xref: /linux/arch/x86/lib/insn.c (revision 07fdad3a93756b872da7b53647715c48d0f4a2d0)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * x86 instruction analysis
4  *
5  * Copyright (C) IBM Corporation, 2002, 2004, 2009
6  */
7 
8 #include <linux/kernel.h>
9 #ifdef __KERNEL__
10 #include <linux/string.h>
11 #else
12 #include <string.h>
13 #endif
14 #include <asm/inat.h> /*__ignore_sync_check__ */
15 #include <asm/insn.h> /* __ignore_sync_check__ */
16 #include <linux/unaligned.h> /* __ignore_sync_check__ */
17 
18 #include <linux/errno.h>
19 #include <linux/kconfig.h>
20 
21 #include <asm/emulate_prefix.h> /* __ignore_sync_check__ */
22 
23 #define leXX_to_cpu(t, r)						\
24 ({									\
25 	__typeof__(t) v;						\
26 	switch (sizeof(t)) {						\
27 	case 4: v = le32_to_cpu(r); break;				\
28 	case 2: v = le16_to_cpu(r); break;				\
29 	case 1:	v = r; break;						\
30 	default:							\
31 		BUILD_BUG(); break;					\
32 	}								\
33 	v;								\
34 })
35 
36 /* Verify next sizeof(t) bytes can be on the same instruction */
37 #define validate_next(t, insn, n)	\
38 	((insn)->next_byte + sizeof(t) + n <= (insn)->end_kaddr)
39 
40 #define __get_next(t, insn)	\
41 	({ t r = get_unaligned((t *)(insn)->next_byte); (insn)->next_byte += sizeof(t); leXX_to_cpu(t, r); })
42 
43 #define __peek_nbyte_next(t, insn, n)	\
44 	({ t r = get_unaligned((t *)(insn)->next_byte + n); leXX_to_cpu(t, r); })
45 
46 #define get_next(t, insn)	\
47 	({ if (unlikely(!validate_next(t, insn, 0))) goto err_out; __get_next(t, insn); })
48 
49 #define peek_nbyte_next(t, insn, n)	\
50 	({ if (unlikely(!validate_next(t, insn, n))) goto err_out; __peek_nbyte_next(t, insn, n); })
51 
52 #define peek_next(t, insn)	peek_nbyte_next(t, insn, 0)
53 
54 /**
55  * insn_init() - initialize struct insn
56  * @insn:	&struct insn to be initialized
57  * @kaddr:	address (in kernel memory) of instruction (or copy thereof)
58  * @buf_len:	length of the insn buffer at @kaddr
59  * @x86_64:	!0 for 64-bit kernel or 64-bit app
60  */
61 void insn_init(struct insn *insn, const void *kaddr, int buf_len, int x86_64)
62 {
63 	/*
64 	 * Instructions longer than MAX_INSN_SIZE (15 bytes) are invalid
65 	 * even if the input buffer is long enough to hold them.
66 	 */
67 	if (buf_len > MAX_INSN_SIZE)
68 		buf_len = MAX_INSN_SIZE;
69 
70 	memset(insn, 0, sizeof(*insn));
71 	insn->kaddr = kaddr;
72 	insn->end_kaddr = kaddr + buf_len;
73 	insn->next_byte = kaddr;
74 	insn->x86_64 = x86_64;
75 	insn->opnd_bytes = 4;
76 	if (x86_64)
77 		insn->addr_bytes = 8;
78 	else
79 		insn->addr_bytes = 4;
80 }
81 
82 static const insn_byte_t xen_prefix[] = { __XEN_EMULATE_PREFIX };
83 static const insn_byte_t kvm_prefix[] = { __KVM_EMULATE_PREFIX };
84 
85 static int __insn_get_emulate_prefix(struct insn *insn,
86 				     const insn_byte_t *prefix, size_t len)
87 {
88 	size_t i;
89 
90 	for (i = 0; i < len; i++) {
91 		if (peek_nbyte_next(insn_byte_t, insn, i) != prefix[i])
92 			goto err_out;
93 	}
94 
95 	insn->emulate_prefix_size = len;
96 	insn->next_byte += len;
97 
98 	return 1;
99 
100 err_out:
101 	return 0;
102 }
103 
104 static void insn_get_emulate_prefix(struct insn *insn)
105 {
106 	if (__insn_get_emulate_prefix(insn, xen_prefix, sizeof(xen_prefix)))
107 		return;
108 
109 	__insn_get_emulate_prefix(insn, kvm_prefix, sizeof(kvm_prefix));
110 }
111 
112 /**
113  * insn_get_prefixes - scan x86 instruction prefix bytes
114  * @insn:	&struct insn containing instruction
115  *
116  * Populates the @insn->prefixes bitmap, and updates @insn->next_byte
117  * to point to the (first) opcode.  No effect if @insn->prefixes.got
118  * is already set.
119  *
120  * * Returns:
121  * 0:  on success
122  * < 0: on error
123  */
124 int insn_get_prefixes(struct insn *insn)
125 {
126 	struct insn_field *prefixes = &insn->prefixes;
127 	insn_attr_t attr;
128 	insn_byte_t b, lb;
129 	int i, nb;
130 
131 	if (prefixes->got)
132 		return 0;
133 
134 	insn_get_emulate_prefix(insn);
135 
136 	nb = 0;
137 	lb = 0;
138 	b = peek_next(insn_byte_t, insn);
139 	attr = inat_get_opcode_attribute(b);
140 	while (inat_is_legacy_prefix(attr)) {
141 		/* Skip if same prefix */
142 		for (i = 0; i < nb; i++)
143 			if (prefixes->bytes[i] == b)
144 				goto found;
145 		if (nb == 4)
146 			/* Invalid instruction */
147 			break;
148 		prefixes->bytes[nb++] = b;
149 		if (inat_is_address_size_prefix(attr)) {
150 			/* address size switches 2/4 or 4/8 */
151 			if (insn->x86_64)
152 				insn->addr_bytes ^= 12;
153 			else
154 				insn->addr_bytes ^= 6;
155 		} else if (inat_is_operand_size_prefix(attr)) {
156 			/* oprand size switches 2/4 */
157 			insn->opnd_bytes ^= 6;
158 		}
159 found:
160 		prefixes->nbytes++;
161 		insn->next_byte++;
162 		lb = b;
163 		b = peek_next(insn_byte_t, insn);
164 		attr = inat_get_opcode_attribute(b);
165 	}
166 	/* Set the last prefix */
167 	if (lb && lb != insn->prefixes.bytes[3]) {
168 		if (unlikely(insn->prefixes.bytes[3])) {
169 			/* Swap the last prefix */
170 			b = insn->prefixes.bytes[3];
171 			for (i = 0; i < nb; i++)
172 				if (prefixes->bytes[i] == lb)
173 					insn_set_byte(prefixes, i, b);
174 		}
175 		insn_set_byte(&insn->prefixes, 3, lb);
176 	}
177 
178 	/* Decode REX prefix */
179 	if (insn->x86_64) {
180 		b = peek_next(insn_byte_t, insn);
181 		attr = inat_get_opcode_attribute(b);
182 		if (inat_is_rex_prefix(attr)) {
183 			insn_field_set(&insn->rex_prefix, b, 1);
184 			insn->next_byte++;
185 			if (X86_REX_W(b))
186 				/* REX.W overrides opnd_size */
187 				insn->opnd_bytes = 8;
188 		} else if (inat_is_rex2_prefix(attr)) {
189 			insn_set_byte(&insn->rex_prefix, 0, b);
190 			b = peek_nbyte_next(insn_byte_t, insn, 1);
191 			insn_set_byte(&insn->rex_prefix, 1, b);
192 			insn->rex_prefix.nbytes = 2;
193 			insn->next_byte += 2;
194 			if (X86_REX_W(b))
195 				/* REX.W overrides opnd_size */
196 				insn->opnd_bytes = 8;
197 			insn->rex_prefix.got = 1;
198 			goto vex_end;
199 		}
200 	}
201 	insn->rex_prefix.got = 1;
202 
203 	/* Decode VEX/XOP prefix */
204 	b = peek_next(insn_byte_t, insn);
205 	if (inat_is_vex_prefix(attr) || inat_is_xop_prefix(attr)) {
206 		insn_byte_t b2 = peek_nbyte_next(insn_byte_t, insn, 1);
207 
208 		if (inat_is_xop_prefix(attr) && X86_MODRM_REG(b2) == 0) {
209 			/* Grp1A.0 is always POP Ev */
210 			goto vex_end;
211 		} else if (!insn->x86_64) {
212 			/*
213 			 * In 32-bits mode, if the [7:6] bits (mod bits of
214 			 * ModRM) on the second byte are not 11b, it is
215 			 * LDS or LES or BOUND.
216 			 */
217 			if (X86_MODRM_MOD(b2) != 3)
218 				goto vex_end;
219 		}
220 		insn_set_byte(&insn->vex_prefix, 0, b);
221 		insn_set_byte(&insn->vex_prefix, 1, b2);
222 		if (inat_is_evex_prefix(attr)) {
223 			b2 = peek_nbyte_next(insn_byte_t, insn, 2);
224 			insn_set_byte(&insn->vex_prefix, 2, b2);
225 			b2 = peek_nbyte_next(insn_byte_t, insn, 3);
226 			insn_set_byte(&insn->vex_prefix, 3, b2);
227 			insn->vex_prefix.nbytes = 4;
228 			insn->next_byte += 4;
229 			if (insn->x86_64 && X86_VEX_W(b2))
230 				/* VEX.W overrides opnd_size */
231 				insn->opnd_bytes = 8;
232 		} else if (inat_is_vex3_prefix(attr) || inat_is_xop_prefix(attr)) {
233 			b2 = peek_nbyte_next(insn_byte_t, insn, 2);
234 			insn_set_byte(&insn->vex_prefix, 2, b2);
235 			insn->vex_prefix.nbytes = 3;
236 			insn->next_byte += 3;
237 			if (insn->x86_64 && X86_VEX_W(b2))
238 				/* VEX.W/XOP.W overrides opnd_size */
239 				insn->opnd_bytes = 8;
240 		} else {
241 			/*
242 			 * For VEX2, fake VEX3-like byte#2.
243 			 * Makes it easier to decode vex.W, vex.vvvv,
244 			 * vex.L and vex.pp. Masking with 0x7f sets vex.W == 0.
245 			 */
246 			insn_set_byte(&insn->vex_prefix, 2, b2 & 0x7f);
247 			insn->vex_prefix.nbytes = 2;
248 			insn->next_byte += 2;
249 		}
250 	}
251 vex_end:
252 	insn->vex_prefix.got = 1;
253 
254 	prefixes->got = 1;
255 
256 	return 0;
257 
258 err_out:
259 	return -ENODATA;
260 }
261 
262 /**
263  * insn_get_opcode - collect opcode(s)
264  * @insn:	&struct insn containing instruction
265  *
266  * Populates @insn->opcode, updates @insn->next_byte to point past the
267  * opcode byte(s), and set @insn->attr (except for groups).
268  * If necessary, first collects any preceding (prefix) bytes.
269  * Sets @insn->opcode.value = opcode1.  No effect if @insn->opcode.got
270  * is already 1.
271  *
272  * Returns:
273  * 0:  on success
274  * < 0: on error
275  */
276 int insn_get_opcode(struct insn *insn)
277 {
278 	struct insn_field *opcode = &insn->opcode;
279 	int pfx_id, ret;
280 	insn_byte_t op;
281 
282 	if (opcode->got)
283 		return 0;
284 
285 	ret = insn_get_prefixes(insn);
286 	if (ret)
287 		return ret;
288 
289 	/* Get first opcode */
290 	op = get_next(insn_byte_t, insn);
291 	insn_set_byte(opcode, 0, op);
292 	opcode->nbytes = 1;
293 
294 	/* Check if there is VEX/XOP prefix or not */
295 	if (insn_is_avx_or_xop(insn)) {
296 		insn_byte_t m, p;
297 
298 		/* XOP prefix has different encoding */
299 		if (unlikely(avx_insn_is_xop(insn))) {
300 			m = insn_xop_map_bits(insn);
301 			insn->attr = inat_get_xop_attribute(op, m);
302 			if (!inat_accept_xop(insn->attr)) {
303 				insn->attr = 0;
304 				return -EINVAL;
305 			}
306 			/* XOP has only 1 byte for opcode */
307 			goto end;
308 		}
309 
310 		m = insn_vex_m_bits(insn);
311 		p = insn_vex_p_bits(insn);
312 		insn->attr = inat_get_avx_attribute(op, m, p);
313 		/* SCALABLE EVEX uses p bits to encode operand size */
314 		if (inat_evex_scalable(insn->attr) && !insn_vex_w_bit(insn) &&
315 		    p == INAT_PFX_OPNDSZ)
316 			insn->opnd_bytes = 2;
317 		if ((inat_must_evex(insn->attr) && !insn_is_evex(insn)) ||
318 		    (!inat_accept_vex(insn->attr) &&
319 		     !inat_is_group(insn->attr))) {
320 			/* This instruction is bad */
321 			insn->attr = 0;
322 			return -EINVAL;
323 		}
324 		/* VEX has only 1 byte for opcode */
325 		goto end;
326 	}
327 
328 	/* Check if there is REX2 prefix or not */
329 	if (insn_is_rex2(insn)) {
330 		if (insn_rex2_m_bit(insn)) {
331 			/* map 1 is escape 0x0f */
332 			insn_attr_t esc_attr = inat_get_opcode_attribute(0x0f);
333 
334 			pfx_id = insn_last_prefix_id(insn);
335 			insn->attr = inat_get_escape_attribute(op, pfx_id, esc_attr);
336 		} else {
337 			insn->attr = inat_get_opcode_attribute(op);
338 		}
339 		goto end;
340 	}
341 
342 	insn->attr = inat_get_opcode_attribute(op);
343 	if (insn->x86_64 && inat_is_invalid64(insn->attr)) {
344 		/* This instruction is invalid, like UD2. Stop decoding. */
345 		insn->attr &= INAT_INV64;
346 	}
347 
348 	while (inat_is_escape(insn->attr)) {
349 		/* Get escaped opcode */
350 		op = get_next(insn_byte_t, insn);
351 		opcode->bytes[opcode->nbytes++] = op;
352 		pfx_id = insn_last_prefix_id(insn);
353 		insn->attr = inat_get_escape_attribute(op, pfx_id, insn->attr);
354 	}
355 
356 	if (inat_must_vex(insn->attr)) {
357 		/* This instruction is bad */
358 		insn->attr = 0;
359 		return -EINVAL;
360 	}
361 
362 end:
363 	opcode->got = 1;
364 	return 0;
365 
366 err_out:
367 	return -ENODATA;
368 }
369 
370 /**
371  * insn_get_modrm - collect ModRM byte, if any
372  * @insn:	&struct insn containing instruction
373  *
374  * Populates @insn->modrm and updates @insn->next_byte to point past the
375  * ModRM byte, if any.  If necessary, first collects the preceding bytes
376  * (prefixes and opcode(s)).  No effect if @insn->modrm.got is already 1.
377  *
378  * Returns:
379  * 0:  on success
380  * < 0: on error
381  */
382 int insn_get_modrm(struct insn *insn)
383 {
384 	struct insn_field *modrm = &insn->modrm;
385 	insn_byte_t pfx_id, mod;
386 	int ret;
387 
388 	if (modrm->got)
389 		return 0;
390 
391 	ret = insn_get_opcode(insn);
392 	if (ret)
393 		return ret;
394 
395 	if (inat_has_modrm(insn->attr)) {
396 		mod = get_next(insn_byte_t, insn);
397 		insn_field_set(modrm, mod, 1);
398 		if (inat_is_group(insn->attr)) {
399 			pfx_id = insn_last_prefix_id(insn);
400 			insn->attr = inat_get_group_attribute(mod, pfx_id,
401 							      insn->attr);
402 			if (insn_is_avx_or_xop(insn) && !inat_accept_vex(insn->attr) &&
403 			    !inat_accept_xop(insn->attr)) {
404 				/* Bad insn */
405 				insn->attr = 0;
406 				return -EINVAL;
407 			}
408 		}
409 	}
410 
411 	if (insn->x86_64 && inat_is_force64(insn->attr))
412 		insn->opnd_bytes = 8;
413 
414 	modrm->got = 1;
415 	return 0;
416 
417 err_out:
418 	return -ENODATA;
419 }
420 
421 
422 /**
423  * insn_rip_relative() - Does instruction use RIP-relative addressing mode?
424  * @insn:	&struct insn containing instruction
425  *
426  * If necessary, first collects the instruction up to and including the
427  * ModRM byte.  No effect if @insn->x86_64 is 0.
428  */
429 int insn_rip_relative(struct insn *insn)
430 {
431 	struct insn_field *modrm = &insn->modrm;
432 	int ret;
433 
434 	if (!insn->x86_64)
435 		return 0;
436 
437 	ret = insn_get_modrm(insn);
438 	if (ret)
439 		return 0;
440 	/*
441 	 * For rip-relative instructions, the mod field (top 2 bits)
442 	 * is zero and the r/m field (bottom 3 bits) is 0x5.
443 	 */
444 	return (modrm->nbytes && (modrm->bytes[0] & 0xc7) == 0x5);
445 }
446 
447 /**
448  * insn_get_sib() - Get the SIB byte of instruction
449  * @insn:	&struct insn containing instruction
450  *
451  * If necessary, first collects the instruction up to and including the
452  * ModRM byte.
453  *
454  * Returns:
455  * 0: if decoding succeeded
456  * < 0: otherwise.
457  */
458 int insn_get_sib(struct insn *insn)
459 {
460 	insn_byte_t modrm;
461 	int ret;
462 
463 	if (insn->sib.got)
464 		return 0;
465 
466 	ret = insn_get_modrm(insn);
467 	if (ret)
468 		return ret;
469 
470 	if (insn->modrm.nbytes) {
471 		modrm = insn->modrm.bytes[0];
472 		if (insn->addr_bytes != 2 &&
473 		    X86_MODRM_MOD(modrm) != 3 && X86_MODRM_RM(modrm) == 4) {
474 			insn_field_set(&insn->sib,
475 				       get_next(insn_byte_t, insn), 1);
476 		}
477 	}
478 	insn->sib.got = 1;
479 
480 	return 0;
481 
482 err_out:
483 	return -ENODATA;
484 }
485 
486 
487 /**
488  * insn_get_displacement() - Get the displacement of instruction
489  * @insn:	&struct insn containing instruction
490  *
491  * If necessary, first collects the instruction up to and including the
492  * SIB byte.
493  * Displacement value is sign-expanded.
494  *
495  * * Returns:
496  * 0: if decoding succeeded
497  * < 0: otherwise.
498  */
499 int insn_get_displacement(struct insn *insn)
500 {
501 	insn_byte_t mod, rm, base;
502 	int ret;
503 
504 	if (insn->displacement.got)
505 		return 0;
506 
507 	ret = insn_get_sib(insn);
508 	if (ret)
509 		return ret;
510 
511 	if (insn->modrm.nbytes) {
512 		/*
513 		 * Interpreting the modrm byte:
514 		 * mod = 00 - no displacement fields (exceptions below)
515 		 * mod = 01 - 1-byte displacement field
516 		 * mod = 10 - displacement field is 4 bytes, or 2 bytes if
517 		 * 	address size = 2 (0x67 prefix in 32-bit mode)
518 		 * mod = 11 - no memory operand
519 		 *
520 		 * If address size = 2...
521 		 * mod = 00, r/m = 110 - displacement field is 2 bytes
522 		 *
523 		 * If address size != 2...
524 		 * mod != 11, r/m = 100 - SIB byte exists
525 		 * mod = 00, SIB base = 101 - displacement field is 4 bytes
526 		 * mod = 00, r/m = 101 - rip-relative addressing, displacement
527 		 * 	field is 4 bytes
528 		 */
529 		mod = X86_MODRM_MOD(insn->modrm.value);
530 		rm = X86_MODRM_RM(insn->modrm.value);
531 		base = X86_SIB_BASE(insn->sib.value);
532 		if (mod == 3)
533 			goto out;
534 		if (mod == 1) {
535 			insn_field_set(&insn->displacement,
536 				       get_next(signed char, insn), 1);
537 		} else if (insn->addr_bytes == 2) {
538 			if ((mod == 0 && rm == 6) || mod == 2) {
539 				insn_field_set(&insn->displacement,
540 					       get_next(short, insn), 2);
541 			}
542 		} else {
543 			if ((mod == 0 && rm == 5) || mod == 2 ||
544 			    (mod == 0 && base == 5)) {
545 				insn_field_set(&insn->displacement,
546 					       get_next(int, insn), 4);
547 			}
548 		}
549 	}
550 out:
551 	insn->displacement.got = 1;
552 	return 0;
553 
554 err_out:
555 	return -ENODATA;
556 }
557 
558 /* Decode moffset16/32/64. Return 0 if failed */
559 static int __get_moffset(struct insn *insn)
560 {
561 	switch (insn->addr_bytes) {
562 	case 2:
563 		insn_field_set(&insn->moffset1, get_next(short, insn), 2);
564 		break;
565 	case 4:
566 		insn_field_set(&insn->moffset1, get_next(int, insn), 4);
567 		break;
568 	case 8:
569 		insn_field_set(&insn->moffset1, get_next(int, insn), 4);
570 		insn_field_set(&insn->moffset2, get_next(int, insn), 4);
571 		break;
572 	default:	/* opnd_bytes must be modified manually */
573 		goto err_out;
574 	}
575 	insn->moffset1.got = insn->moffset2.got = 1;
576 
577 	return 1;
578 
579 err_out:
580 	return 0;
581 }
582 
583 /* Decode imm v32(Iz). Return 0 if failed */
584 static int __get_immv32(struct insn *insn)
585 {
586 	switch (insn->opnd_bytes) {
587 	case 2:
588 		insn_field_set(&insn->immediate, get_next(short, insn), 2);
589 		break;
590 	case 4:
591 	case 8:
592 		insn_field_set(&insn->immediate, get_next(int, insn), 4);
593 		break;
594 	default:	/* opnd_bytes must be modified manually */
595 		goto err_out;
596 	}
597 
598 	return 1;
599 
600 err_out:
601 	return 0;
602 }
603 
604 /* Decode imm v64(Iv/Ov), Return 0 if failed */
605 static int __get_immv(struct insn *insn)
606 {
607 	switch (insn->opnd_bytes) {
608 	case 2:
609 		insn_field_set(&insn->immediate1, get_next(short, insn), 2);
610 		break;
611 	case 4:
612 		insn_field_set(&insn->immediate1, get_next(int, insn), 4);
613 		insn->immediate1.nbytes = 4;
614 		break;
615 	case 8:
616 		insn_field_set(&insn->immediate1, get_next(int, insn), 4);
617 		insn_field_set(&insn->immediate2, get_next(int, insn), 4);
618 		break;
619 	default:	/* opnd_bytes must be modified manually */
620 		goto err_out;
621 	}
622 	insn->immediate1.got = insn->immediate2.got = 1;
623 
624 	return 1;
625 err_out:
626 	return 0;
627 }
628 
629 /* Decode ptr16:16/32(Ap) */
630 static int __get_immptr(struct insn *insn)
631 {
632 	switch (insn->opnd_bytes) {
633 	case 2:
634 		insn_field_set(&insn->immediate1, get_next(short, insn), 2);
635 		break;
636 	case 4:
637 		insn_field_set(&insn->immediate1, get_next(int, insn), 4);
638 		break;
639 	case 8:
640 		/* ptr16:64 is not exist (no segment) */
641 		return 0;
642 	default:	/* opnd_bytes must be modified manually */
643 		goto err_out;
644 	}
645 	insn_field_set(&insn->immediate2, get_next(unsigned short, insn), 2);
646 	insn->immediate1.got = insn->immediate2.got = 1;
647 
648 	return 1;
649 err_out:
650 	return 0;
651 }
652 
653 /**
654  * insn_get_immediate() - Get the immediate in an instruction
655  * @insn:	&struct insn containing instruction
656  *
657  * If necessary, first collects the instruction up to and including the
658  * displacement bytes.
659  * Basically, most of immediates are sign-expanded. Unsigned-value can be
660  * computed by bit masking with ((1 << (nbytes * 8)) - 1)
661  *
662  * Returns:
663  * 0:  on success
664  * < 0: on error
665  */
666 int insn_get_immediate(struct insn *insn)
667 {
668 	int ret;
669 
670 	if (insn->immediate.got)
671 		return 0;
672 
673 	ret = insn_get_displacement(insn);
674 	if (ret)
675 		return ret;
676 
677 	if (inat_has_moffset(insn->attr)) {
678 		if (!__get_moffset(insn))
679 			goto err_out;
680 		goto done;
681 	}
682 
683 	if (!inat_has_immediate(insn->attr))
684 		goto done;
685 
686 	switch (inat_immediate_size(insn->attr)) {
687 	case INAT_IMM_BYTE:
688 		insn_field_set(&insn->immediate, get_next(signed char, insn), 1);
689 		break;
690 	case INAT_IMM_WORD:
691 		insn_field_set(&insn->immediate, get_next(short, insn), 2);
692 		break;
693 	case INAT_IMM_DWORD:
694 		insn_field_set(&insn->immediate, get_next(int, insn), 4);
695 		break;
696 	case INAT_IMM_QWORD:
697 		insn_field_set(&insn->immediate1, get_next(int, insn), 4);
698 		insn_field_set(&insn->immediate2, get_next(int, insn), 4);
699 		break;
700 	case INAT_IMM_PTR:
701 		if (!__get_immptr(insn))
702 			goto err_out;
703 		break;
704 	case INAT_IMM_VWORD32:
705 		if (!__get_immv32(insn))
706 			goto err_out;
707 		break;
708 	case INAT_IMM_VWORD:
709 		if (!__get_immv(insn))
710 			goto err_out;
711 		break;
712 	default:
713 		/* Here, insn must have an immediate, but failed */
714 		goto err_out;
715 	}
716 	if (inat_has_second_immediate(insn->attr)) {
717 		insn_field_set(&insn->immediate2, get_next(signed char, insn), 1);
718 	}
719 done:
720 	insn->immediate.got = 1;
721 	return 0;
722 
723 err_out:
724 	return -ENODATA;
725 }
726 
727 /**
728  * insn_get_length() - Get the length of instruction
729  * @insn:	&struct insn containing instruction
730  *
731  * If necessary, first collects the instruction up to and including the
732  * immediates bytes.
733  *
734  * Returns:
735  *  - 0 on success
736  *  - < 0 on error
737 */
738 int insn_get_length(struct insn *insn)
739 {
740 	int ret;
741 
742 	if (insn->length)
743 		return 0;
744 
745 	ret = insn_get_immediate(insn);
746 	if (ret)
747 		return ret;
748 
749 	insn->length = (unsigned char)((unsigned long)insn->next_byte
750 				     - (unsigned long)insn->kaddr);
751 
752 	return 0;
753 }
754 
755 /* Ensure this instruction is decoded completely */
756 static inline int insn_complete(struct insn *insn)
757 {
758 	return insn->opcode.got && insn->modrm.got && insn->sib.got &&
759 		insn->displacement.got && insn->immediate.got;
760 }
761 
762 /**
763  * insn_decode() - Decode an x86 instruction
764  * @insn:	&struct insn to be initialized
765  * @kaddr:	address (in kernel memory) of instruction (or copy thereof)
766  * @buf_len:	length of the insn buffer at @kaddr
767  * @m:		insn mode, see enum insn_mode
768  *
769  * Returns:
770  * 0: if decoding succeeded
771  * < 0: otherwise.
772  */
773 int insn_decode(struct insn *insn, const void *kaddr, int buf_len, enum insn_mode m)
774 {
775 	int ret;
776 
777 /* #define INSN_MODE_KERN	-1 __ignore_sync_check__ mode is only valid in the kernel */
778 
779 	if (m == INSN_MODE_KERN)
780 		insn_init(insn, kaddr, buf_len, IS_ENABLED(CONFIG_X86_64));
781 	else
782 		insn_init(insn, kaddr, buf_len, m == INSN_MODE_64);
783 
784 	ret = insn_get_length(insn);
785 	if (ret)
786 		return ret;
787 
788 	if (insn_complete(insn))
789 		return 0;
790 
791 	return -EINVAL;
792 }
793