xref: /linux/arch/x86/math-emu/reg_round.S (revision bcefe12eff5dca6fdfa94ed85e5bee66380d5cd9)
1	.file "reg_round.S"
2/*---------------------------------------------------------------------------+
3 |  reg_round.S                                                              |
4 |                                                                           |
5 | Rounding/truncation/etc for FPU basic arithmetic functions.               |
6 |                                                                           |
7 | Copyright (C) 1993,1995,1997                                              |
8 |                       W. Metzenthen, 22 Parker St, Ormond, Vic 3163,      |
9 |                       Australia.  E-mail billm@suburbia.net               |
10 |                                                                           |
11 | This code has four possible entry points.                                 |
12 | The following must be entered by a jmp instruction:                       |
13 |   fpu_reg_round, fpu_reg_round_sqrt, and fpu_Arith_exit.                  |
14 |                                                                           |
15 | The FPU_round entry point is intended to be used by C code.               |
16 | From C, call as:                                                          |
17 |  int FPU_round(FPU_REG *arg, unsigned int extent, unsigned int control_w) |
18 |                                                                           |
19 |    Return value is the tag of the answer, or-ed with FPU_Exception if     |
20 |    one was raised, or -1 on internal error.                               |
21 |                                                                           |
22 | For correct "up" and "down" rounding, the argument must have the correct  |
23 | sign.                                                                     |
24 |                                                                           |
25 +---------------------------------------------------------------------------*/
26
27/*---------------------------------------------------------------------------+
28 | Four entry points.                                                        |
29 |                                                                           |
30 | Needed by both the fpu_reg_round and fpu_reg_round_sqrt entry points:     |
31 |  %eax:%ebx  64 bit significand                                            |
32 |  %edx       32 bit extension of the significand                           |
33 |  %edi       pointer to an FPU_REG for the result to be stored             |
34 |  stack      calling function must have set up a C stack frame and         |
35 |             pushed %esi, %edi, and %ebx                                   |
36 |                                                                           |
37 | Needed just for the fpu_reg_round_sqrt entry point:                       |
38 |  %cx  A control word in the same format as the FPU control word.          |
39 | Otherwise, PARAM4 must give such a value.                                 |
40 |                                                                           |
41 |                                                                           |
42 | The significand and its extension are assumed to be exact in the          |
43 | following sense:                                                          |
44 |   If the significand by itself is the exact result then the significand   |
45 |   extension (%edx) must contain 0, otherwise the significand extension    |
46 |   must be non-zero.                                                       |
47 |   If the significand extension is non-zero then the significand is        |
48 |   smaller than the magnitude of the correct exact result by an amount     |
49 |   greater than zero and less than one ls bit of the significand.          |
50 |   The significand extension is only required to have three possible       |
51 |   non-zero values:                                                        |
52 |       less than 0x80000000  <=> the significand is less than 1/2 an ls    |
53 |                                 bit smaller than the magnitude of the     |
54 |                                 true exact result.                        |
55 |         exactly 0x80000000  <=> the significand is exactly 1/2 an ls bit  |
56 |                                 smaller than the magnitude of the true    |
57 |                                 exact result.                             |
58 |    greater than 0x80000000  <=> the significand is more than 1/2 an ls    |
59 |                                 bit smaller than the magnitude of the     |
60 |                                 true exact result.                        |
61 |                                                                           |
62 +---------------------------------------------------------------------------*/
63
64/*---------------------------------------------------------------------------+
65 |  The code in this module has become quite complex, but it should handle   |
66 |  all of the FPU flags which are set at this stage of the basic arithmetic |
67 |  computations.                                                            |
68 |  There are a few rare cases where the results are not set identically to  |
69 |  a real FPU. These require a bit more thought because at this stage the   |
70 |  results of the code here appear to be more consistent...                 |
71 |  This may be changed in a future version.                                 |
72 +---------------------------------------------------------------------------*/
73
74
75#include "fpu_emu.h"
76#include "exception.h"
77#include "control_w.h"
78
79/* Flags for FPU_bits_lost */
80#define	LOST_DOWN	$1
81#define	LOST_UP		$2
82
83/* Flags for FPU_denormal */
84#define	DENORMAL	$1
85#define	UNMASKED_UNDERFLOW $2
86
87
88#ifndef NON_REENTRANT_FPU
89/*	Make the code re-entrant by putting
90	local storage on the stack: */
91#define FPU_bits_lost	(%esp)
92#define FPU_denormal	1(%esp)
93
94#else
95/*	Not re-entrant, so we can gain speed by putting
96	local storage in a static area: */
97.data
98	.align 4,0
99FPU_bits_lost:
100	.byte	0
101FPU_denormal:
102	.byte	0
103#endif /* NON_REENTRANT_FPU */
104
105
106.text
107.globl fpu_reg_round
108.globl fpu_Arith_exit
109
110/* Entry point when called from C */
111ENTRY(FPU_round)
112	pushl	%ebp
113	movl	%esp,%ebp
114	pushl	%esi
115	pushl	%edi
116	pushl	%ebx
117
118	movl	PARAM1,%edi
119	movl	SIGH(%edi),%eax
120	movl	SIGL(%edi),%ebx
121	movl	PARAM2,%edx
122
123fpu_reg_round:			/* Normal entry point */
124	movl	PARAM4,%ecx
125
126#ifndef NON_REENTRANT_FPU
127	pushl	%ebx		/* adjust the stack pointer */
128#endif /* NON_REENTRANT_FPU */
129
130#ifdef PARANOID
131/* Cannot use this here yet */
132/*	orl	%eax,%eax */
133/*	jns	L_entry_bugged */
134#endif /* PARANOID */
135
136	cmpw	EXP_UNDER,EXP(%edi)
137	jle	L_Make_denorm			/* The number is a de-normal */
138
139	movb	$0,FPU_denormal			/* 0 -> not a de-normal */
140
141Denorm_done:
142	movb	$0,FPU_bits_lost		/* No bits yet lost in rounding */
143
144	movl	%ecx,%esi
145	andl	CW_PC,%ecx
146	cmpl	PR_64_BITS,%ecx
147	je	LRound_To_64
148
149	cmpl	PR_53_BITS,%ecx
150	je	LRound_To_53
151
152	cmpl	PR_24_BITS,%ecx
153	je	LRound_To_24
154
155#ifdef PECULIAR_486
156/* With the precision control bits set to 01 "(reserved)", a real 80486
157   behaves as if the precision control bits were set to 11 "64 bits" */
158	cmpl	PR_RESERVED_BITS,%ecx
159	je	LRound_To_64
160#ifdef PARANOID
161	jmp	L_bugged_denorm_486
162#endif /* PARANOID */
163#else
164#ifdef PARANOID
165	jmp	L_bugged_denorm	/* There is no bug, just a bad control word */
166#endif /* PARANOID */
167#endif /* PECULIAR_486 */
168
169
170/* Round etc to 24 bit precision */
171LRound_To_24:
172	movl	%esi,%ecx
173	andl	CW_RC,%ecx
174	cmpl	RC_RND,%ecx
175	je	LRound_nearest_24
176
177	cmpl	RC_CHOP,%ecx
178	je	LCheck_truncate_24
179
180	cmpl	RC_UP,%ecx		/* Towards +infinity */
181	je	LUp_24
182
183	cmpl	RC_DOWN,%ecx		/* Towards -infinity */
184	je	LDown_24
185
186#ifdef PARANOID
187	jmp	L_bugged_round24
188#endif /* PARANOID */
189
190LUp_24:
191	cmpb	SIGN_POS,PARAM5
192	jne	LCheck_truncate_24	/* If negative then  up==truncate */
193
194	jmp	LCheck_24_round_up
195
196LDown_24:
197	cmpb	SIGN_POS,PARAM5
198	je	LCheck_truncate_24	/* If positive then  down==truncate */
199
200LCheck_24_round_up:
201	movl	%eax,%ecx
202	andl	$0x000000ff,%ecx
203	orl	%ebx,%ecx
204	orl	%edx,%ecx
205	jnz	LDo_24_round_up
206	jmp	L_Re_normalise
207
208LRound_nearest_24:
209	/* Do rounding of the 24th bit if needed (nearest or even) */
210	movl	%eax,%ecx
211	andl	$0x000000ff,%ecx
212	cmpl	$0x00000080,%ecx
213	jc	LCheck_truncate_24	/* less than half, no increment needed */
214
215	jne	LGreater_Half_24	/* greater than half, increment needed */
216
217	/* Possibly half, we need to check the ls bits */
218	orl	%ebx,%ebx
219	jnz	LGreater_Half_24	/* greater than half, increment needed */
220
221	orl	%edx,%edx
222	jnz	LGreater_Half_24	/* greater than half, increment needed */
223
224	/* Exactly half, increment only if 24th bit is 1 (round to even) */
225	testl	$0x00000100,%eax
226	jz	LDo_truncate_24
227
228LGreater_Half_24:			/* Rounding: increment at the 24th bit */
229LDo_24_round_up:
230	andl	$0xffffff00,%eax	/* Truncate to 24 bits */
231	xorl	%ebx,%ebx
232	movb	LOST_UP,FPU_bits_lost
233	addl	$0x00000100,%eax
234	jmp	LCheck_Round_Overflow
235
236LCheck_truncate_24:
237	movl	%eax,%ecx
238	andl	$0x000000ff,%ecx
239	orl	%ebx,%ecx
240	orl	%edx,%ecx
241	jz	L_Re_normalise		/* No truncation needed */
242
243LDo_truncate_24:
244	andl	$0xffffff00,%eax	/* Truncate to 24 bits */
245	xorl	%ebx,%ebx
246	movb	LOST_DOWN,FPU_bits_lost
247	jmp	L_Re_normalise
248
249
250/* Round etc to 53 bit precision */
251LRound_To_53:
252	movl	%esi,%ecx
253	andl	CW_RC,%ecx
254	cmpl	RC_RND,%ecx
255	je	LRound_nearest_53
256
257	cmpl	RC_CHOP,%ecx
258	je	LCheck_truncate_53
259
260	cmpl	RC_UP,%ecx		/* Towards +infinity */
261	je	LUp_53
262
263	cmpl	RC_DOWN,%ecx		/* Towards -infinity */
264	je	LDown_53
265
266#ifdef PARANOID
267	jmp	L_bugged_round53
268#endif /* PARANOID */
269
270LUp_53:
271	cmpb	SIGN_POS,PARAM5
272	jne	LCheck_truncate_53	/* If negative then  up==truncate */
273
274	jmp	LCheck_53_round_up
275
276LDown_53:
277	cmpb	SIGN_POS,PARAM5
278	je	LCheck_truncate_53	/* If positive then  down==truncate */
279
280LCheck_53_round_up:
281	movl	%ebx,%ecx
282	andl	$0x000007ff,%ecx
283	orl	%edx,%ecx
284	jnz	LDo_53_round_up
285	jmp	L_Re_normalise
286
287LRound_nearest_53:
288	/* Do rounding of the 53rd bit if needed (nearest or even) */
289	movl	%ebx,%ecx
290	andl	$0x000007ff,%ecx
291	cmpl	$0x00000400,%ecx
292	jc	LCheck_truncate_53	/* less than half, no increment needed */
293
294	jnz	LGreater_Half_53	/* greater than half, increment needed */
295
296	/* Possibly half, we need to check the ls bits */
297	orl	%edx,%edx
298	jnz	LGreater_Half_53	/* greater than half, increment needed */
299
300	/* Exactly half, increment only if 53rd bit is 1 (round to even) */
301	testl	$0x00000800,%ebx
302	jz	LTruncate_53
303
304LGreater_Half_53:			/* Rounding: increment at the 53rd bit */
305LDo_53_round_up:
306	movb	LOST_UP,FPU_bits_lost
307	andl	$0xfffff800,%ebx	/* Truncate to 53 bits */
308	addl	$0x00000800,%ebx
309	adcl	$0,%eax
310	jmp	LCheck_Round_Overflow
311
312LCheck_truncate_53:
313	movl	%ebx,%ecx
314	andl	$0x000007ff,%ecx
315	orl	%edx,%ecx
316	jz	L_Re_normalise
317
318LTruncate_53:
319	movb	LOST_DOWN,FPU_bits_lost
320	andl	$0xfffff800,%ebx	/* Truncate to 53 bits */
321	jmp	L_Re_normalise
322
323
324/* Round etc to 64 bit precision */
325LRound_To_64:
326	movl	%esi,%ecx
327	andl	CW_RC,%ecx
328	cmpl	RC_RND,%ecx
329	je	LRound_nearest_64
330
331	cmpl	RC_CHOP,%ecx
332	je	LCheck_truncate_64
333
334	cmpl	RC_UP,%ecx		/* Towards +infinity */
335	je	LUp_64
336
337	cmpl	RC_DOWN,%ecx		/* Towards -infinity */
338	je	LDown_64
339
340#ifdef PARANOID
341	jmp	L_bugged_round64
342#endif /* PARANOID */
343
344LUp_64:
345	cmpb	SIGN_POS,PARAM5
346	jne	LCheck_truncate_64	/* If negative then  up==truncate */
347
348	orl	%edx,%edx
349	jnz	LDo_64_round_up
350	jmp	L_Re_normalise
351
352LDown_64:
353	cmpb	SIGN_POS,PARAM5
354	je	LCheck_truncate_64	/* If positive then  down==truncate */
355
356	orl	%edx,%edx
357	jnz	LDo_64_round_up
358	jmp	L_Re_normalise
359
360LRound_nearest_64:
361	cmpl	$0x80000000,%edx
362	jc	LCheck_truncate_64
363
364	jne	LDo_64_round_up
365
366	/* Now test for round-to-even */
367	testb	$1,%bl
368	jz	LCheck_truncate_64
369
370LDo_64_round_up:
371	movb	LOST_UP,FPU_bits_lost
372	addl	$1,%ebx
373	adcl	$0,%eax
374
375LCheck_Round_Overflow:
376	jnc	L_Re_normalise
377
378	/* Overflow, adjust the result (significand to 1.0) */
379	rcrl	$1,%eax
380	rcrl	$1,%ebx
381	incw	EXP(%edi)
382	jmp	L_Re_normalise
383
384LCheck_truncate_64:
385	orl	%edx,%edx
386	jz	L_Re_normalise
387
388LTruncate_64:
389	movb	LOST_DOWN,FPU_bits_lost
390
391L_Re_normalise:
392	testb	$0xff,FPU_denormal
393	jnz	Normalise_result
394
395L_Normalised:
396	movl	TAG_Valid,%edx
397
398L_deNormalised:
399	cmpb	LOST_UP,FPU_bits_lost
400	je	L_precision_lost_up
401
402	cmpb	LOST_DOWN,FPU_bits_lost
403	je	L_precision_lost_down
404
405L_no_precision_loss:
406	/* store the result */
407
408L_Store_significand:
409	movl	%eax,SIGH(%edi)
410	movl	%ebx,SIGL(%edi)
411
412	cmpw	EXP_OVER,EXP(%edi)
413	jge	L_overflow
414
415	movl	%edx,%eax
416
417	/* Convert the exponent to 80x87 form. */
418	addw	EXTENDED_Ebias,EXP(%edi)
419	andw	$0x7fff,EXP(%edi)
420
421fpu_reg_round_signed_special_exit:
422
423	cmpb	SIGN_POS,PARAM5
424	je	fpu_reg_round_special_exit
425
426	orw	$0x8000,EXP(%edi)	/* Negative sign for the result. */
427
428fpu_reg_round_special_exit:
429
430#ifndef NON_REENTRANT_FPU
431	popl	%ebx		/* adjust the stack pointer */
432#endif /* NON_REENTRANT_FPU */
433
434fpu_Arith_exit:
435	popl	%ebx
436	popl	%edi
437	popl	%esi
438	leave
439	ret
440
441
442/*
443 * Set the FPU status flags to represent precision loss due to
444 * round-up.
445 */
446L_precision_lost_up:
447	push	%edx
448	push	%eax
449	call	set_precision_flag_up
450	popl	%eax
451	popl	%edx
452	jmp	L_no_precision_loss
453
454/*
455 * Set the FPU status flags to represent precision loss due to
456 * truncation.
457 */
458L_precision_lost_down:
459	push	%edx
460	push	%eax
461	call	set_precision_flag_down
462	popl	%eax
463	popl	%edx
464	jmp	L_no_precision_loss
465
466
467/*
468 * The number is a denormal (which might get rounded up to a normal)
469 * Shift the number right the required number of bits, which will
470 * have to be undone later...
471 */
472L_Make_denorm:
473	/* The action to be taken depends upon whether the underflow
474	   exception is masked */
475	testb	CW_Underflow,%cl		/* Underflow mask. */
476	jz	Unmasked_underflow		/* Do not make a denormal. */
477
478	movb	DENORMAL,FPU_denormal
479
480	pushl	%ecx		/* Save */
481	movw	EXP_UNDER+1,%cx
482	subw	EXP(%edi),%cx
483
484	cmpw	$64,%cx	/* shrd only works for 0..31 bits */
485	jnc	Denorm_shift_more_than_63
486
487	cmpw	$32,%cx	/* shrd only works for 0..31 bits */
488	jnc	Denorm_shift_more_than_32
489
490/*
491 * We got here without jumps by assuming that the most common requirement
492 *   is for a small de-normalising shift.
493 * Shift by [1..31] bits
494 */
495	addw	%cx,EXP(%edi)
496	orl	%edx,%edx	/* extension */
497	setne	%ch		/* Save whether %edx is non-zero */
498	xorl	%edx,%edx
499	shrd	%cl,%ebx,%edx
500	shrd	%cl,%eax,%ebx
501	shr	%cl,%eax
502	orb	%ch,%dl
503	popl	%ecx
504	jmp	Denorm_done
505
506/* Shift by [32..63] bits */
507Denorm_shift_more_than_32:
508	addw	%cx,EXP(%edi)
509	subb	$32,%cl
510	orl	%edx,%edx
511	setne	%ch
512	orb	%ch,%bl
513	xorl	%edx,%edx
514	shrd	%cl,%ebx,%edx
515	shrd	%cl,%eax,%ebx
516	shr	%cl,%eax
517	orl	%edx,%edx		/* test these 32 bits */
518	setne	%cl
519	orb	%ch,%bl
520	orb	%cl,%bl
521	movl	%ebx,%edx
522	movl	%eax,%ebx
523	xorl	%eax,%eax
524	popl	%ecx
525	jmp	Denorm_done
526
527/* Shift by [64..) bits */
528Denorm_shift_more_than_63:
529	cmpw	$64,%cx
530	jne	Denorm_shift_more_than_64
531
532/* Exactly 64 bit shift */
533	addw	%cx,EXP(%edi)
534	xorl	%ecx,%ecx
535	orl	%edx,%edx
536	setne	%cl
537	orl	%ebx,%ebx
538	setne	%ch
539	orb	%ch,%cl
540	orb	%cl,%al
541	movl	%eax,%edx
542	xorl	%eax,%eax
543	xorl	%ebx,%ebx
544	popl	%ecx
545	jmp	Denorm_done
546
547Denorm_shift_more_than_64:
548	movw	EXP_UNDER+1,EXP(%edi)
549/* This is easy, %eax must be non-zero, so.. */
550	movl	$1,%edx
551	xorl	%eax,%eax
552	xorl	%ebx,%ebx
553	popl	%ecx
554	jmp	Denorm_done
555
556
557Unmasked_underflow:
558	movb	UNMASKED_UNDERFLOW,FPU_denormal
559	jmp	Denorm_done
560
561
562/* Undo the de-normalisation. */
563Normalise_result:
564	cmpb	UNMASKED_UNDERFLOW,FPU_denormal
565	je	Signal_underflow
566
567/* The number must be a denormal if we got here. */
568#ifdef PARANOID
569	/* But check it... just in case. */
570	cmpw	EXP_UNDER+1,EXP(%edi)
571	jne	L_norm_bugged
572#endif /* PARANOID */
573
574#ifdef PECULIAR_486
575	/*
576	 * This implements a special feature of 80486 behaviour.
577	 * Underflow will be signalled even if the number is
578	 * not a denormal after rounding.
579	 * This difference occurs only for masked underflow, and not
580	 * in the unmasked case.
581	 * Actual 80486 behaviour differs from this in some circumstances.
582	 */
583	orl	%eax,%eax		/* ms bits */
584	js	LPseudoDenormal		/* Will be masked underflow */
585#else
586	orl	%eax,%eax		/* ms bits */
587	js	L_Normalised		/* No longer a denormal */
588#endif /* PECULIAR_486 */
589
590	jnz	LDenormal_adj_exponent
591
592	orl	%ebx,%ebx
593	jz	L_underflow_to_zero	/* The contents are zero */
594
595LDenormal_adj_exponent:
596	decw	EXP(%edi)
597
598LPseudoDenormal:
599	testb	$0xff,FPU_bits_lost	/* bits lost == underflow */
600	movl	TAG_Special,%edx
601	jz	L_deNormalised
602
603	/* There must be a masked underflow */
604	push	%eax
605	pushl	EX_Underflow
606	call	EXCEPTION
607	popl	%eax
608	popl	%eax
609	movl	TAG_Special,%edx
610	jmp	L_deNormalised
611
612
613/*
614 * The operations resulted in a number too small to represent.
615 * Masked response.
616 */
617L_underflow_to_zero:
618	push	%eax
619	call	set_precision_flag_down
620	popl	%eax
621
622	push	%eax
623	pushl	EX_Underflow
624	call	EXCEPTION
625	popl	%eax
626	popl	%eax
627
628/* Reduce the exponent to EXP_UNDER */
629	movw	EXP_UNDER,EXP(%edi)
630	movl	TAG_Zero,%edx
631	jmp	L_Store_significand
632
633
634/* The operations resulted in a number too large to represent. */
635L_overflow:
636	addw	EXTENDED_Ebias,EXP(%edi)	/* Set for unmasked response. */
637	push	%edi
638	call	arith_overflow
639	pop	%edi
640	jmp	fpu_reg_round_signed_special_exit
641
642
643Signal_underflow:
644	/* The number may have been changed to a non-denormal */
645	/* by the rounding operations. */
646	cmpw	EXP_UNDER,EXP(%edi)
647	jle	Do_unmasked_underflow
648
649	jmp	L_Normalised
650
651Do_unmasked_underflow:
652	/* Increase the exponent by the magic number */
653	addw	$(3*(1<<13)),EXP(%edi)
654	push	%eax
655	pushl	EX_Underflow
656	call	EXCEPTION
657	popl	%eax
658	popl	%eax
659	jmp	L_Normalised
660
661
662#ifdef PARANOID
663#ifdef PECULIAR_486
664L_bugged_denorm_486:
665	pushl	EX_INTERNAL|0x236
666	call	EXCEPTION
667	popl	%ebx
668	jmp	L_exception_exit
669#else
670L_bugged_denorm:
671	pushl	EX_INTERNAL|0x230
672	call	EXCEPTION
673	popl	%ebx
674	jmp	L_exception_exit
675#endif /* PECULIAR_486 */
676
677L_bugged_round24:
678	pushl	EX_INTERNAL|0x231
679	call	EXCEPTION
680	popl	%ebx
681	jmp	L_exception_exit
682
683L_bugged_round53:
684	pushl	EX_INTERNAL|0x232
685	call	EXCEPTION
686	popl	%ebx
687	jmp	L_exception_exit
688
689L_bugged_round64:
690	pushl	EX_INTERNAL|0x233
691	call	EXCEPTION
692	popl	%ebx
693	jmp	L_exception_exit
694
695L_norm_bugged:
696	pushl	EX_INTERNAL|0x234
697	call	EXCEPTION
698	popl	%ebx
699	jmp	L_exception_exit
700
701L_entry_bugged:
702	pushl	EX_INTERNAL|0x235
703	call	EXCEPTION
704	popl	%ebx
705L_exception_exit:
706	mov	$-1,%eax
707	jmp	fpu_reg_round_special_exit
708#endif /* PARANOID */
709