1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 1995 Linus Torvalds 4 * Copyright (C) 2001, 2002 Andi Kleen, SuSE Labs. 5 * Copyright (C) 2008-2009, Red Hat Inc., Ingo Molnar 6 */ 7 #include <linux/sched.h> /* test_thread_flag(), ... */ 8 #include <linux/sched/task_stack.h> /* task_stack_*(), ... */ 9 #include <linux/kdebug.h> /* oops_begin/end, ... */ 10 #include <linux/extable.h> /* search_exception_tables */ 11 #include <linux/memblock.h> /* max_low_pfn */ 12 #include <linux/kfence.h> /* kfence_handle_page_fault */ 13 #include <linux/kprobes.h> /* NOKPROBE_SYMBOL, ... */ 14 #include <linux/mmiotrace.h> /* kmmio_handler, ... */ 15 #include <linux/perf_event.h> /* perf_sw_event */ 16 #include <linux/hugetlb.h> /* hstate_index_to_shift */ 17 #include <linux/prefetch.h> /* prefetchw */ 18 #include <linux/context_tracking.h> /* exception_enter(), ... */ 19 #include <linux/uaccess.h> /* faulthandler_disabled() */ 20 #include <linux/efi.h> /* efi_crash_gracefully_on_page_fault()*/ 21 #include <linux/mm_types.h> 22 23 #include <asm/cpufeature.h> /* boot_cpu_has, ... */ 24 #include <asm/traps.h> /* dotraplinkage, ... */ 25 #include <asm/fixmap.h> /* VSYSCALL_ADDR */ 26 #include <asm/vsyscall.h> /* emulate_vsyscall */ 27 #include <asm/vm86.h> /* struct vm86 */ 28 #include <asm/mmu_context.h> /* vma_pkey() */ 29 #include <asm/efi.h> /* efi_crash_gracefully_on_page_fault()*/ 30 #include <asm/desc.h> /* store_idt(), ... */ 31 #include <asm/cpu_entry_area.h> /* exception stack */ 32 #include <asm/pgtable_areas.h> /* VMALLOC_START, ... */ 33 #include <asm/kvm_para.h> /* kvm_handle_async_pf */ 34 #include <asm/vdso.h> /* fixup_vdso_exception() */ 35 #include <asm/irq_stack.h> 36 37 #define CREATE_TRACE_POINTS 38 #include <asm/trace/exceptions.h> 39 40 /* 41 * Returns 0 if mmiotrace is disabled, or if the fault is not 42 * handled by mmiotrace: 43 */ 44 static nokprobe_inline int 45 kmmio_fault(struct pt_regs *regs, unsigned long addr) 46 { 47 if (unlikely(is_kmmio_active())) 48 if (kmmio_handler(regs, addr) == 1) 49 return -1; 50 return 0; 51 } 52 53 /* 54 * Prefetch quirks: 55 * 56 * 32-bit mode: 57 * 58 * Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch. 59 * Check that here and ignore it. This is AMD erratum #91. 60 * 61 * 64-bit mode: 62 * 63 * Sometimes the CPU reports invalid exceptions on prefetch. 64 * Check that here and ignore it. 65 * 66 * Opcode checker based on code by Richard Brunner. 67 */ 68 static inline int 69 check_prefetch_opcode(struct pt_regs *regs, unsigned char *instr, 70 unsigned char opcode, int *prefetch) 71 { 72 unsigned char instr_hi = opcode & 0xf0; 73 unsigned char instr_lo = opcode & 0x0f; 74 75 switch (instr_hi) { 76 case 0x20: 77 case 0x30: 78 /* 79 * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes. 80 * In X86_64 long mode, the CPU will signal invalid 81 * opcode if some of these prefixes are present so 82 * X86_64 will never get here anyway 83 */ 84 return ((instr_lo & 7) == 0x6); 85 #ifdef CONFIG_X86_64 86 case 0x40: 87 /* 88 * In 64-bit mode 0x40..0x4F are valid REX prefixes 89 */ 90 return (!user_mode(regs) || user_64bit_mode(regs)); 91 #endif 92 case 0x60: 93 /* 0x64 thru 0x67 are valid prefixes in all modes. */ 94 return (instr_lo & 0xC) == 0x4; 95 case 0xF0: 96 /* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */ 97 return !instr_lo || (instr_lo>>1) == 1; 98 case 0x00: 99 /* Prefetch instruction is 0x0F0D or 0x0F18 */ 100 if (get_kernel_nofault(opcode, instr)) 101 return 0; 102 103 *prefetch = (instr_lo == 0xF) && 104 (opcode == 0x0D || opcode == 0x18); 105 return 0; 106 default: 107 return 0; 108 } 109 } 110 111 static bool is_amd_k8_pre_npt(void) 112 { 113 struct cpuinfo_x86 *c = &boot_cpu_data; 114 115 return unlikely(IS_ENABLED(CONFIG_CPU_SUP_AMD) && 116 c->x86_vendor == X86_VENDOR_AMD && 117 c->x86 == 0xf && c->x86_model < 0x40); 118 } 119 120 static int 121 is_prefetch(struct pt_regs *regs, unsigned long error_code, unsigned long addr) 122 { 123 unsigned char *max_instr; 124 unsigned char *instr; 125 int prefetch = 0; 126 127 /* Erratum #91 affects AMD K8, pre-NPT CPUs */ 128 if (!is_amd_k8_pre_npt()) 129 return 0; 130 131 /* 132 * If it was a exec (instruction fetch) fault on NX page, then 133 * do not ignore the fault: 134 */ 135 if (error_code & X86_PF_INSTR) 136 return 0; 137 138 instr = (void *)convert_ip_to_linear(current, regs); 139 max_instr = instr + 15; 140 141 /* 142 * This code has historically always bailed out if IP points to a 143 * not-present page (e.g. due to a race). No one has ever 144 * complained about this. 145 */ 146 pagefault_disable(); 147 148 while (instr < max_instr) { 149 unsigned char opcode; 150 151 if (user_mode(regs)) { 152 if (get_user(opcode, (unsigned char __user *) instr)) 153 break; 154 } else { 155 if (get_kernel_nofault(opcode, instr)) 156 break; 157 } 158 159 instr++; 160 161 if (!check_prefetch_opcode(regs, instr, opcode, &prefetch)) 162 break; 163 } 164 165 pagefault_enable(); 166 return prefetch; 167 } 168 169 DEFINE_SPINLOCK(pgd_lock); 170 LIST_HEAD(pgd_list); 171 172 #ifdef CONFIG_X86_32 173 static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address) 174 { 175 unsigned index = pgd_index(address); 176 pgd_t *pgd_k; 177 p4d_t *p4d, *p4d_k; 178 pud_t *pud, *pud_k; 179 pmd_t *pmd, *pmd_k; 180 181 pgd += index; 182 pgd_k = init_mm.pgd + index; 183 184 if (!pgd_present(*pgd_k)) 185 return NULL; 186 187 /* 188 * set_pgd(pgd, *pgd_k); here would be useless on PAE 189 * and redundant with the set_pmd() on non-PAE. As would 190 * set_p4d/set_pud. 191 */ 192 p4d = p4d_offset(pgd, address); 193 p4d_k = p4d_offset(pgd_k, address); 194 if (!p4d_present(*p4d_k)) 195 return NULL; 196 197 pud = pud_offset(p4d, address); 198 pud_k = pud_offset(p4d_k, address); 199 if (!pud_present(*pud_k)) 200 return NULL; 201 202 pmd = pmd_offset(pud, address); 203 pmd_k = pmd_offset(pud_k, address); 204 205 if (pmd_present(*pmd) != pmd_present(*pmd_k)) 206 set_pmd(pmd, *pmd_k); 207 208 if (!pmd_present(*pmd_k)) 209 return NULL; 210 else 211 BUG_ON(pmd_pfn(*pmd) != pmd_pfn(*pmd_k)); 212 213 return pmd_k; 214 } 215 216 /* 217 * Handle a fault on the vmalloc or module mapping area 218 * 219 * This is needed because there is a race condition between the time 220 * when the vmalloc mapping code updates the PMD to the point in time 221 * where it synchronizes this update with the other page-tables in the 222 * system. 223 * 224 * In this race window another thread/CPU can map an area on the same 225 * PMD, finds it already present and does not synchronize it with the 226 * rest of the system yet. As a result v[mz]alloc might return areas 227 * which are not mapped in every page-table in the system, causing an 228 * unhandled page-fault when they are accessed. 229 */ 230 static noinline int vmalloc_fault(unsigned long address) 231 { 232 unsigned long pgd_paddr; 233 pmd_t *pmd_k; 234 pte_t *pte_k; 235 236 /* Make sure we are in vmalloc area: */ 237 if (!(address >= VMALLOC_START && address < VMALLOC_END)) 238 return -1; 239 240 /* 241 * Synchronize this task's top level page-table 242 * with the 'reference' page table. 243 * 244 * Do _not_ use "current" here. We might be inside 245 * an interrupt in the middle of a task switch.. 246 */ 247 pgd_paddr = read_cr3_pa(); 248 pmd_k = vmalloc_sync_one(__va(pgd_paddr), address); 249 if (!pmd_k) 250 return -1; 251 252 if (pmd_large(*pmd_k)) 253 return 0; 254 255 pte_k = pte_offset_kernel(pmd_k, address); 256 if (!pte_present(*pte_k)) 257 return -1; 258 259 return 0; 260 } 261 NOKPROBE_SYMBOL(vmalloc_fault); 262 263 static void __arch_sync_kernel_mappings(unsigned long start, unsigned long end) 264 { 265 unsigned long addr; 266 267 for (addr = start & PMD_MASK; 268 addr >= TASK_SIZE_MAX && addr < VMALLOC_END; 269 addr += PMD_SIZE) { 270 struct page *page; 271 272 spin_lock(&pgd_lock); 273 list_for_each_entry(page, &pgd_list, lru) { 274 spinlock_t *pgt_lock; 275 276 /* the pgt_lock only for Xen */ 277 pgt_lock = &pgd_page_get_mm(page)->page_table_lock; 278 279 spin_lock(pgt_lock); 280 vmalloc_sync_one(page_address(page), addr); 281 spin_unlock(pgt_lock); 282 } 283 spin_unlock(&pgd_lock); 284 } 285 } 286 287 void arch_sync_kernel_mappings(unsigned long start, unsigned long end) 288 { 289 __arch_sync_kernel_mappings(start, end); 290 #ifdef CONFIG_KMSAN 291 /* 292 * KMSAN maintains two additional metadata page mappings for the 293 * [VMALLOC_START, VMALLOC_END) range. These mappings start at 294 * KMSAN_VMALLOC_SHADOW_START and KMSAN_VMALLOC_ORIGIN_START and 295 * have to be synced together with the vmalloc memory mapping. 296 */ 297 if (start >= VMALLOC_START && end < VMALLOC_END) { 298 __arch_sync_kernel_mappings( 299 start - VMALLOC_START + KMSAN_VMALLOC_SHADOW_START, 300 end - VMALLOC_START + KMSAN_VMALLOC_SHADOW_START); 301 __arch_sync_kernel_mappings( 302 start - VMALLOC_START + KMSAN_VMALLOC_ORIGIN_START, 303 end - VMALLOC_START + KMSAN_VMALLOC_ORIGIN_START); 304 } 305 #endif 306 } 307 308 static bool low_pfn(unsigned long pfn) 309 { 310 return pfn < max_low_pfn; 311 } 312 313 static void dump_pagetable(unsigned long address) 314 { 315 pgd_t *base = __va(read_cr3_pa()); 316 pgd_t *pgd = &base[pgd_index(address)]; 317 p4d_t *p4d; 318 pud_t *pud; 319 pmd_t *pmd; 320 pte_t *pte; 321 322 #ifdef CONFIG_X86_PAE 323 pr_info("*pdpt = %016Lx ", pgd_val(*pgd)); 324 if (!low_pfn(pgd_val(*pgd) >> PAGE_SHIFT) || !pgd_present(*pgd)) 325 goto out; 326 #define pr_pde pr_cont 327 #else 328 #define pr_pde pr_info 329 #endif 330 p4d = p4d_offset(pgd, address); 331 pud = pud_offset(p4d, address); 332 pmd = pmd_offset(pud, address); 333 pr_pde("*pde = %0*Lx ", sizeof(*pmd) * 2, (u64)pmd_val(*pmd)); 334 #undef pr_pde 335 336 /* 337 * We must not directly access the pte in the highpte 338 * case if the page table is located in highmem. 339 * And let's rather not kmap-atomic the pte, just in case 340 * it's allocated already: 341 */ 342 if (!low_pfn(pmd_pfn(*pmd)) || !pmd_present(*pmd) || pmd_large(*pmd)) 343 goto out; 344 345 pte = pte_offset_kernel(pmd, address); 346 pr_cont("*pte = %0*Lx ", sizeof(*pte) * 2, (u64)pte_val(*pte)); 347 out: 348 pr_cont("\n"); 349 } 350 351 #else /* CONFIG_X86_64: */ 352 353 #ifdef CONFIG_CPU_SUP_AMD 354 static const char errata93_warning[] = 355 KERN_ERR 356 "******* Your BIOS seems to not contain a fix for K8 errata #93\n" 357 "******* Working around it, but it may cause SEGVs or burn power.\n" 358 "******* Please consider a BIOS update.\n" 359 "******* Disabling USB legacy in the BIOS may also help.\n"; 360 #endif 361 362 static int bad_address(void *p) 363 { 364 unsigned long dummy; 365 366 return get_kernel_nofault(dummy, (unsigned long *)p); 367 } 368 369 static void dump_pagetable(unsigned long address) 370 { 371 pgd_t *base = __va(read_cr3_pa()); 372 pgd_t *pgd = base + pgd_index(address); 373 p4d_t *p4d; 374 pud_t *pud; 375 pmd_t *pmd; 376 pte_t *pte; 377 378 if (bad_address(pgd)) 379 goto bad; 380 381 pr_info("PGD %lx ", pgd_val(*pgd)); 382 383 if (!pgd_present(*pgd)) 384 goto out; 385 386 p4d = p4d_offset(pgd, address); 387 if (bad_address(p4d)) 388 goto bad; 389 390 pr_cont("P4D %lx ", p4d_val(*p4d)); 391 if (!p4d_present(*p4d) || p4d_large(*p4d)) 392 goto out; 393 394 pud = pud_offset(p4d, address); 395 if (bad_address(pud)) 396 goto bad; 397 398 pr_cont("PUD %lx ", pud_val(*pud)); 399 if (!pud_present(*pud) || pud_large(*pud)) 400 goto out; 401 402 pmd = pmd_offset(pud, address); 403 if (bad_address(pmd)) 404 goto bad; 405 406 pr_cont("PMD %lx ", pmd_val(*pmd)); 407 if (!pmd_present(*pmd) || pmd_large(*pmd)) 408 goto out; 409 410 pte = pte_offset_kernel(pmd, address); 411 if (bad_address(pte)) 412 goto bad; 413 414 pr_cont("PTE %lx", pte_val(*pte)); 415 out: 416 pr_cont("\n"); 417 return; 418 bad: 419 pr_info("BAD\n"); 420 } 421 422 #endif /* CONFIG_X86_64 */ 423 424 /* 425 * Workaround for K8 erratum #93 & buggy BIOS. 426 * 427 * BIOS SMM functions are required to use a specific workaround 428 * to avoid corruption of the 64bit RIP register on C stepping K8. 429 * 430 * A lot of BIOS that didn't get tested properly miss this. 431 * 432 * The OS sees this as a page fault with the upper 32bits of RIP cleared. 433 * Try to work around it here. 434 * 435 * Note we only handle faults in kernel here. 436 * Does nothing on 32-bit. 437 */ 438 static int is_errata93(struct pt_regs *regs, unsigned long address) 439 { 440 #if defined(CONFIG_X86_64) && defined(CONFIG_CPU_SUP_AMD) 441 if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD 442 || boot_cpu_data.x86 != 0xf) 443 return 0; 444 445 if (user_mode(regs)) 446 return 0; 447 448 if (address != regs->ip) 449 return 0; 450 451 if ((address >> 32) != 0) 452 return 0; 453 454 address |= 0xffffffffUL << 32; 455 if ((address >= (u64)_stext && address <= (u64)_etext) || 456 (address >= MODULES_VADDR && address <= MODULES_END)) { 457 printk_once(errata93_warning); 458 regs->ip = address; 459 return 1; 460 } 461 #endif 462 return 0; 463 } 464 465 /* 466 * Work around K8 erratum #100 K8 in compat mode occasionally jumps 467 * to illegal addresses >4GB. 468 * 469 * We catch this in the page fault handler because these addresses 470 * are not reachable. Just detect this case and return. Any code 471 * segment in LDT is compatibility mode. 472 */ 473 static int is_errata100(struct pt_regs *regs, unsigned long address) 474 { 475 #ifdef CONFIG_X86_64 476 if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) && (address >> 32)) 477 return 1; 478 #endif 479 return 0; 480 } 481 482 /* Pentium F0 0F C7 C8 bug workaround: */ 483 static int is_f00f_bug(struct pt_regs *regs, unsigned long error_code, 484 unsigned long address) 485 { 486 #ifdef CONFIG_X86_F00F_BUG 487 if (boot_cpu_has_bug(X86_BUG_F00F) && !(error_code & X86_PF_USER) && 488 idt_is_f00f_address(address)) { 489 handle_invalid_op(regs); 490 return 1; 491 } 492 #endif 493 return 0; 494 } 495 496 static void show_ldttss(const struct desc_ptr *gdt, const char *name, u16 index) 497 { 498 u32 offset = (index >> 3) * sizeof(struct desc_struct); 499 unsigned long addr; 500 struct ldttss_desc desc; 501 502 if (index == 0) { 503 pr_alert("%s: NULL\n", name); 504 return; 505 } 506 507 if (offset + sizeof(struct ldttss_desc) >= gdt->size) { 508 pr_alert("%s: 0x%hx -- out of bounds\n", name, index); 509 return; 510 } 511 512 if (copy_from_kernel_nofault(&desc, (void *)(gdt->address + offset), 513 sizeof(struct ldttss_desc))) { 514 pr_alert("%s: 0x%hx -- GDT entry is not readable\n", 515 name, index); 516 return; 517 } 518 519 addr = desc.base0 | (desc.base1 << 16) | ((unsigned long)desc.base2 << 24); 520 #ifdef CONFIG_X86_64 521 addr |= ((u64)desc.base3 << 32); 522 #endif 523 pr_alert("%s: 0x%hx -- base=0x%lx limit=0x%x\n", 524 name, index, addr, (desc.limit0 | (desc.limit1 << 16))); 525 } 526 527 static void 528 show_fault_oops(struct pt_regs *regs, unsigned long error_code, unsigned long address) 529 { 530 if (!oops_may_print()) 531 return; 532 533 if (error_code & X86_PF_INSTR) { 534 unsigned int level; 535 pgd_t *pgd; 536 pte_t *pte; 537 538 pgd = __va(read_cr3_pa()); 539 pgd += pgd_index(address); 540 541 pte = lookup_address_in_pgd(pgd, address, &level); 542 543 if (pte && pte_present(*pte) && !pte_exec(*pte)) 544 pr_crit("kernel tried to execute NX-protected page - exploit attempt? (uid: %d)\n", 545 from_kuid(&init_user_ns, current_uid())); 546 if (pte && pte_present(*pte) && pte_exec(*pte) && 547 (pgd_flags(*pgd) & _PAGE_USER) && 548 (__read_cr4() & X86_CR4_SMEP)) 549 pr_crit("unable to execute userspace code (SMEP?) (uid: %d)\n", 550 from_kuid(&init_user_ns, current_uid())); 551 } 552 553 if (address < PAGE_SIZE && !user_mode(regs)) 554 pr_alert("BUG: kernel NULL pointer dereference, address: %px\n", 555 (void *)address); 556 else 557 pr_alert("BUG: unable to handle page fault for address: %px\n", 558 (void *)address); 559 560 pr_alert("#PF: %s %s in %s mode\n", 561 (error_code & X86_PF_USER) ? "user" : "supervisor", 562 (error_code & X86_PF_INSTR) ? "instruction fetch" : 563 (error_code & X86_PF_WRITE) ? "write access" : 564 "read access", 565 user_mode(regs) ? "user" : "kernel"); 566 pr_alert("#PF: error_code(0x%04lx) - %s\n", error_code, 567 !(error_code & X86_PF_PROT) ? "not-present page" : 568 (error_code & X86_PF_RSVD) ? "reserved bit violation" : 569 (error_code & X86_PF_PK) ? "protection keys violation" : 570 "permissions violation"); 571 572 if (!(error_code & X86_PF_USER) && user_mode(regs)) { 573 struct desc_ptr idt, gdt; 574 u16 ldtr, tr; 575 576 /* 577 * This can happen for quite a few reasons. The more obvious 578 * ones are faults accessing the GDT, or LDT. Perhaps 579 * surprisingly, if the CPU tries to deliver a benign or 580 * contributory exception from user code and gets a page fault 581 * during delivery, the page fault can be delivered as though 582 * it originated directly from user code. This could happen 583 * due to wrong permissions on the IDT, GDT, LDT, TSS, or 584 * kernel or IST stack. 585 */ 586 store_idt(&idt); 587 588 /* Usable even on Xen PV -- it's just slow. */ 589 native_store_gdt(&gdt); 590 591 pr_alert("IDT: 0x%lx (limit=0x%hx) GDT: 0x%lx (limit=0x%hx)\n", 592 idt.address, idt.size, gdt.address, gdt.size); 593 594 store_ldt(ldtr); 595 show_ldttss(&gdt, "LDTR", ldtr); 596 597 store_tr(tr); 598 show_ldttss(&gdt, "TR", tr); 599 } 600 601 dump_pagetable(address); 602 } 603 604 static noinline void 605 pgtable_bad(struct pt_regs *regs, unsigned long error_code, 606 unsigned long address) 607 { 608 struct task_struct *tsk; 609 unsigned long flags; 610 int sig; 611 612 flags = oops_begin(); 613 tsk = current; 614 sig = SIGKILL; 615 616 printk(KERN_ALERT "%s: Corrupted page table at address %lx\n", 617 tsk->comm, address); 618 dump_pagetable(address); 619 620 if (__die("Bad pagetable", regs, error_code)) 621 sig = 0; 622 623 oops_end(flags, regs, sig); 624 } 625 626 static void sanitize_error_code(unsigned long address, 627 unsigned long *error_code) 628 { 629 /* 630 * To avoid leaking information about the kernel page 631 * table layout, pretend that user-mode accesses to 632 * kernel addresses are always protection faults. 633 * 634 * NB: This means that failed vsyscalls with vsyscall=none 635 * will have the PROT bit. This doesn't leak any 636 * information and does not appear to cause any problems. 637 */ 638 if (address >= TASK_SIZE_MAX) 639 *error_code |= X86_PF_PROT; 640 } 641 642 static void set_signal_archinfo(unsigned long address, 643 unsigned long error_code) 644 { 645 struct task_struct *tsk = current; 646 647 tsk->thread.trap_nr = X86_TRAP_PF; 648 tsk->thread.error_code = error_code | X86_PF_USER; 649 tsk->thread.cr2 = address; 650 } 651 652 static noinline void 653 page_fault_oops(struct pt_regs *regs, unsigned long error_code, 654 unsigned long address) 655 { 656 #ifdef CONFIG_VMAP_STACK 657 struct stack_info info; 658 #endif 659 unsigned long flags; 660 int sig; 661 662 if (user_mode(regs)) { 663 /* 664 * Implicit kernel access from user mode? Skip the stack 665 * overflow and EFI special cases. 666 */ 667 goto oops; 668 } 669 670 #ifdef CONFIG_VMAP_STACK 671 /* 672 * Stack overflow? During boot, we can fault near the initial 673 * stack in the direct map, but that's not an overflow -- check 674 * that we're in vmalloc space to avoid this. 675 */ 676 if (is_vmalloc_addr((void *)address) && 677 get_stack_guard_info((void *)address, &info)) { 678 /* 679 * We're likely to be running with very little stack space 680 * left. It's plausible that we'd hit this condition but 681 * double-fault even before we get this far, in which case 682 * we're fine: the double-fault handler will deal with it. 683 * 684 * We don't want to make it all the way into the oops code 685 * and then double-fault, though, because we're likely to 686 * break the console driver and lose most of the stack dump. 687 */ 688 call_on_stack(__this_cpu_ist_top_va(DF) - sizeof(void*), 689 handle_stack_overflow, 690 ASM_CALL_ARG3, 691 , [arg1] "r" (regs), [arg2] "r" (address), [arg3] "r" (&info)); 692 693 unreachable(); 694 } 695 #endif 696 697 /* 698 * Buggy firmware could access regions which might page fault. If 699 * this happens, EFI has a special OOPS path that will try to 700 * avoid hanging the system. 701 */ 702 if (IS_ENABLED(CONFIG_EFI)) 703 efi_crash_gracefully_on_page_fault(address); 704 705 /* Only not-present faults should be handled by KFENCE. */ 706 if (!(error_code & X86_PF_PROT) && 707 kfence_handle_page_fault(address, error_code & X86_PF_WRITE, regs)) 708 return; 709 710 oops: 711 /* 712 * Oops. The kernel tried to access some bad page. We'll have to 713 * terminate things with extreme prejudice: 714 */ 715 flags = oops_begin(); 716 717 show_fault_oops(regs, error_code, address); 718 719 if (task_stack_end_corrupted(current)) 720 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n"); 721 722 sig = SIGKILL; 723 if (__die("Oops", regs, error_code)) 724 sig = 0; 725 726 /* Executive summary in case the body of the oops scrolled away */ 727 printk(KERN_DEFAULT "CR2: %016lx\n", address); 728 729 oops_end(flags, regs, sig); 730 } 731 732 static noinline void 733 kernelmode_fixup_or_oops(struct pt_regs *regs, unsigned long error_code, 734 unsigned long address, int signal, int si_code, 735 u32 pkey) 736 { 737 WARN_ON_ONCE(user_mode(regs)); 738 739 /* Are we prepared to handle this kernel fault? */ 740 if (fixup_exception(regs, X86_TRAP_PF, error_code, address)) { 741 /* 742 * Any interrupt that takes a fault gets the fixup. This makes 743 * the below recursive fault logic only apply to a faults from 744 * task context. 745 */ 746 if (in_interrupt()) 747 return; 748 749 /* 750 * Per the above we're !in_interrupt(), aka. task context. 751 * 752 * In this case we need to make sure we're not recursively 753 * faulting through the emulate_vsyscall() logic. 754 */ 755 if (current->thread.sig_on_uaccess_err && signal) { 756 sanitize_error_code(address, &error_code); 757 758 set_signal_archinfo(address, error_code); 759 760 if (si_code == SEGV_PKUERR) { 761 force_sig_pkuerr((void __user *)address, pkey); 762 } else { 763 /* XXX: hwpoison faults will set the wrong code. */ 764 force_sig_fault(signal, si_code, (void __user *)address); 765 } 766 } 767 768 /* 769 * Barring that, we can do the fixup and be happy. 770 */ 771 return; 772 } 773 774 /* 775 * AMD erratum #91 manifests as a spurious page fault on a PREFETCH 776 * instruction. 777 */ 778 if (is_prefetch(regs, error_code, address)) 779 return; 780 781 page_fault_oops(regs, error_code, address); 782 } 783 784 /* 785 * Print out info about fatal segfaults, if the show_unhandled_signals 786 * sysctl is set: 787 */ 788 static inline void 789 show_signal_msg(struct pt_regs *regs, unsigned long error_code, 790 unsigned long address, struct task_struct *tsk) 791 { 792 const char *loglvl = task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG; 793 /* This is a racy snapshot, but it's better than nothing. */ 794 int cpu = raw_smp_processor_id(); 795 796 if (!unhandled_signal(tsk, SIGSEGV)) 797 return; 798 799 if (!printk_ratelimit()) 800 return; 801 802 printk("%s%s[%d]: segfault at %lx ip %px sp %px error %lx", 803 loglvl, tsk->comm, task_pid_nr(tsk), address, 804 (void *)regs->ip, (void *)regs->sp, error_code); 805 806 print_vma_addr(KERN_CONT " in ", regs->ip); 807 808 /* 809 * Dump the likely CPU where the fatal segfault happened. 810 * This can help identify faulty hardware. 811 */ 812 printk(KERN_CONT " likely on CPU %d (core %d, socket %d)", cpu, 813 topology_core_id(cpu), topology_physical_package_id(cpu)); 814 815 816 printk(KERN_CONT "\n"); 817 818 show_opcodes(regs, loglvl); 819 } 820 821 /* 822 * The (legacy) vsyscall page is the long page in the kernel portion 823 * of the address space that has user-accessible permissions. 824 */ 825 static bool is_vsyscall_vaddr(unsigned long vaddr) 826 { 827 return unlikely((vaddr & PAGE_MASK) == VSYSCALL_ADDR); 828 } 829 830 static void 831 __bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code, 832 unsigned long address, u32 pkey, int si_code) 833 { 834 struct task_struct *tsk = current; 835 836 if (!user_mode(regs)) { 837 kernelmode_fixup_or_oops(regs, error_code, address, 838 SIGSEGV, si_code, pkey); 839 return; 840 } 841 842 if (!(error_code & X86_PF_USER)) { 843 /* Implicit user access to kernel memory -- just oops */ 844 page_fault_oops(regs, error_code, address); 845 return; 846 } 847 848 /* 849 * User mode accesses just cause a SIGSEGV. 850 * It's possible to have interrupts off here: 851 */ 852 local_irq_enable(); 853 854 /* 855 * Valid to do another page fault here because this one came 856 * from user space: 857 */ 858 if (is_prefetch(regs, error_code, address)) 859 return; 860 861 if (is_errata100(regs, address)) 862 return; 863 864 sanitize_error_code(address, &error_code); 865 866 if (fixup_vdso_exception(regs, X86_TRAP_PF, error_code, address)) 867 return; 868 869 if (likely(show_unhandled_signals)) 870 show_signal_msg(regs, error_code, address, tsk); 871 872 set_signal_archinfo(address, error_code); 873 874 if (si_code == SEGV_PKUERR) 875 force_sig_pkuerr((void __user *)address, pkey); 876 else 877 force_sig_fault(SIGSEGV, si_code, (void __user *)address); 878 879 local_irq_disable(); 880 } 881 882 static noinline void 883 bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code, 884 unsigned long address) 885 { 886 __bad_area_nosemaphore(regs, error_code, address, 0, SEGV_MAPERR); 887 } 888 889 static void 890 __bad_area(struct pt_regs *regs, unsigned long error_code, 891 unsigned long address, u32 pkey, int si_code) 892 { 893 struct mm_struct *mm = current->mm; 894 /* 895 * Something tried to access memory that isn't in our memory map.. 896 * Fix it, but check if it's kernel or user first.. 897 */ 898 mmap_read_unlock(mm); 899 900 __bad_area_nosemaphore(regs, error_code, address, pkey, si_code); 901 } 902 903 static noinline void 904 bad_area(struct pt_regs *regs, unsigned long error_code, unsigned long address) 905 { 906 __bad_area(regs, error_code, address, 0, SEGV_MAPERR); 907 } 908 909 static inline bool bad_area_access_from_pkeys(unsigned long error_code, 910 struct vm_area_struct *vma) 911 { 912 /* This code is always called on the current mm */ 913 bool foreign = false; 914 915 if (!cpu_feature_enabled(X86_FEATURE_OSPKE)) 916 return false; 917 if (error_code & X86_PF_PK) 918 return true; 919 /* this checks permission keys on the VMA: */ 920 if (!arch_vma_access_permitted(vma, (error_code & X86_PF_WRITE), 921 (error_code & X86_PF_INSTR), foreign)) 922 return true; 923 return false; 924 } 925 926 static noinline void 927 bad_area_access_error(struct pt_regs *regs, unsigned long error_code, 928 unsigned long address, struct vm_area_struct *vma) 929 { 930 /* 931 * This OSPKE check is not strictly necessary at runtime. 932 * But, doing it this way allows compiler optimizations 933 * if pkeys are compiled out. 934 */ 935 if (bad_area_access_from_pkeys(error_code, vma)) { 936 /* 937 * A protection key fault means that the PKRU value did not allow 938 * access to some PTE. Userspace can figure out what PKRU was 939 * from the XSAVE state. This function captures the pkey from 940 * the vma and passes it to userspace so userspace can discover 941 * which protection key was set on the PTE. 942 * 943 * If we get here, we know that the hardware signaled a X86_PF_PK 944 * fault and that there was a VMA once we got in the fault 945 * handler. It does *not* guarantee that the VMA we find here 946 * was the one that we faulted on. 947 * 948 * 1. T1 : mprotect_key(foo, PAGE_SIZE, pkey=4); 949 * 2. T1 : set PKRU to deny access to pkey=4, touches page 950 * 3. T1 : faults... 951 * 4. T2: mprotect_key(foo, PAGE_SIZE, pkey=5); 952 * 5. T1 : enters fault handler, takes mmap_lock, etc... 953 * 6. T1 : reaches here, sees vma_pkey(vma)=5, when we really 954 * faulted on a pte with its pkey=4. 955 */ 956 u32 pkey = vma_pkey(vma); 957 958 __bad_area(regs, error_code, address, pkey, SEGV_PKUERR); 959 } else { 960 __bad_area(regs, error_code, address, 0, SEGV_ACCERR); 961 } 962 } 963 964 static void 965 do_sigbus(struct pt_regs *regs, unsigned long error_code, unsigned long address, 966 vm_fault_t fault) 967 { 968 /* Kernel mode? Handle exceptions or die: */ 969 if (!user_mode(regs)) { 970 kernelmode_fixup_or_oops(regs, error_code, address, 971 SIGBUS, BUS_ADRERR, ARCH_DEFAULT_PKEY); 972 return; 973 } 974 975 /* User-space => ok to do another page fault: */ 976 if (is_prefetch(regs, error_code, address)) 977 return; 978 979 sanitize_error_code(address, &error_code); 980 981 if (fixup_vdso_exception(regs, X86_TRAP_PF, error_code, address)) 982 return; 983 984 set_signal_archinfo(address, error_code); 985 986 #ifdef CONFIG_MEMORY_FAILURE 987 if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) { 988 struct task_struct *tsk = current; 989 unsigned lsb = 0; 990 991 pr_err( 992 "MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n", 993 tsk->comm, tsk->pid, address); 994 if (fault & VM_FAULT_HWPOISON_LARGE) 995 lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault)); 996 if (fault & VM_FAULT_HWPOISON) 997 lsb = PAGE_SHIFT; 998 force_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, lsb); 999 return; 1000 } 1001 #endif 1002 force_sig_fault(SIGBUS, BUS_ADRERR, (void __user *)address); 1003 } 1004 1005 static int spurious_kernel_fault_check(unsigned long error_code, pte_t *pte) 1006 { 1007 if ((error_code & X86_PF_WRITE) && !pte_write(*pte)) 1008 return 0; 1009 1010 if ((error_code & X86_PF_INSTR) && !pte_exec(*pte)) 1011 return 0; 1012 1013 return 1; 1014 } 1015 1016 /* 1017 * Handle a spurious fault caused by a stale TLB entry. 1018 * 1019 * This allows us to lazily refresh the TLB when increasing the 1020 * permissions of a kernel page (RO -> RW or NX -> X). Doing it 1021 * eagerly is very expensive since that implies doing a full 1022 * cross-processor TLB flush, even if no stale TLB entries exist 1023 * on other processors. 1024 * 1025 * Spurious faults may only occur if the TLB contains an entry with 1026 * fewer permission than the page table entry. Non-present (P = 0) 1027 * and reserved bit (R = 1) faults are never spurious. 1028 * 1029 * There are no security implications to leaving a stale TLB when 1030 * increasing the permissions on a page. 1031 * 1032 * Returns non-zero if a spurious fault was handled, zero otherwise. 1033 * 1034 * See Intel Developer's Manual Vol 3 Section 4.10.4.3, bullet 3 1035 * (Optional Invalidation). 1036 */ 1037 static noinline int 1038 spurious_kernel_fault(unsigned long error_code, unsigned long address) 1039 { 1040 pgd_t *pgd; 1041 p4d_t *p4d; 1042 pud_t *pud; 1043 pmd_t *pmd; 1044 pte_t *pte; 1045 int ret; 1046 1047 /* 1048 * Only writes to RO or instruction fetches from NX may cause 1049 * spurious faults. 1050 * 1051 * These could be from user or supervisor accesses but the TLB 1052 * is only lazily flushed after a kernel mapping protection 1053 * change, so user accesses are not expected to cause spurious 1054 * faults. 1055 */ 1056 if (error_code != (X86_PF_WRITE | X86_PF_PROT) && 1057 error_code != (X86_PF_INSTR | X86_PF_PROT)) 1058 return 0; 1059 1060 pgd = init_mm.pgd + pgd_index(address); 1061 if (!pgd_present(*pgd)) 1062 return 0; 1063 1064 p4d = p4d_offset(pgd, address); 1065 if (!p4d_present(*p4d)) 1066 return 0; 1067 1068 if (p4d_large(*p4d)) 1069 return spurious_kernel_fault_check(error_code, (pte_t *) p4d); 1070 1071 pud = pud_offset(p4d, address); 1072 if (!pud_present(*pud)) 1073 return 0; 1074 1075 if (pud_large(*pud)) 1076 return spurious_kernel_fault_check(error_code, (pte_t *) pud); 1077 1078 pmd = pmd_offset(pud, address); 1079 if (!pmd_present(*pmd)) 1080 return 0; 1081 1082 if (pmd_large(*pmd)) 1083 return spurious_kernel_fault_check(error_code, (pte_t *) pmd); 1084 1085 pte = pte_offset_kernel(pmd, address); 1086 if (!pte_present(*pte)) 1087 return 0; 1088 1089 ret = spurious_kernel_fault_check(error_code, pte); 1090 if (!ret) 1091 return 0; 1092 1093 /* 1094 * Make sure we have permissions in PMD. 1095 * If not, then there's a bug in the page tables: 1096 */ 1097 ret = spurious_kernel_fault_check(error_code, (pte_t *) pmd); 1098 WARN_ONCE(!ret, "PMD has incorrect permission bits\n"); 1099 1100 return ret; 1101 } 1102 NOKPROBE_SYMBOL(spurious_kernel_fault); 1103 1104 int show_unhandled_signals = 1; 1105 1106 static inline int 1107 access_error(unsigned long error_code, struct vm_area_struct *vma) 1108 { 1109 /* This is only called for the current mm, so: */ 1110 bool foreign = false; 1111 1112 /* 1113 * Read or write was blocked by protection keys. This is 1114 * always an unconditional error and can never result in 1115 * a follow-up action to resolve the fault, like a COW. 1116 */ 1117 if (error_code & X86_PF_PK) 1118 return 1; 1119 1120 /* 1121 * SGX hardware blocked the access. This usually happens 1122 * when the enclave memory contents have been destroyed, like 1123 * after a suspend/resume cycle. In any case, the kernel can't 1124 * fix the cause of the fault. Handle the fault as an access 1125 * error even in cases where no actual access violation 1126 * occurred. This allows userspace to rebuild the enclave in 1127 * response to the signal. 1128 */ 1129 if (unlikely(error_code & X86_PF_SGX)) 1130 return 1; 1131 1132 /* 1133 * Make sure to check the VMA so that we do not perform 1134 * faults just to hit a X86_PF_PK as soon as we fill in a 1135 * page. 1136 */ 1137 if (!arch_vma_access_permitted(vma, (error_code & X86_PF_WRITE), 1138 (error_code & X86_PF_INSTR), foreign)) 1139 return 1; 1140 1141 if (error_code & X86_PF_WRITE) { 1142 /* write, present and write, not present: */ 1143 if (unlikely(!(vma->vm_flags & VM_WRITE))) 1144 return 1; 1145 return 0; 1146 } 1147 1148 /* read, present: */ 1149 if (unlikely(error_code & X86_PF_PROT)) 1150 return 1; 1151 1152 /* read, not present: */ 1153 if (unlikely(!vma_is_accessible(vma))) 1154 return 1; 1155 1156 return 0; 1157 } 1158 1159 bool fault_in_kernel_space(unsigned long address) 1160 { 1161 /* 1162 * On 64-bit systems, the vsyscall page is at an address above 1163 * TASK_SIZE_MAX, but is not considered part of the kernel 1164 * address space. 1165 */ 1166 if (IS_ENABLED(CONFIG_X86_64) && is_vsyscall_vaddr(address)) 1167 return false; 1168 1169 return address >= TASK_SIZE_MAX; 1170 } 1171 1172 /* 1173 * Called for all faults where 'address' is part of the kernel address 1174 * space. Might get called for faults that originate from *code* that 1175 * ran in userspace or the kernel. 1176 */ 1177 static void 1178 do_kern_addr_fault(struct pt_regs *regs, unsigned long hw_error_code, 1179 unsigned long address) 1180 { 1181 /* 1182 * Protection keys exceptions only happen on user pages. We 1183 * have no user pages in the kernel portion of the address 1184 * space, so do not expect them here. 1185 */ 1186 WARN_ON_ONCE(hw_error_code & X86_PF_PK); 1187 1188 #ifdef CONFIG_X86_32 1189 /* 1190 * We can fault-in kernel-space virtual memory on-demand. The 1191 * 'reference' page table is init_mm.pgd. 1192 * 1193 * NOTE! We MUST NOT take any locks for this case. We may 1194 * be in an interrupt or a critical region, and should 1195 * only copy the information from the master page table, 1196 * nothing more. 1197 * 1198 * Before doing this on-demand faulting, ensure that the 1199 * fault is not any of the following: 1200 * 1. A fault on a PTE with a reserved bit set. 1201 * 2. A fault caused by a user-mode access. (Do not demand- 1202 * fault kernel memory due to user-mode accesses). 1203 * 3. A fault caused by a page-level protection violation. 1204 * (A demand fault would be on a non-present page which 1205 * would have X86_PF_PROT==0). 1206 * 1207 * This is only needed to close a race condition on x86-32 in 1208 * the vmalloc mapping/unmapping code. See the comment above 1209 * vmalloc_fault() for details. On x86-64 the race does not 1210 * exist as the vmalloc mappings don't need to be synchronized 1211 * there. 1212 */ 1213 if (!(hw_error_code & (X86_PF_RSVD | X86_PF_USER | X86_PF_PROT))) { 1214 if (vmalloc_fault(address) >= 0) 1215 return; 1216 } 1217 #endif 1218 1219 if (is_f00f_bug(regs, hw_error_code, address)) 1220 return; 1221 1222 /* Was the fault spurious, caused by lazy TLB invalidation? */ 1223 if (spurious_kernel_fault(hw_error_code, address)) 1224 return; 1225 1226 /* kprobes don't want to hook the spurious faults: */ 1227 if (WARN_ON_ONCE(kprobe_page_fault(regs, X86_TRAP_PF))) 1228 return; 1229 1230 /* 1231 * Note, despite being a "bad area", there are quite a few 1232 * acceptable reasons to get here, such as erratum fixups 1233 * and handling kernel code that can fault, like get_user(). 1234 * 1235 * Don't take the mm semaphore here. If we fixup a prefetch 1236 * fault we could otherwise deadlock: 1237 */ 1238 bad_area_nosemaphore(regs, hw_error_code, address); 1239 } 1240 NOKPROBE_SYMBOL(do_kern_addr_fault); 1241 1242 /* 1243 * Handle faults in the user portion of the address space. Nothing in here 1244 * should check X86_PF_USER without a specific justification: for almost 1245 * all purposes, we should treat a normal kernel access to user memory 1246 * (e.g. get_user(), put_user(), etc.) the same as the WRUSS instruction. 1247 * The one exception is AC flag handling, which is, per the x86 1248 * architecture, special for WRUSS. 1249 */ 1250 static inline 1251 void do_user_addr_fault(struct pt_regs *regs, 1252 unsigned long error_code, 1253 unsigned long address) 1254 { 1255 struct vm_area_struct *vma; 1256 struct task_struct *tsk; 1257 struct mm_struct *mm; 1258 vm_fault_t fault; 1259 unsigned int flags = FAULT_FLAG_DEFAULT; 1260 1261 tsk = current; 1262 mm = tsk->mm; 1263 1264 if (unlikely((error_code & (X86_PF_USER | X86_PF_INSTR)) == X86_PF_INSTR)) { 1265 /* 1266 * Whoops, this is kernel mode code trying to execute from 1267 * user memory. Unless this is AMD erratum #93, which 1268 * corrupts RIP such that it looks like a user address, 1269 * this is unrecoverable. Don't even try to look up the 1270 * VMA or look for extable entries. 1271 */ 1272 if (is_errata93(regs, address)) 1273 return; 1274 1275 page_fault_oops(regs, error_code, address); 1276 return; 1277 } 1278 1279 /* kprobes don't want to hook the spurious faults: */ 1280 if (WARN_ON_ONCE(kprobe_page_fault(regs, X86_TRAP_PF))) 1281 return; 1282 1283 /* 1284 * Reserved bits are never expected to be set on 1285 * entries in the user portion of the page tables. 1286 */ 1287 if (unlikely(error_code & X86_PF_RSVD)) 1288 pgtable_bad(regs, error_code, address); 1289 1290 /* 1291 * If SMAP is on, check for invalid kernel (supervisor) access to user 1292 * pages in the user address space. The odd case here is WRUSS, 1293 * which, according to the preliminary documentation, does not respect 1294 * SMAP and will have the USER bit set so, in all cases, SMAP 1295 * enforcement appears to be consistent with the USER bit. 1296 */ 1297 if (unlikely(cpu_feature_enabled(X86_FEATURE_SMAP) && 1298 !(error_code & X86_PF_USER) && 1299 !(regs->flags & X86_EFLAGS_AC))) { 1300 /* 1301 * No extable entry here. This was a kernel access to an 1302 * invalid pointer. get_kernel_nofault() will not get here. 1303 */ 1304 page_fault_oops(regs, error_code, address); 1305 return; 1306 } 1307 1308 /* 1309 * If we're in an interrupt, have no user context or are running 1310 * in a region with pagefaults disabled then we must not take the fault 1311 */ 1312 if (unlikely(faulthandler_disabled() || !mm)) { 1313 bad_area_nosemaphore(regs, error_code, address); 1314 return; 1315 } 1316 1317 /* 1318 * It's safe to allow irq's after cr2 has been saved and the 1319 * vmalloc fault has been handled. 1320 * 1321 * User-mode registers count as a user access even for any 1322 * potential system fault or CPU buglet: 1323 */ 1324 if (user_mode(regs)) { 1325 local_irq_enable(); 1326 flags |= FAULT_FLAG_USER; 1327 } else { 1328 if (regs->flags & X86_EFLAGS_IF) 1329 local_irq_enable(); 1330 } 1331 1332 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address); 1333 1334 if (error_code & X86_PF_WRITE) 1335 flags |= FAULT_FLAG_WRITE; 1336 if (error_code & X86_PF_INSTR) 1337 flags |= FAULT_FLAG_INSTRUCTION; 1338 1339 #ifdef CONFIG_X86_64 1340 /* 1341 * Faults in the vsyscall page might need emulation. The 1342 * vsyscall page is at a high address (>PAGE_OFFSET), but is 1343 * considered to be part of the user address space. 1344 * 1345 * The vsyscall page does not have a "real" VMA, so do this 1346 * emulation before we go searching for VMAs. 1347 * 1348 * PKRU never rejects instruction fetches, so we don't need 1349 * to consider the PF_PK bit. 1350 */ 1351 if (is_vsyscall_vaddr(address)) { 1352 if (emulate_vsyscall(error_code, regs, address)) 1353 return; 1354 } 1355 #endif 1356 1357 /* 1358 * Kernel-mode access to the user address space should only occur 1359 * on well-defined single instructions listed in the exception 1360 * tables. But, an erroneous kernel fault occurring outside one of 1361 * those areas which also holds mmap_lock might deadlock attempting 1362 * to validate the fault against the address space. 1363 * 1364 * Only do the expensive exception table search when we might be at 1365 * risk of a deadlock. This happens if we 1366 * 1. Failed to acquire mmap_lock, and 1367 * 2. The access did not originate in userspace. 1368 */ 1369 if (unlikely(!mmap_read_trylock(mm))) { 1370 if (!user_mode(regs) && !search_exception_tables(regs->ip)) { 1371 /* 1372 * Fault from code in kernel from 1373 * which we do not expect faults. 1374 */ 1375 bad_area_nosemaphore(regs, error_code, address); 1376 return; 1377 } 1378 retry: 1379 mmap_read_lock(mm); 1380 } else { 1381 /* 1382 * The above down_read_trylock() might have succeeded in 1383 * which case we'll have missed the might_sleep() from 1384 * down_read(): 1385 */ 1386 might_sleep(); 1387 } 1388 1389 vma = find_vma(mm, address); 1390 if (unlikely(!vma)) { 1391 bad_area(regs, error_code, address); 1392 return; 1393 } 1394 if (likely(vma->vm_start <= address)) 1395 goto good_area; 1396 if (unlikely(!(vma->vm_flags & VM_GROWSDOWN))) { 1397 bad_area(regs, error_code, address); 1398 return; 1399 } 1400 if (unlikely(expand_stack(vma, address))) { 1401 bad_area(regs, error_code, address); 1402 return; 1403 } 1404 1405 /* 1406 * Ok, we have a good vm_area for this memory access, so 1407 * we can handle it.. 1408 */ 1409 good_area: 1410 if (unlikely(access_error(error_code, vma))) { 1411 bad_area_access_error(regs, error_code, address, vma); 1412 return; 1413 } 1414 1415 /* 1416 * If for any reason at all we couldn't handle the fault, 1417 * make sure we exit gracefully rather than endlessly redo 1418 * the fault. Since we never set FAULT_FLAG_RETRY_NOWAIT, if 1419 * we get VM_FAULT_RETRY back, the mmap_lock has been unlocked. 1420 * 1421 * Note that handle_userfault() may also release and reacquire mmap_lock 1422 * (and not return with VM_FAULT_RETRY), when returning to userland to 1423 * repeat the page fault later with a VM_FAULT_NOPAGE retval 1424 * (potentially after handling any pending signal during the return to 1425 * userland). The return to userland is identified whenever 1426 * FAULT_FLAG_USER|FAULT_FLAG_KILLABLE are both set in flags. 1427 */ 1428 fault = handle_mm_fault(vma, address, flags, regs); 1429 1430 if (fault_signal_pending(fault, regs)) { 1431 /* 1432 * Quick path to respond to signals. The core mm code 1433 * has unlocked the mm for us if we get here. 1434 */ 1435 if (!user_mode(regs)) 1436 kernelmode_fixup_or_oops(regs, error_code, address, 1437 SIGBUS, BUS_ADRERR, 1438 ARCH_DEFAULT_PKEY); 1439 return; 1440 } 1441 1442 /* The fault is fully completed (including releasing mmap lock) */ 1443 if (fault & VM_FAULT_COMPLETED) 1444 return; 1445 1446 /* 1447 * If we need to retry the mmap_lock has already been released, 1448 * and if there is a fatal signal pending there is no guarantee 1449 * that we made any progress. Handle this case first. 1450 */ 1451 if (unlikely(fault & VM_FAULT_RETRY)) { 1452 flags |= FAULT_FLAG_TRIED; 1453 goto retry; 1454 } 1455 1456 mmap_read_unlock(mm); 1457 if (likely(!(fault & VM_FAULT_ERROR))) 1458 return; 1459 1460 if (fatal_signal_pending(current) && !user_mode(regs)) { 1461 kernelmode_fixup_or_oops(regs, error_code, address, 1462 0, 0, ARCH_DEFAULT_PKEY); 1463 return; 1464 } 1465 1466 if (fault & VM_FAULT_OOM) { 1467 /* Kernel mode? Handle exceptions or die: */ 1468 if (!user_mode(regs)) { 1469 kernelmode_fixup_or_oops(regs, error_code, address, 1470 SIGSEGV, SEGV_MAPERR, 1471 ARCH_DEFAULT_PKEY); 1472 return; 1473 } 1474 1475 /* 1476 * We ran out of memory, call the OOM killer, and return the 1477 * userspace (which will retry the fault, or kill us if we got 1478 * oom-killed): 1479 */ 1480 pagefault_out_of_memory(); 1481 } else { 1482 if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON| 1483 VM_FAULT_HWPOISON_LARGE)) 1484 do_sigbus(regs, error_code, address, fault); 1485 else if (fault & VM_FAULT_SIGSEGV) 1486 bad_area_nosemaphore(regs, error_code, address); 1487 else 1488 BUG(); 1489 } 1490 } 1491 NOKPROBE_SYMBOL(do_user_addr_fault); 1492 1493 static __always_inline void 1494 trace_page_fault_entries(struct pt_regs *regs, unsigned long error_code, 1495 unsigned long address) 1496 { 1497 if (!trace_pagefault_enabled()) 1498 return; 1499 1500 if (user_mode(regs)) 1501 trace_page_fault_user(address, regs, error_code); 1502 else 1503 trace_page_fault_kernel(address, regs, error_code); 1504 } 1505 1506 static __always_inline void 1507 handle_page_fault(struct pt_regs *regs, unsigned long error_code, 1508 unsigned long address) 1509 { 1510 trace_page_fault_entries(regs, error_code, address); 1511 1512 if (unlikely(kmmio_fault(regs, address))) 1513 return; 1514 1515 /* Was the fault on kernel-controlled part of the address space? */ 1516 if (unlikely(fault_in_kernel_space(address))) { 1517 do_kern_addr_fault(regs, error_code, address); 1518 } else { 1519 do_user_addr_fault(regs, error_code, address); 1520 /* 1521 * User address page fault handling might have reenabled 1522 * interrupts. Fixing up all potential exit points of 1523 * do_user_addr_fault() and its leaf functions is just not 1524 * doable w/o creating an unholy mess or turning the code 1525 * upside down. 1526 */ 1527 local_irq_disable(); 1528 } 1529 } 1530 1531 DEFINE_IDTENTRY_RAW_ERRORCODE(exc_page_fault) 1532 { 1533 unsigned long address = read_cr2(); 1534 irqentry_state_t state; 1535 1536 prefetchw(¤t->mm->mmap_lock); 1537 1538 /* 1539 * KVM uses #PF vector to deliver 'page not present' events to guests 1540 * (asynchronous page fault mechanism). The event happens when a 1541 * userspace task is trying to access some valid (from guest's point of 1542 * view) memory which is not currently mapped by the host (e.g. the 1543 * memory is swapped out). Note, the corresponding "page ready" event 1544 * which is injected when the memory becomes available, is delivered via 1545 * an interrupt mechanism and not a #PF exception 1546 * (see arch/x86/kernel/kvm.c: sysvec_kvm_asyncpf_interrupt()). 1547 * 1548 * We are relying on the interrupted context being sane (valid RSP, 1549 * relevant locks not held, etc.), which is fine as long as the 1550 * interrupted context had IF=1. We are also relying on the KVM 1551 * async pf type field and CR2 being read consistently instead of 1552 * getting values from real and async page faults mixed up. 1553 * 1554 * Fingers crossed. 1555 * 1556 * The async #PF handling code takes care of idtentry handling 1557 * itself. 1558 */ 1559 if (kvm_handle_async_pf(regs, (u32)address)) 1560 return; 1561 1562 /* 1563 * Entry handling for valid #PF from kernel mode is slightly 1564 * different: RCU is already watching and ct_irq_enter() must not 1565 * be invoked because a kernel fault on a user space address might 1566 * sleep. 1567 * 1568 * In case the fault hit a RCU idle region the conditional entry 1569 * code reenabled RCU to avoid subsequent wreckage which helps 1570 * debuggability. 1571 */ 1572 state = irqentry_enter(regs); 1573 1574 instrumentation_begin(); 1575 handle_page_fault(regs, error_code, address); 1576 instrumentation_end(); 1577 1578 irqentry_exit(regs, state); 1579 } 1580