86_64 455 if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) && (address >> 32)) 456 return 1; 457 #endif 458 return 0; 459 } 460 461 /* Pentium F0 0F C7 C8 bug workaround: */ 462 static int is_f00f_bug(struct pt_regs *regs, unsigned long error_code, 463 unsigned long address) 464 { 465 #ifdef CONFIG_X86_F00F_BUG 466 if (boot_cpu_has_bug(X86_BUG_F00F) && !(error_code & X86_PF_USER) && 467 idt_is_f00f_address(address)) { 468 handle_invalid_op(regs); 469 return 1; 470 } 471 #endif 472 return 0; 473 } 474 475 static void show_ldttss(const struct desc_ptr *gdt, const char *name, u16 index) 476 { 477 u32 offset = (index >> 3) * sizeof(struct desc_struct); 478 unsigned long addr; 479 struct ldttss_desc desc; 480 481 if (index == 0) { 482 pr_alert("%s: NULL\n", name); 483 return; 484 } 485 486 if (offset + sizeof(struct ldttss_desc) >= gdt->size) { 487 pr_alert("%s: 0x%hx -- out of bounds\n", name, index); 488 return; 489 } 490 491 if (copy_from_kernel_nofault(&desc, (void *)(gdt->address + offset), 492 sizeof(struct ldttss_desc))) { 493 pr_alert("%s: 0x%hx -- GDT entry is not readable\n", 494 name, index); 495 return; 496 } 497 498 addr = desc.base0 | (desc.base1 << 16) | ((unsigned long)desc.base2 << 24); 499 #ifdef CONFIG_X86_64 500 addr |= ((u64)desc.base3 << 32); 501 #endif 502 pr_alert("%s: 0x%hx -- base=0x%lx limit=0x%x\n", 503 name, index, addr, (desc.limit0 | (desc.limit1 << 16))); 504 } 505 506 static void 507 show_fault_oops(struct pt_regs *regs, unsigned long error_code, unsigned long address) 508 { 509 if (!oops_may_print()) 510 return; 511 512 if (error_code & X86_PF_INSTR) { 513 unsigned int level; 514 pgd_t *pgd; 515 pte_t *pte; 516 517 pgd = __va(read_cr3_pa()); 518 pgd += pgd_index(address); 519 520 pte = lookup_address_in_pgd(pgd, address, &level); 521 522 if (pte && pte_present(*pte) && !pte_exec(*pte)) 523 pr_crit("kernel tried to execute NX-protected page - exploit attempt? (uid: %d)\n", 524 from_kuid(&init_user_ns, current_uid())); 525 if (pte && pte_present(*pte) && pte_exec(*pte) && 526 (pgd_flags(*pgd) & _PAGE_USER) && 527 (__read_cr4() & X86_CR4_SMEP)) 528 pr_crit("unable to execute userspace code (SMEP?) (uid: %d)\n", 529 from_kuid(&init_user_ns, current_uid())); 530 } 531 532 if (address < PAGE_SIZE && !user_mode(regs)) 533 pr_alert("BUG: kernel NULL pointer dereference, address: %px\n", 534 (void *)address); 535 else 536 pr_alert("BUG: unable to handle page fault for address: %px\n", 537 (void *)address); 538 539 pr_alert("#PF: %s %s in %s mode\n", 540 (error_code & X86_PF_USER) ? "user" : "supervisor", 541 (error_code & X86_PF_INSTR) ? "instruction fetch" : 542 (error_code & X86_PF_WRITE) ? "write access" : 543 "read access", 544 user_mode(regs) ? "user" : "kernel"); 545 pr_alert("#PF: error_code(0x%04lx) - %s\n", error_code, 546 !(error_code & X86_PF_PROT) ? "not-present page" : 547 (error_code & X86_PF_RSVD) ? "reserved bit violation" : 548 (error_code & X86_PF_PK) ? "protection keys violation" : 549 "permissions violation"); 550 551 if (!(error_code & X86_PF_USER) && user_mode(regs)) { 552 struct desc_ptr idt, gdt; 553 u16 ldtr, tr; 554 555 /* 556 * This can happen for quite a few reasons. The more obvious 557 * ones are faults accessing the GDT, or LDT. Perhaps 558 * surprisingly, if the CPU tries to deliver a benign or 559 * contributory exception from user code and gets a page fault 560 * during delivery, the page fault can be delivered as though 561 * it originated directly from user code. This could happen 562 * due to wrong permissions on the IDT, GDT, LDT, TSS, or 563 * kernel or IST stack. 564 */ 565 store_idt(&idt); 566 567 /* Usable even on Xen PV -- it's just slow. */ 568 native_store_gdt(&gdt); 569 570 pr_alert("IDT: 0x%lx (limit=0x%hx) GDT: 0x%lx (limit=0x%hx)\n", 571 idt.address, idt.size, gdt.address, gdt.size); 572 573 store_ldt(ldtr); 574 show_ldttss(&gdt, "LDTR", ldtr); 575 576 store_tr(tr); 577 show_ldttss(&gdt, "TR", tr); 578 } 579 580 dump_pagetable(address); 581 } 582 583 static noinline void 584 pgtable_bad(struct pt_regs *regs, unsigned long error_code, 585 unsigned long address) 586 { 587 struct task_struct *tsk; 588 unsigned long flags; 589 int sig; 590 591 flags = oops_begin(); 592 tsk = current; 593 sig = SIGKILL; 594 595 printk(KERN_ALERT "%s: Corrupted page table at address %lx\n", 596 tsk->comm, address); 597 dump_pagetable(address); 598 599 if (__die("Bad pagetable", regs, error_code)) 600 sig = 0; 601 602 oops_end(flags, regs, sig); 603 } 604 605 static void sanitize_error_code(unsigned long address, 606 unsigned long *error_code) 607 { 608 /* 609 * To avoid leaking information about the kernel page 610 * table layout, pretend that user-mode accesses to 611 * kernel addresses are always protection faults. 612 * 613 * NB: This means that failed vsyscalls with vsyscall=none 614 * will have the PROT bit. This doesn't leak any 615 * information and does not appear to cause any problems. 616 */ 617 if (address >= TASK_SIZE_MAX) 618 *error_code |= X86_PF_PROT; 619 } 620 621 static void set_signal_archinfo(unsigned long address, 622 unsigned long error_code) 623 { 624 struct task_struct *tsk = current; 625 626 tsk->thread.trap_nr = X86_TRAP_PF; 627 tsk->thread.error_code = error_code | X86_PF_USER; 628 tsk->thread.cr2 = address; 629 } 630 631 static noinline void 632 page_fault_oops(struct pt_regs *regs, unsigned long error_code, 633 unsigned long address) 634 { 635 #ifdef CONFIG_VMAP_STACK 636 struct stack_info info; 637 #endif 638 unsigned long flags; 639 int sig; 640 641 if (user_mode(regs)) { 642 /* 643 * Implicit kernel access from user mode? Skip the stack 644 * overflow and EFI special cases. 645 */ 646 goto oops; 647 } 648 649 #ifdef CONFIG_VMAP_STACK 650 /* 651 * Stack overflow? During boot, we can fault near the initial 652 * stack in the direct map, but that's not an overflow -- check 653 * that we're in vmalloc space to avoid this. 654 */ 655 if (is_vmalloc_addr((void *)address) && 656 get_stack_guard_info((void *)address, &info)) { 657 /* 658 * We're likely to be running with very little stack space 659 * left. It's plausible that we'd hit this condition but 660 * double-fault even before we get this far, in which case 661 * we're fine: the double-fault handler will deal with it. 662 * 663 * We don't want to make it all the way into the oops code 664 * and then double-fault, though, because we're likely to 665 * break the console driver and lose most of the stack dump. 666 */ 667 call_on_stack(__this_cpu_ist_top_va(DF) - sizeof(void*), 668 handle_stack_overflow, 669 ASM_CALL_ARG3, 670 , [arg1] "r" (regs), [arg2] "r" (address), [arg3] "r" (&info)); 671 672 unreachable(); 673 } 674 #endif 675 676 /* 677 * Buggy firmware could access regions which might page fault. If 678 * this happens, EFI has a special OOPS path that will try to 679 * avoid hanging the system. 680 */ 681 if (IS_ENABLED(CONFIG_EFI)) 682 efi_crash_gracefully_on_page_fault(address); 683 684 /* Only not-present faults should be handled by KFENCE. */ 685 if (!(error_code & X86_PF_PROT) && 686 kfence_handle_page_fault(address, error_code & X86_PF_WRITE, regs)) 687 return; 688 689 oops: 690 /* 691 * Oops. The kernel tried to access some bad page. We'll have to 692 * terminate things with extreme prejudice: 693 */ 694 flags = oops_begin(); 695 696 show_fault_oops(regs, error_code, address); 697 698 if (task_stack_end_corrupted(current)) 699 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n"); 700 701 sig = SIGKILL; 702 if (__die("Oops", regs, error_code)) 703 sig = 0; 704 705 /* Executive summary in case the body of the oops scrolled away */ 706 printk(KERN_DEFAULT "CR2: %016lx\n", address); 707 708 oops_end(flags, regs, sig); 709 } 710 711 static noinline void 712 kernelmode_fixup_or_oops(struct pt_regs *regs, unsigned long error_code, 713 unsigned long address, int signal, int si_code, 714 u32 pkey) 715 { 716 WARN_ON_ONCE(user_mode(regs)); 717 718 /* Are we prepared to handle this kernel fault? */ 719 if (fixup_exception(regs, X86_TRAP_PF, error_code, address)) { 720 /* 721 * Any interrupt that takes a fault gets the fixup. This makes 722 * the below recursive fault logic only apply to a faults from 723 * task context. 724 */ 725 if (in_interrupt()) 726 return; 727 728 /* 729 * Per the above we're !in_interrupt(), aka. task context. 730 * 731 * In this case we need to make sure we're not recursively 732 * faulting through the emulate_vsyscall() logic. 733 */ 734 if (current->thread.sig_on_uaccess_err && signal) { 735 sanitize_error_code(address, &error_code); 736 737 set_signal_archinfo(address, error_code); 738 739 if (si_code == SEGV_PKUERR) { 740 force_sig_pkuerr((void __user *)address, pkey); 741 } else { 742 /* XXX: hwpoison faults will set the wrong code. */ 743 force_sig_fault(signal, si_code, (void __user *)address); 744 } 745 } 746 747 /* 748 * Barring that, we can do the fixup and be happy. 749 */ 750 return; 751 } 752 753 /* 754 * AMD erratum #91 manifests as a spurious page fault on a PREFETCH 755 * instruction. 756 */ 757 if (is_prefetch(regs, error_code, address)) 758 return; 759 760 page_fault_oops(regs, error_code, address); 761 } 762 763 /* 764 * Print out info about fatal segfaults, if the show_unhandled_signals 765 * sysctl is set: 766 */ 767 static inline void 768 show_signal_msg(struct pt_regs *regs, unsigned long error_code, 769 unsigned long address, struct task_struct *tsk) 770 { 771 const char *loglvl = task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG; 772 /* This is a racy snapshot, but it's better than nothing. */ 773 int cpu = raw_smp_processor_id(); 774 775 if (!unhandled_signal(tsk, SIGSEGV)) 776 return; 777 778 if (!printk_ratelimit()) 779 return; 780 781 printk("%s%s[%d]: segfault at %lx ip %px sp %px error %lx", 782 loglvl, tsk->comm, task_pid_nr(tsk), address, 783 (void *)regs->ip, (void *)regs->sp, error_code); 784 785 print_vma_addr(KERN_CONT " in ", regs->ip); 786 787 /* 788 * Dump the likely CPU where the fatal segfault happened. 789 * This can help identify faulty hardware. 790 */ 791 printk(KERN_CONT " likely on CPU %d (core %d, socket %d)", cpu, 792 topology_core_id(cpu), topology_physical_package_id(cpu)); 793 794 795 printk(KERN_CONT "\n"); 796 797 show_opcodes(regs, loglvl); 798 } 799 800 /* 801 * The (legacy) vsyscall page is the long page in the kernel portion 802 * of the address space that has user-accessible permissions. 803 */ 804 static bool is_vsyscall_vaddr(unsigned long vaddr) 805 { 806 return unlikely((vaddr & PAGE_MASK) == VSYSCALL_ADDR); 807 } 808 809 static void 810 __bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code, 811 unsigned long address, u32 pkey, int si_code) 812 { 813 struct task_struct *tsk = current; 814 815 if (!user_mode(regs)) { 816 kernelmode_fixup_or_oops(regs, error_code, address, 817 SIGSEGV, si_code, pkey); 818 return; 819 } 820 821 if (!(error_code & X86_PF_USER)) { 822 /* Implicit user access to kernel memory -- just oops */ 823 page_fault_oops(regs, error_code, address); 824 return; 825 } 826 827 /* 828 * User mode accesses just cause a SIGSEGV. 829 * It's possible to have interrupts off here: 830 */ 831 local_irq_enable(); 832 833 /* 834 * Valid to do another page fault here because this one came 835 * from user space: 836 */ 837 if (is_prefetch(regs, error_code, address)) 838 return; 839 840 if (is_errata100(regs, address)) 841 return; 842 843 sanitize_error_code(address, &error_code); 844 845 if (fixup_vdso_exception(regs, X86_TRAP_PF, error_code, address)) 846 return; 847 848 if (likely(show_unhandled_signals)) 849 show_signal_msg(regs, error_code, address, tsk); 850 851 set_signal_archinfo(address, error_code); 852 853 if (si_code == SEGV_PKUERR) 854 force_sig_pkuerr((void __user *)address, pkey); 855 else 856 force_sig_fault(SIGSEGV, si_code, (void __user *)address); 857 858 local_irq_disable(); 859 } 860 861 static noinline void 862 bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code, 863 unsigned long address) 864 { 865 __bad_area_nosemaphore(regs, error_code, address, 0, SEGV_MAPERR); 866 } 867 868 static void 869 __bad_area(struct pt_regs *regs, unsigned long error_code, 870 unsigned long address, u32 pkey, int si_code) 871 { 872 struct mm_struct *mm = current->mm; 873 /* 874 * Something tried to access memory that isn't in our memory map.. 875 * Fix it, but check if it's kernel or user first.. 876 */ 877 mmap_read_unlock(mm); 878 879 __bad_area_nosemaphore(regs, error_code, address, pkey, si_code); 880 } 881 882 static noinline void 883 bad_area(struct pt_regs *regs, unsigned long error_code, unsigned long address) 884 { 885 __bad_area(regs, error_code, address, 0, SEGV_MAPERR); 886 } 887 888 static inline bool bad_area_access_from_pkeys(unsigned long error_code, 889 struct vm_area_struct *vma) 890 { 891 /* This code is always called on the current mm */ 892 bool foreign = false; 893 894 if (!cpu_feature_enabled(X86_FEATURE_OSPKE)) 895 return false; 896 if (error_code & X86_PF_PK) 897 return true; 898 /* this checks permission keys on the VMA: */ 899 if (!arch_vma_access_permitted(vma, (error_code & X86_PF_WRITE), 900 (error_code & X86_PF_INSTR), foreign)) 901 return true; 902 return false; 903 } 904 905 static noinline void 906 bad_area_access_error(struct pt_regs *regs, unsigned long error_code, 907 unsigned long address, struct vm_area_struct *vma) 908 { 909 /* 910 * This OSPKE check is not strictly necessary at runtime. 911 * But, doing it this way allows compiler optimizations 912 * if pkeys are compiled out. 913 */ 914 if (bad_area_access_from_pkeys(error_code, vma)) { 915 /* 916 * A protection key fault means that the PKRU value did not allow 917 * access to some PTE. Userspace can figure out what PKRU was 918 * from the XSAVE state. This function captures the pkey from 919 * the vma and passes it to userspace so userspace can discover 920 * which protection key was set on the PTE. 921 * 922 * If we get here, we know that the hardware signaled a X86_PF_PK 923 * fault and that there was a VMA once we got in the fault 924 * handler. It does *not* guarantee that the VMA we find here 925 * was the one that we faulted on. 926 * 927 * 1. T1 : mprotect_key(foo, PAGE_SIZE, pkey=4); 928 * 2. T1 : set PKRU to deny access to pkey=4, touches page 929 * 3. T1 : faults... 930 * 4. T2: mprotect_key(foo, PAGE_SIZE, pkey=5); 931 * 5. T1 : enters fault handler, takes mmap_lock, etc... 932 * 6. T1 : reaches here, sees vma_pkey(vma)=5, when we really 933 * faulted on a pte with its pkey=4. 934 */ 935 u32 pkey = vma_pkey(vma); 936 937 __bad_area(regs, error_code, address, pkey, SEGV_PKUERR); 938 } else { 939 __bad_area(regs, error_code, address, 0, SEGV_ACCERR); 940 } 941 } 942 943 static void 944 do_sigbus(struct pt_regs *regs, unsigned long error_code, unsigned long address, 945 vm_fault_t fault) 946 { 947 /* Kernel mode? Handle exceptions or die: */ 948 if (!user_mode(regs)) { 949 kernelmode_fixup_or_oops(regs, error_code, address, 950 SIGBUS, BUS_ADRERR, ARCH_DEFAULT_PKEY); 951 return; 952 } 953 954 /* User-space => ok to do another page fault: */ 955 if (is_prefetch(regs, error_code, address)) 956 return; 957 958 sanitize_error_code(address, &error_code); 959 960 if (fixup_vdso_exception(regs, X86_TRAP_PF, error_code, address)) 961 return; 962 963 set_signal_archinfo(address, error_code); 964 965 #ifdef CONFIG_MEMORY_FAILURE 966 if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) { 967 struct task_struct *tsk = current; 968 unsigned lsb = 0; 969 970 pr_err( 971 "MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n", 972 tsk->comm, tsk->pid, address); 973 if (fault & VM_FAULT_HWPOISON_LARGE) 974 lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault)); 975 if (fault & VM_FAULT_HWPOISON) 976 lsb = PAGE_SHIFT; 977 force_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, lsb); 978 return; 979 } 980 #endif 981 force_sig_fault(SIGBUS, BUS_ADRERR, (void __user *)address); 982 } 983 984 static int spurious_kernel_fault_check(unsigned long error_code, pte_t *pte) 985 { 986 if ((error_code & X86_PF_WRITE) && !pte_write(*pte)) 987 return 0; 988 989 if ((error_code & X86_PF_INSTR) && !pte_exec(*pte)) 990 return 0; 991 992 return 1; 993 } 994 995 /* 996 * Handle a spurious fault caused by a stale TLB entry. 997 * 998 * This allows us to lazily refresh the TLB when increasing the 999 * permissions of a kernel page (RO -> RW or NX -> X). Doing it 1000 * eagerly is very expensive since that implies doing a full 1001 * cross-processor TLB flush, even if no stale TLB entries exist 1002 * on other processors. 1003 * 1004 * Spurious faults may only occur if the TLB contains an entry with 1005 * fewer permission than the page table entry. Non-present (P = 0) 1006 * and reserved bit (R = 1) faults are never spurious. 1007 * 1008 * There are no security implications to leaving a stale TLB when 1009 * increasing the permissions on a page. 1010 * 1011 * Returns non-zero if a spurious fault was handled, zero otherwise. 1012 * 1013 * See Intel Developer's Manual Vol 3 Section 4.10.4.3, bullet 3 1014 * (Optional Invalidation). 1015 */ 1016 static noinline int 1017 spurious_kernel_fault(unsigned long error_code, unsigned long address) 1018 { 1019 pgd_t *pgd; 1020 p4d_t *p4d; 1021 pud_t *pud; 1022 pmd_t *pmd; 1023 pte_t *pte; 1024 int ret; 1025 1026 /* 1027 * Only writes to RO or instruction fetches from NX may cause 1028 * spurious faults. 1029 * 1030 * These could be from user or supervisor accesses but the TLB 1031 * is only lazily flushed after a kernel mapping protection 1032 * change, so user accesses are not expected to cause spurious 1033 * faults. 1034 */ 1035 if (error_code != (X86_PF_WRITE | X86_PF_PROT) && 1036 error_code != (X86_PF_INSTR | X86_PF_PROT)) 1037 return 0; 1038 1039 pgd = init_mm.pgd + pgd_index(address); 1040 if (!pgd_present(*pgd)) 1041 return 0; 1042 1043 p4d = p4d_offset(pgd, address); 1044 if (!p4d_present(*p4d)) 1045 return 0; 1046 1047 if (p4d_large(*p4d)) 1048 return spurious_kernel_fault_check(error_code, (pte_t *) p4d); 1049 1050 pud = pud_offset(p4d, address); 1051 if (!pud_present(*pud)) 1052 return 0; 1053 1054 if (pud_large(*pud)) 1055 return spurious_kernel_fault_check(error_code, (pte_t *) pud); 1056 1057 pmd = pmd_offset(pud, address); 1058 if (!pmd_present(*pmd)) 1059 return 0; 1060 1061 if (pmd_large(*pmd)) 1062 return spurious_kernel_fault_check(error_code, (pte_t *) pmd); 1063 1064 pte = pte_offset_kernel(pmd, address); 1065 if (!pte_present(*pte)) 1066 return 0; 1067 1068 ret = spurious_kernel_fault_check(error_code, pte); 1069 if (!ret) 1070 return 0; 1071 1072 /* 1073 * Make sure we have permissions in PMD. 1074 * If not, then there's a bug in the page tables: 1075 */ 1076 ret = spurious_kernel_fault_check(error_code, (pte_t *) pmd); 1077 WARN_ONCE(!ret, "PMD has incorrect permission bits\n"); 1078 1079 return ret; 1080 } 1081 NOKPROBE_SYMBOL(spurious_kernel_fault); 1082 1083 int show_unhandled_signals = 1; 1084 1085 static inline int 1086 access_error(unsigned long error_code, struct vm_area_struct *vma) 1087 { 1088 /* This is only called for the current mm, so: */ 1089 bool foreign = false; 1090 1091 /* 1092 * Read or write was blocked by protection keys. This is 1093 * always an unconditional error and can never result in 1094 * a follow-up action to resolve the fault, like a COW. 1095 */ 1096 if (error_code & X86_PF_PK) 1097 return 1; 1098 1099 /* 1100 * SGX hardware blocked the access. This usually happens 1101 * when the enclave memory contents have been destroyed, like 1102 * after a suspend/resume cycle. In any case, the kernel can't 1103 * fix the cause of the fault. Handle the fault as an access 1104 * error even in cases where no actual access violation 1105 * occurred. This allows userspace to rebuild the enclave in 1106 * response to the signal. 1107 */ 1108 if (unlikely(error_code & X86_PF_SGX)) 1109 return 1; 1110 1111 /* 1112 * Make sure to check the VMA so that we do not perform 1113 * faults just to hit a X86_PF_PK as soon as we fill in a 1114 * page. 1115 */ 1116 if (!arch_vma_access_permitted(vma, (error_code & X86_PF_WRITE), 1117 (error_code & X86_PF_INSTR), foreign)) 1118 return 1; 1119 1120 if (error_code & X86_PF_WRITE) { 1121 /* write, present and write, not present: */ 1122 if (unlikely(!(vma->vm_flags & VM_WRITE))) 1123 return 1; 1124 return 0; 1125 } 1126 1127 /* read, present: */ 1128 if (unlikely(error_code & X86_PF_PROT)) 1129 return 1; 1130 1131 /* read, not present: */ 1132 if (unlikely(!vma_is_accessible(vma))) 1133 return 1; 1134 1135 return 0; 1136 } 1137 1138 bool fault_in_kernel_space(unsigned long address) 1139 { 1140 /* 1141 * On 64-bit systems, the vsyscall page is at an address above 1142 * TASK_SIZE_MAX, but is not considered part of the kernel 1143 * address space. 1144 */ 1145 if (IS_ENABLED(CONFIG_X86_64) && is_vsyscall_vaddr(address)) 1146 return false; 1147 1148 return address >= TASK_SIZE_MAX; 1149 } 1150 1151 /* 1152 * Called for all faults where 'address' is part of the kernel address 1153 * space. Might get called for faults that originate from *code* that 1154 * ran in userspace or the kernel. 1155 */ 1156 static void 1157 do_kern_addr_fault(struct pt_regs *regs, unsigned long hw_error_code, 1158 unsigned long address) 1159 { 1160 /* 1161 * Protection keys exceptions only happen on user pages. We 1162 * have no user pages in the kernel portion of the address 1163 * space, so do not expect them here. 1164 */ 1165 WARN_ON_ONCE(hw_error_code & X86_PF_PK); 1166 1167 #ifdef CONFIG_X86_32 1168 /* 1169 * We can fault-in kernel-space virtual memory on-demand. The 1170 * 'reference' page table is init_mm.pgd. 1171 * 1172 * NOTE! We MUST NOT take any locks for this case. We may 1173 * be in an interrupt or a critical region, and should 1174 * only copy the information from the master page table, 1175 * nothing more. 1176 * 1177 * Before doing this on-demand faulting, ensure that the 1178 * fault is not any of the following: 1179 * 1. A fault on a PTE with a reserved bit set. 1180 * 2. A fault caused by a user-mode access. (Do not demand- 1181 * fault kernel memory due to user-mode accesses). 1182 * 3. A fault caused by a page-level protection violation. 1183 * (A demand fault would be on a non-present page which 1184 * would have X86_PF_PROT==0). 1185 * 1186 * This is only needed to close a race condition on x86-32 in 1187 * the vmalloc mapping/unmapping code. See the comment above 1188 * vmalloc_fault() for details. On x86-64 the race does not 1189 * exist as the vmalloc mappings don't need to be synchronized 1190 * there. 1191 */ 1192 if (!(hw_error_code & (X86_PF_RSVD | X86_PF_USER | X86_PF_PROT))) { 1193 if (vmalloc_fault(address) >= 0) 1194 return; 1195 } 1196 #endif 1197 1198 if (is_f00f_bug(regs, hw_error_code, address)) 1199 return; 1200 1201 /* Was the fault spurious, caused by lazy TLB invalidation? */ 1202 if (spurious_kernel_fault(hw_error_code, address)) 1203 return; 1204 1205 /* kprobes don't want to hook the spurious faults: */ 1206 if (WARN_ON_ONCE(kprobe_page_fault(regs, X86_TRAP_PF))) 1207 return; 1208 1209 /* 1210 * Note, despite being a "bad area", there are quite a few 1211 * acceptable reasons to get here, such as erratum fixups 1212 * and handling kernel code that can fault, like get_user(). 1213 * 1214 * Don't take the mm semaphore here. If we fixup a prefetch 1215 * fault we could otherwise deadlock: 1216 */ 1217 bad_area_nosemaphore(regs, hw_error_code, address); 1218 } 1219 NOKPROBE_SYMBOL(do_kern_addr_fault); 1220 1221 /* 1222 * Handle faults in the user portion of the address space. Nothing in here 1223 * should check X86_PF_USER without a specific justification: for almost 1224 * all purposes, we should treat a normal kernel access to user memory 1225 * (e.g. get_user(), put_user(), etc.) the same as the WRUSS instruction. 1226 * The one exception is AC flag handling, which is, per the x86 1227 * architecture, special for WRUSS. 1228 */ 1229 static inline 1230 void do_user_addr_fault(struct pt_regs *regs, 1231 unsigned long error_code, 1232 unsigned long address) 1233 { 1234 struct vm_area_struct *vma; 1235 struct task_struct *tsk; 1236 struct mm_struct *mm; 1237 vm_fault_t fault; 1238 unsigned int flags = FAULT_FLAG_DEFAULT; 1239 1240 tsk = current; 1241 mm = tsk->mm; 1242 1243 if (unlikely((error_code & (X86_PF_USER | X86_PF_INSTR)) == X86_PF_INSTR)) { 1244 /* 1245 * Whoops, this is kernel mode code trying to execute from 1246 * user memory. Unless this is AMD erratum #93, which 1247 * corrupts RIP such that it looks like a user address, 1248 * this is unrecoverable. Don't even try to look up the 1249 * VMA or look for extable entries. 1250 */ 1251 if (is_errata93(regs, address)) 1252 return; 1253 1254 page_fault_oops(regs, error_code, address); 1255 return; 1256 } 1257 1258 /* kprobes don't want to hook the spurious faults: */ 1259 if (WARN_ON_ONCE(kprobe_page_fault(regs, X86_TRAP_PF))) 1260 return; 1261 1262 /* 1263 * Reserved bits are never expected to be set on 1264 * entries in the user portion of the page tables. 1265 */ 1266 if (unlikely(error_code & X86_PF_RSVD)) 1267 pgtable_bad(regs, error_code, address); 1268 1269 /* 1270 * If SMAP is on, check for invalid kernel (supervisor) access to user 1271 * pages in the user address space. The odd case here is WRUSS, 1272 * which, according to the preliminary documentation, does not respect 1273 * SMAP and will have the USER bit set so, in all cases, SMAP 1274 * enforcement appears to be consistent with the USER bit. 1275 */ 1276 if (unlikely(cpu_feature_enabled(X86_FEATURE_SMAP) && 1277 !(error_code & X86_PF_USER) && 1278 !(regs->flags & X86_EFLAGS_AC))) { 1279 /* 1280 * No extable entry here. This was a kernel access to an 1281 * invalid pointer. get_kernel_nofault() will not get here. 1282 */ 1283 page_fault_oops(regs, error_code, address); 1284 return; 1285 } 1286 1287 /* 1288 * If we're in an interrupt, have no user context or are running 1289 * in a region with pagefaults disabled then we must not take the fault 1290 */ 1291 if (unlikely(faulthandler_disabled() || !mm)) { 1292 bad_area_nosemaphore(regs, error_code, address); 1293 return; 1294 } 1295 1296 /* 1297 * It's safe to allow irq's after cr2 has been saved and the 1298 * vmalloc fault has been handled. 1299 * 1300 * User-mode registers count as a user access even for any 1301 * potential system fault or CPU buglet: 1302 */ 1303 if (user_mode(regs)) { 1304 local_irq_enable(); 1305 flags |= FAULT_FLAG_USER; 1306 } else { 1307 if (regs->flags & X86_EFLAGS_IF) 1308 local_irq_enable(); 1309 } 1310 1311 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address); 1312 1313 if (error_code & X86_PF_WRITE) 1314 flags |= FAULT_FLAG_WRITE; 1315 if (error_code & X86_PF_INSTR) 1316 flags |= FAULT_FLAG_INSTRUCTION; 1317 1318 #ifdef CONFIG_X86_64 1319 /* 1320 * Faults in the vsyscall page might need emulation. The 1321 * vsyscall page is at a high address (>PAGE_OFFSET), but is 1322 * considered to be part of the user address space. 1323 * 1324 * The vsyscall page does not have a "real" VMA, so do this 1325 * emulation before we go searching for VMAs. 1326 * 1327 * PKRU never rejects instruction fetches, so we don't need 1328 * to consider the PF_PK bit. 1329 */ 1330 if (is_vsyscall_vaddr(address)) { 1331 if (emulate_vsyscall(error_code, regs, address)) 1332 return; 1333 } 1334 #endif 1335 1336 /* 1337 * Kernel-mode access to the user address space should only occur 1338 * on well-defined single instructions listed in the exception 1339 * tables. But, an erroneous kernel fault occurring outside one of 1340 * those areas which also holds mmap_lock might deadlock attempting 1341 * to validate the fault against the address space. 1342 * 1343 * Only do the expensive exception table search when we might be at 1344 * risk of a deadlock. This happens if we 1345 * 1. Failed to acquire mmap_lock, and 1346 * 2. The access did not originate in userspace. 1347 */ 1348 if (unlikely(!mmap_read_trylock(mm))) { 1349 if (!user_mode(regs) && !search_exception_tables(regs->ip)) { 1350 /* 1351 * Fault from code in kernel from 1352 * which we do not expect faults. 1353 */ 1354 bad_area_nosemaphore(regs, error_code, address); 1355 return; 1356 } 1357 retry: 1358 mmap_read_lock(mm); 1359 } else { 1360 /* 1361 * The above down_read_trylock() might have succeeded in 1362 * which case we'll have missed the might_sleep() from 1363 * down_read(): 1364 */ 1365 might_sleep(); 1366 } 1367 1368 vma = find_vma(mm, address); 1369 if (unlikely(!vma)) { 1370 bad_area(regs, error_code, address); 1371 return; 1372 } 1373 if (likely(vma->vm_start <= address)) 1374 goto good_area; 1375 if (unlikely(!(vma->vm_flags & VM_GROWSDOWN))) { 1376 bad_area(regs, error_code, address); 1377 return; 1378 } 1379 if (unlikely(expand_stack(vma, address))) { 1380 bad_area(regs, error_code, address); 1381 return; 1382 } 1383 1384 /* 1385 * Ok, we have a good vm_area for this memory access, so 1386 * we can handle it.. 1387 */ 1388 good_area: 1389 if (unlikely(access_error(error_code, vma))) { 1390 bad_area_access_error(regs, error_code, address, vma); 1391 return; 1392 } 1393 1394 /* 1395 * If for any reason at all we couldn't handle the fault, 1396 * make sure we exit gracefully rather than endlessly redo 1397 * the fault. Since we never set FAULT_FLAG_RETRY_NOWAIT, if 1398 * we get VM_FAULT_RETRY back, the mmap_lock has been unlocked. 1399 * 1400 * Note that handle_userfault() may also release and reacquire mmap_lock 1401 * (and not return with VM_FAULT_RETRY), when returning to userland to 1402 * repeat the page fault later with a VM_FAULT_NOPAGE retval 1403 * (potentially after handling any pending signal during the return to 1404 * userland). The return to userland is identified whenever 1405 * FAULT_FLAG_USER|FAULT_FLAG_KILLABLE are both set in flags. 1406 */ 1407 fault = handle_mm_fault(vma, address, flags, regs); 1408 1409 if (fault_signal_pending(fault, regs)) { 1410 /* 1411 * Quick path to respond to signals. The core mm code 1412 * has unlocked the mm for us if we get here. 1413 */ 1414 if (!user_mode(regs)) 1415 kernelmode_fixup_or_oops(regs, error_code, address, 1416 SIGBUS, BUS_ADRERR, 1417 ARCH_DEFAULT_PKEY); 1418 return; 1419 } 1420 1421 /* The fault is fully completed (including releasing mmap lock) */ 1422 if (fault & VM_FAULT_COMPLETED) 1423 return; 1424 1425 /* 1426 * If we need to retry the mmap_lock has already been released, 1427 * and if there is a fatal signal pending there is no guarantee 1428 * that we made any progress. Handle this case first. 1429 */ 1430 if (unlikely(fault & VM_FAULT_RETRY)) { 1431 flags |= FAULT_FLAG_TRIED; 1432 goto retry; 1433 } 1434 1435 mmap_read_unlock(mm); 1436 if (likely(!(fault & VM_FAULT_ERROR))) 1437 return; 1438 1439 if (fatal_signal_pending(current) && !user_mode(regs)) { 1440 kernelmode_fixup_or_oops(regs, error_code, address, 1441 0, 0, ARCH_DEFAULT_PKEY); 1442 return; 1443 } 1444 1445 if (fault & VM_FAULT_OOM) { 1446 /* Kernel mode? Handle exceptions or die: */ 1447 if (!user_mode(regs)) { 1448 kernelmode_fixup_or_oops(regs, error_code, address, 1449 SIGSEGV, SEGV_MAPERR, 1450 ARCH_DEFAULT_PKEY); 1451 return; 1452 } 1453 1454 /* 1455 * We ran out of memory, call the OOM killer, and return the 1456 * userspace (which will retry the fault, or kill us if we got 1457 * oom-killed): 1458 */ 1459 pagefault_out_of_memory(); 1460 } else { 1461 if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON| 1462 VM_FAULT_HWPOISON_LARGE)) 1463 do_sigbus(regs, error_code, address, fault); 1464 else if (fault & VM_FAULT_SIGSEGV) 1465 bad_area_nosemaphore(regs, error_code, address); 1466 else 1467 BUG(); 1468 } 1469 } 1470 NOKPROBE_SYMBOL(do_user_addr_fault); 1471 1472 static __always_inline void 1473 trace_page_fault_entries(struct pt_regs *regs, unsigned long error_code, 1474 unsigned long address) 1475 { 1476 if (!trace_pagefault_enabled()) 1477 return; 1478 1479 if (user_mode(regs)) 1480 trace_page_fault_user(address, regs, error_code); 1481 else 1482 trace_page_fault_kernel(address, regs, error_code); 1483 } 1484 1485 static __always_inline void 1486 handle_page_fault(struct pt_regs *regs, unsigned long error_code, 1487 unsigned long address) 1488 { 1489 trace_page_fault_entries(regs, error_code, address); 1490 1491 if (unlikely(kmmio_fault(regs, address))) 1492 return; 1493 1494 /* Was the fault on kernel-controlled part of the address space? */ 1495 if (unlikely(fault_in_kernel_space(address))) { 1496 do_kern_addr_fault(regs, error_code, address); 1497 } else { 1498 do_user_addr_fault(regs, error_code, address); 1499 /* 1500 * User address page fault handling might have reenabled 1501 * interrupts. Fixing up all potential exit points of 1502 * do_user_addr_fault() and its leaf functions is just not 1503 * doable w/o creating an unholy mess or turning the code 1504 * upside down. 1505 */ 1506 local_irq_disable(); 1507 } 1508 } 1509 1510 DEFINE_IDTENTRY_RAW_ERRORCODE(exc_page_fault) 1511 { 1512 unsigned long address = read_cr2(); 1513 irqentry_state_t state; 1514 1515 prefetchw(¤t->mm->mmap_lock); 1516 1517 /* 1518 * KVM uses #PF vector to deliver 'page not present' events to guests 1519 * (asynchronous page fault mechanism). The event happens when a 1520 * userspace task is trying to access some valid (from guest's point of 1521 * view) memory which is not currently mapped by the host (e.g. the 1522 * memory is swapped out). Note, the corresponding "page ready" event 1523 * which is injected when the memory becomes available, is delivered via 1524 * an interrupt mechanism and not a #PF exception 1525 * (see arch/x86/kernel/kvm.c: sysvec_kvm_asyncpf_interrupt()). 1526 * 1527 * We are relying on the interrupted context being sane (valid RSP, 1528 * relevant locks not held, etc.), which is fine as long as the 1529 * interrupted context had IF=1. We are also relying on the KVM 1530 * async pf type field and CR2 being read consistently instead of 1531 * getting values from real and async page faults mixed up. 1532 * 1533 * Fingers crossed. 1534 * 1535 * The async #PF handling code takes care of idtentry handling 1536 * itself. 1537 */ 1538 if (kvm_handle_async_pf(regs, (u32)address)) 1539 return; 1540 1541 /* 1542 * Entry handling for valid #PF from kernel mode is slightly 1543 * different: RCU is already watching and ct_irq_enter() must not 1544 * be invoked because a kernel fault on a user space address might 1545 * sleep. 1546 * 1547 * In case the fault hit a RCU idle region the conditional entry 1548 * code reenabled RCU to avoid subsequent wreckage which helps 1549 * debuggability. 1550 */ 1551 state = irqentry_enter(regs); 1552 1553 instrumentation_begin(); 1554 handle_page_fault(regs, error_code, address); 1555 instrumentation_end(); 1556 1557 irqentry_exit(regs, state); 1558 } 1559