xref: /linux/arch/x86/mm/dump_pagetables.c (revision 6ebe6dbd6886af07b102aca42e44edbee94a22d9)
1 /*
2  * Debug helper to dump the current kernel pagetables of the system
3  * so that we can see what the various memory ranges are set to.
4  *
5  * (C) Copyright 2008 Intel Corporation
6  *
7  * Author: Arjan van de Ven <arjan@linux.intel.com>
8  *
9  * This program is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU General Public License
11  * as published by the Free Software Foundation; version 2
12  * of the License.
13  */
14 
15 #include <linux/debugfs.h>
16 #include <linux/kasan.h>
17 #include <linux/mm.h>
18 #include <linux/init.h>
19 #include <linux/sched.h>
20 #include <linux/seq_file.h>
21 
22 #include <asm/pgtable.h>
23 
24 /*
25  * The dumper groups pagetable entries of the same type into one, and for
26  * that it needs to keep some state when walking, and flush this state
27  * when a "break" in the continuity is found.
28  */
29 struct pg_state {
30 	int level;
31 	pgprot_t current_prot;
32 	unsigned long start_address;
33 	unsigned long current_address;
34 	const struct addr_marker *marker;
35 	unsigned long lines;
36 	bool to_dmesg;
37 	bool check_wx;
38 	unsigned long wx_pages;
39 };
40 
41 struct addr_marker {
42 	unsigned long start_address;
43 	const char *name;
44 	unsigned long max_lines;
45 };
46 
47 /* Address space markers hints */
48 
49 #ifdef CONFIG_X86_64
50 
51 enum address_markers_idx {
52 	USER_SPACE_NR = 0,
53 	KERNEL_SPACE_NR,
54 	LOW_KERNEL_NR,
55 	VMALLOC_START_NR,
56 	VMEMMAP_START_NR,
57 #ifdef CONFIG_KASAN
58 	KASAN_SHADOW_START_NR,
59 	KASAN_SHADOW_END_NR,
60 #endif
61 	CPU_ENTRY_AREA_NR,
62 #ifdef CONFIG_X86_ESPFIX64
63 	ESPFIX_START_NR,
64 #endif
65 #ifdef CONFIG_EFI
66 	EFI_END_NR,
67 #endif
68 	HIGH_KERNEL_NR,
69 	MODULES_VADDR_NR,
70 	MODULES_END_NR,
71 	FIXADDR_START_NR,
72 	END_OF_SPACE_NR,
73 };
74 
75 static struct addr_marker address_markers[] = {
76 	[USER_SPACE_NR]		= { 0,			"User Space" },
77 	[KERNEL_SPACE_NR]	= { (1UL << 63),	"Kernel Space" },
78 	[LOW_KERNEL_NR]		= { 0UL,		"Low Kernel Mapping" },
79 	[VMALLOC_START_NR]	= { 0UL,		"vmalloc() Area" },
80 	[VMEMMAP_START_NR]	= { 0UL,		"Vmemmap" },
81 #ifdef CONFIG_KASAN
82 	[KASAN_SHADOW_START_NR]	= { KASAN_SHADOW_START,	"KASAN shadow" },
83 	[KASAN_SHADOW_END_NR]	= { KASAN_SHADOW_END,	"KASAN shadow end" },
84 #endif
85 	[CPU_ENTRY_AREA_NR]	= { CPU_ENTRY_AREA_BASE,"CPU entry Area" },
86 #ifdef CONFIG_X86_ESPFIX64
87 	[ESPFIX_START_NR]	= { ESPFIX_BASE_ADDR,	"ESPfix Area", 16 },
88 #endif
89 #ifdef CONFIG_EFI
90 	[EFI_END_NR]		= { EFI_VA_END,		"EFI Runtime Services" },
91 #endif
92 	[HIGH_KERNEL_NR]	= { __START_KERNEL_map,	"High Kernel Mapping" },
93 	[MODULES_VADDR_NR]	= { MODULES_VADDR,	"Modules" },
94 	[MODULES_END_NR]	= { MODULES_END,	"End Modules" },
95 	[FIXADDR_START_NR]	= { FIXADDR_START,	"Fixmap Area" },
96 	[END_OF_SPACE_NR]	= { -1,			NULL }
97 };
98 
99 #else /* CONFIG_X86_64 */
100 
101 enum address_markers_idx {
102 	USER_SPACE_NR = 0,
103 	KERNEL_SPACE_NR,
104 	VMALLOC_START_NR,
105 	VMALLOC_END_NR,
106 #ifdef CONFIG_HIGHMEM
107 	PKMAP_BASE_NR,
108 #endif
109 	CPU_ENTRY_AREA_NR,
110 	FIXADDR_START_NR,
111 	END_OF_SPACE_NR,
112 };
113 
114 static struct addr_marker address_markers[] = {
115 	[USER_SPACE_NR]		= { 0,			"User Space" },
116 	[KERNEL_SPACE_NR]	= { PAGE_OFFSET,	"Kernel Mapping" },
117 	[VMALLOC_START_NR]	= { 0UL,		"vmalloc() Area" },
118 	[VMALLOC_END_NR]	= { 0UL,		"vmalloc() End" },
119 #ifdef CONFIG_HIGHMEM
120 	[PKMAP_BASE_NR]		= { 0UL,		"Persistent kmap() Area" },
121 #endif
122 	[CPU_ENTRY_AREA_NR]	= { 0UL,		"CPU entry area" },
123 	[FIXADDR_START_NR]	= { 0UL,		"Fixmap area" },
124 	[END_OF_SPACE_NR]	= { -1,			NULL }
125 };
126 
127 #endif /* !CONFIG_X86_64 */
128 
129 /* Multipliers for offsets within the PTEs */
130 #define PTE_LEVEL_MULT (PAGE_SIZE)
131 #define PMD_LEVEL_MULT (PTRS_PER_PTE * PTE_LEVEL_MULT)
132 #define PUD_LEVEL_MULT (PTRS_PER_PMD * PMD_LEVEL_MULT)
133 #define P4D_LEVEL_MULT (PTRS_PER_PUD * PUD_LEVEL_MULT)
134 #define PGD_LEVEL_MULT (PTRS_PER_P4D * P4D_LEVEL_MULT)
135 
136 #define pt_dump_seq_printf(m, to_dmesg, fmt, args...)		\
137 ({								\
138 	if (to_dmesg)					\
139 		printk(KERN_INFO fmt, ##args);			\
140 	else							\
141 		if (m)						\
142 			seq_printf(m, fmt, ##args);		\
143 })
144 
145 #define pt_dump_cont_printf(m, to_dmesg, fmt, args...)		\
146 ({								\
147 	if (to_dmesg)					\
148 		printk(KERN_CONT fmt, ##args);			\
149 	else							\
150 		if (m)						\
151 			seq_printf(m, fmt, ##args);		\
152 })
153 
154 /*
155  * Print a readable form of a pgprot_t to the seq_file
156  */
157 static void printk_prot(struct seq_file *m, pgprot_t prot, int level, bool dmsg)
158 {
159 	pgprotval_t pr = pgprot_val(prot);
160 	static const char * const level_name[] =
161 		{ "cr3", "pgd", "p4d", "pud", "pmd", "pte" };
162 
163 	if (!(pr & _PAGE_PRESENT)) {
164 		/* Not present */
165 		pt_dump_cont_printf(m, dmsg, "                              ");
166 	} else {
167 		if (pr & _PAGE_USER)
168 			pt_dump_cont_printf(m, dmsg, "USR ");
169 		else
170 			pt_dump_cont_printf(m, dmsg, "    ");
171 		if (pr & _PAGE_RW)
172 			pt_dump_cont_printf(m, dmsg, "RW ");
173 		else
174 			pt_dump_cont_printf(m, dmsg, "ro ");
175 		if (pr & _PAGE_PWT)
176 			pt_dump_cont_printf(m, dmsg, "PWT ");
177 		else
178 			pt_dump_cont_printf(m, dmsg, "    ");
179 		if (pr & _PAGE_PCD)
180 			pt_dump_cont_printf(m, dmsg, "PCD ");
181 		else
182 			pt_dump_cont_printf(m, dmsg, "    ");
183 
184 		/* Bit 7 has a different meaning on level 3 vs 4 */
185 		if (level <= 4 && pr & _PAGE_PSE)
186 			pt_dump_cont_printf(m, dmsg, "PSE ");
187 		else
188 			pt_dump_cont_printf(m, dmsg, "    ");
189 		if ((level == 5 && pr & _PAGE_PAT) ||
190 		    ((level == 4 || level == 3) && pr & _PAGE_PAT_LARGE))
191 			pt_dump_cont_printf(m, dmsg, "PAT ");
192 		else
193 			pt_dump_cont_printf(m, dmsg, "    ");
194 		if (pr & _PAGE_GLOBAL)
195 			pt_dump_cont_printf(m, dmsg, "GLB ");
196 		else
197 			pt_dump_cont_printf(m, dmsg, "    ");
198 		if (pr & _PAGE_NX)
199 			pt_dump_cont_printf(m, dmsg, "NX ");
200 		else
201 			pt_dump_cont_printf(m, dmsg, "x  ");
202 	}
203 	pt_dump_cont_printf(m, dmsg, "%s\n", level_name[level]);
204 }
205 
206 /*
207  * On 64 bits, sign-extend the 48 bit address to 64 bit
208  */
209 static unsigned long normalize_addr(unsigned long u)
210 {
211 	int shift;
212 	if (!IS_ENABLED(CONFIG_X86_64))
213 		return u;
214 
215 	shift = 64 - (__VIRTUAL_MASK_SHIFT + 1);
216 	return (signed long)(u << shift) >> shift;
217 }
218 
219 /*
220  * This function gets called on a break in a continuous series
221  * of PTE entries; the next one is different so we need to
222  * print what we collected so far.
223  */
224 static void note_page(struct seq_file *m, struct pg_state *st,
225 		      pgprot_t new_prot, int level)
226 {
227 	pgprotval_t prot, cur;
228 	static const char units[] = "BKMGTPE";
229 
230 	/*
231 	 * If we have a "break" in the series, we need to flush the state that
232 	 * we have now. "break" is either changing perms, levels or
233 	 * address space marker.
234 	 */
235 	prot = pgprot_val(new_prot);
236 	cur = pgprot_val(st->current_prot);
237 
238 	if (!st->level) {
239 		/* First entry */
240 		st->current_prot = new_prot;
241 		st->level = level;
242 		st->marker = address_markers;
243 		st->lines = 0;
244 		pt_dump_seq_printf(m, st->to_dmesg, "---[ %s ]---\n",
245 				   st->marker->name);
246 	} else if (prot != cur || level != st->level ||
247 		   st->current_address >= st->marker[1].start_address) {
248 		const char *unit = units;
249 		unsigned long delta;
250 		int width = sizeof(unsigned long) * 2;
251 		pgprotval_t pr = pgprot_val(st->current_prot);
252 
253 		if (st->check_wx && (pr & _PAGE_RW) && !(pr & _PAGE_NX)) {
254 			WARN_ONCE(1,
255 				  "x86/mm: Found insecure W+X mapping at address %p/%pS\n",
256 				  (void *)st->start_address,
257 				  (void *)st->start_address);
258 			st->wx_pages += (st->current_address -
259 					 st->start_address) / PAGE_SIZE;
260 		}
261 
262 		/*
263 		 * Now print the actual finished series
264 		 */
265 		if (!st->marker->max_lines ||
266 		    st->lines < st->marker->max_lines) {
267 			pt_dump_seq_printf(m, st->to_dmesg,
268 					   "0x%0*lx-0x%0*lx   ",
269 					   width, st->start_address,
270 					   width, st->current_address);
271 
272 			delta = st->current_address - st->start_address;
273 			while (!(delta & 1023) && unit[1]) {
274 				delta >>= 10;
275 				unit++;
276 			}
277 			pt_dump_cont_printf(m, st->to_dmesg, "%9lu%c ",
278 					    delta, *unit);
279 			printk_prot(m, st->current_prot, st->level,
280 				    st->to_dmesg);
281 		}
282 		st->lines++;
283 
284 		/*
285 		 * We print markers for special areas of address space,
286 		 * such as the start of vmalloc space etc.
287 		 * This helps in the interpretation.
288 		 */
289 		if (st->current_address >= st->marker[1].start_address) {
290 			if (st->marker->max_lines &&
291 			    st->lines > st->marker->max_lines) {
292 				unsigned long nskip =
293 					st->lines - st->marker->max_lines;
294 				pt_dump_seq_printf(m, st->to_dmesg,
295 						   "... %lu entr%s skipped ... \n",
296 						   nskip,
297 						   nskip == 1 ? "y" : "ies");
298 			}
299 			st->marker++;
300 			st->lines = 0;
301 			pt_dump_seq_printf(m, st->to_dmesg, "---[ %s ]---\n",
302 					   st->marker->name);
303 		}
304 
305 		st->start_address = st->current_address;
306 		st->current_prot = new_prot;
307 		st->level = level;
308 	}
309 }
310 
311 static void walk_pte_level(struct seq_file *m, struct pg_state *st, pmd_t addr, unsigned long P)
312 {
313 	int i;
314 	pte_t *start;
315 	pgprotval_t prot;
316 
317 	start = (pte_t *)pmd_page_vaddr(addr);
318 	for (i = 0; i < PTRS_PER_PTE; i++) {
319 		prot = pte_flags(*start);
320 		st->current_address = normalize_addr(P + i * PTE_LEVEL_MULT);
321 		note_page(m, st, __pgprot(prot), 5);
322 		start++;
323 	}
324 }
325 #ifdef CONFIG_KASAN
326 
327 /*
328  * This is an optimization for KASAN=y case. Since all kasan page tables
329  * eventually point to the kasan_zero_page we could call note_page()
330  * right away without walking through lower level page tables. This saves
331  * us dozens of seconds (minutes for 5-level config) while checking for
332  * W+X mapping or reading kernel_page_tables debugfs file.
333  */
334 static inline bool kasan_page_table(struct seq_file *m, struct pg_state *st,
335 				void *pt)
336 {
337 	if (__pa(pt) == __pa(kasan_zero_pmd) ||
338 #ifdef CONFIG_X86_5LEVEL
339 	    __pa(pt) == __pa(kasan_zero_p4d) ||
340 #endif
341 	    __pa(pt) == __pa(kasan_zero_pud)) {
342 		pgprotval_t prot = pte_flags(kasan_zero_pte[0]);
343 		note_page(m, st, __pgprot(prot), 5);
344 		return true;
345 	}
346 	return false;
347 }
348 #else
349 static inline bool kasan_page_table(struct seq_file *m, struct pg_state *st,
350 				void *pt)
351 {
352 	return false;
353 }
354 #endif
355 
356 #if PTRS_PER_PMD > 1
357 
358 static void walk_pmd_level(struct seq_file *m, struct pg_state *st, pud_t addr, unsigned long P)
359 {
360 	int i;
361 	pmd_t *start, *pmd_start;
362 	pgprotval_t prot;
363 
364 	pmd_start = start = (pmd_t *)pud_page_vaddr(addr);
365 	for (i = 0; i < PTRS_PER_PMD; i++) {
366 		st->current_address = normalize_addr(P + i * PMD_LEVEL_MULT);
367 		if (!pmd_none(*start)) {
368 			if (pmd_large(*start) || !pmd_present(*start)) {
369 				prot = pmd_flags(*start);
370 				note_page(m, st, __pgprot(prot), 4);
371 			} else if (!kasan_page_table(m, st, pmd_start)) {
372 				walk_pte_level(m, st, *start,
373 					       P + i * PMD_LEVEL_MULT);
374 			}
375 		} else
376 			note_page(m, st, __pgprot(0), 4);
377 		start++;
378 	}
379 }
380 
381 #else
382 #define walk_pmd_level(m,s,a,p) walk_pte_level(m,s,__pmd(pud_val(a)),p)
383 #define pud_large(a) pmd_large(__pmd(pud_val(a)))
384 #define pud_none(a)  pmd_none(__pmd(pud_val(a)))
385 #endif
386 
387 #if PTRS_PER_PUD > 1
388 
389 static void walk_pud_level(struct seq_file *m, struct pg_state *st, p4d_t addr, unsigned long P)
390 {
391 	int i;
392 	pud_t *start, *pud_start;
393 	pgprotval_t prot;
394 	pud_t *prev_pud = NULL;
395 
396 	pud_start = start = (pud_t *)p4d_page_vaddr(addr);
397 
398 	for (i = 0; i < PTRS_PER_PUD; i++) {
399 		st->current_address = normalize_addr(P + i * PUD_LEVEL_MULT);
400 		if (!pud_none(*start)) {
401 			if (pud_large(*start) || !pud_present(*start)) {
402 				prot = pud_flags(*start);
403 				note_page(m, st, __pgprot(prot), 3);
404 			} else if (!kasan_page_table(m, st, pud_start)) {
405 				walk_pmd_level(m, st, *start,
406 					       P + i * PUD_LEVEL_MULT);
407 			}
408 		} else
409 			note_page(m, st, __pgprot(0), 3);
410 
411 		prev_pud = start;
412 		start++;
413 	}
414 }
415 
416 #else
417 #define walk_pud_level(m,s,a,p) walk_pmd_level(m,s,__pud(p4d_val(a)),p)
418 #define p4d_large(a) pud_large(__pud(p4d_val(a)))
419 #define p4d_none(a)  pud_none(__pud(p4d_val(a)))
420 #endif
421 
422 #if PTRS_PER_P4D > 1
423 
424 static void walk_p4d_level(struct seq_file *m, struct pg_state *st, pgd_t addr, unsigned long P)
425 {
426 	int i;
427 	p4d_t *start, *p4d_start;
428 	pgprotval_t prot;
429 
430 	p4d_start = start = (p4d_t *)pgd_page_vaddr(addr);
431 
432 	for (i = 0; i < PTRS_PER_P4D; i++) {
433 		st->current_address = normalize_addr(P + i * P4D_LEVEL_MULT);
434 		if (!p4d_none(*start)) {
435 			if (p4d_large(*start) || !p4d_present(*start)) {
436 				prot = p4d_flags(*start);
437 				note_page(m, st, __pgprot(prot), 2);
438 			} else if (!kasan_page_table(m, st, p4d_start)) {
439 				walk_pud_level(m, st, *start,
440 					       P + i * P4D_LEVEL_MULT);
441 			}
442 		} else
443 			note_page(m, st, __pgprot(0), 2);
444 
445 		start++;
446 	}
447 }
448 
449 #else
450 #define walk_p4d_level(m,s,a,p) walk_pud_level(m,s,__p4d(pgd_val(a)),p)
451 #define pgd_large(a) p4d_large(__p4d(pgd_val(a)))
452 #define pgd_none(a)  p4d_none(__p4d(pgd_val(a)))
453 #endif
454 
455 static inline bool is_hypervisor_range(int idx)
456 {
457 #ifdef CONFIG_X86_64
458 	/*
459 	 * ffff800000000000 - ffff87ffffffffff is reserved for
460 	 * the hypervisor.
461 	 */
462 	return	(idx >= pgd_index(__PAGE_OFFSET) - 16) &&
463 		(idx <  pgd_index(__PAGE_OFFSET));
464 #else
465 	return false;
466 #endif
467 }
468 
469 static void ptdump_walk_pgd_level_core(struct seq_file *m, pgd_t *pgd,
470 				       bool checkwx)
471 {
472 #ifdef CONFIG_X86_64
473 	pgd_t *start = (pgd_t *) &init_top_pgt;
474 #else
475 	pgd_t *start = swapper_pg_dir;
476 #endif
477 	pgprotval_t prot;
478 	int i;
479 	struct pg_state st = {};
480 
481 	if (pgd) {
482 		start = pgd;
483 		st.to_dmesg = true;
484 	}
485 
486 	st.check_wx = checkwx;
487 	if (checkwx)
488 		st.wx_pages = 0;
489 
490 	for (i = 0; i < PTRS_PER_PGD; i++) {
491 		st.current_address = normalize_addr(i * PGD_LEVEL_MULT);
492 		if (!pgd_none(*start) && !is_hypervisor_range(i)) {
493 			if (pgd_large(*start) || !pgd_present(*start)) {
494 				prot = pgd_flags(*start);
495 				note_page(m, &st, __pgprot(prot), 1);
496 			} else {
497 				walk_p4d_level(m, &st, *start,
498 					       i * PGD_LEVEL_MULT);
499 			}
500 		} else
501 			note_page(m, &st, __pgprot(0), 1);
502 
503 		cond_resched();
504 		start++;
505 	}
506 
507 	/* Flush out the last page */
508 	st.current_address = normalize_addr(PTRS_PER_PGD*PGD_LEVEL_MULT);
509 	note_page(m, &st, __pgprot(0), 0);
510 	if (!checkwx)
511 		return;
512 	if (st.wx_pages)
513 		pr_info("x86/mm: Checked W+X mappings: FAILED, %lu W+X pages found.\n",
514 			st.wx_pages);
515 	else
516 		pr_info("x86/mm: Checked W+X mappings: passed, no W+X pages found.\n");
517 }
518 
519 void ptdump_walk_pgd_level(struct seq_file *m, pgd_t *pgd)
520 {
521 	ptdump_walk_pgd_level_core(m, pgd, false);
522 }
523 EXPORT_SYMBOL_GPL(ptdump_walk_pgd_level);
524 
525 void ptdump_walk_pgd_level_checkwx(void)
526 {
527 	ptdump_walk_pgd_level_core(NULL, NULL, true);
528 }
529 
530 static int __init pt_dump_init(void)
531 {
532 	/*
533 	 * Various markers are not compile-time constants, so assign them
534 	 * here.
535 	 */
536 #ifdef CONFIG_X86_64
537 	address_markers[LOW_KERNEL_NR].start_address = PAGE_OFFSET;
538 	address_markers[VMALLOC_START_NR].start_address = VMALLOC_START;
539 	address_markers[VMEMMAP_START_NR].start_address = VMEMMAP_START;
540 #endif
541 #ifdef CONFIG_X86_32
542 	address_markers[VMALLOC_START_NR].start_address = VMALLOC_START;
543 	address_markers[VMALLOC_END_NR].start_address = VMALLOC_END;
544 # ifdef CONFIG_HIGHMEM
545 	address_markers[PKMAP_BASE_NR].start_address = PKMAP_BASE;
546 # endif
547 	address_markers[FIXADDR_START_NR].start_address = FIXADDR_START;
548 	address_markers[CPU_ENTRY_AREA_NR].start_address = CPU_ENTRY_AREA_BASE;
549 #endif
550 	return 0;
551 }
552 __initcall(pt_dump_init);
553