xref: /linux/arch/x86/lib/insn-eval.c (revision 72bea132f3680ee51e7ed2cee62892b6f5121909)
1 /*
2  * Utility functions for x86 operand and address decoding
3  *
4  * Copyright (C) Intel Corporation 2017
5  */
6 #include <linux/kernel.h>
7 #include <linux/string.h>
8 #include <linux/ratelimit.h>
9 #include <linux/mmu_context.h>
10 #include <asm/desc_defs.h>
11 #include <asm/desc.h>
12 #include <asm/inat.h>
13 #include <asm/insn.h>
14 #include <asm/insn-eval.h>
15 #include <asm/ldt.h>
16 #include <asm/vm86.h>
17 
18 #undef pr_fmt
19 #define pr_fmt(fmt) "insn: " fmt
20 
21 enum reg_type {
22 	REG_TYPE_RM = 0,
23 	REG_TYPE_REG,
24 	REG_TYPE_INDEX,
25 	REG_TYPE_BASE,
26 };
27 
28 /**
29  * is_string_insn() - Determine if instruction is a string instruction
30  * @insn:	Instruction containing the opcode to inspect
31  *
32  * Returns:
33  *
34  * true if the instruction, determined by the opcode, is any of the
35  * string instructions as defined in the Intel Software Development manual.
36  * False otherwise.
37  */
38 static bool is_string_insn(struct insn *insn)
39 {
40 	/* All string instructions have a 1-byte opcode. */
41 	if (insn->opcode.nbytes != 1)
42 		return false;
43 
44 	switch (insn->opcode.bytes[0]) {
45 	case 0x6c ... 0x6f:	/* INS, OUTS */
46 	case 0xa4 ... 0xa7:	/* MOVS, CMPS */
47 	case 0xaa ... 0xaf:	/* STOS, LODS, SCAS */
48 		return true;
49 	default:
50 		return false;
51 	}
52 }
53 
54 /**
55  * insn_has_rep_prefix() - Determine if instruction has a REP prefix
56  * @insn:	Instruction containing the prefix to inspect
57  *
58  * Returns:
59  *
60  * true if the instruction has a REP prefix, false if not.
61  */
62 bool insn_has_rep_prefix(struct insn *insn)
63 {
64 	insn_byte_t p;
65 	int i;
66 
67 	insn_get_prefixes(insn);
68 
69 	for_each_insn_prefix(insn, i, p) {
70 		if (p == 0xf2 || p == 0xf3)
71 			return true;
72 	}
73 
74 	return false;
75 }
76 
77 /**
78  * get_seg_reg_override_idx() - obtain segment register override index
79  * @insn:	Valid instruction with segment override prefixes
80  *
81  * Inspect the instruction prefixes in @insn and find segment overrides, if any.
82  *
83  * Returns:
84  *
85  * A constant identifying the segment register to use, among CS, SS, DS,
86  * ES, FS, or GS. INAT_SEG_REG_DEFAULT is returned if no segment override
87  * prefixes were found.
88  *
89  * -EINVAL in case of error.
90  */
91 static int get_seg_reg_override_idx(struct insn *insn)
92 {
93 	int idx = INAT_SEG_REG_DEFAULT;
94 	int num_overrides = 0, i;
95 	insn_byte_t p;
96 
97 	insn_get_prefixes(insn);
98 
99 	/* Look for any segment override prefixes. */
100 	for_each_insn_prefix(insn, i, p) {
101 		insn_attr_t attr;
102 
103 		attr = inat_get_opcode_attribute(p);
104 		switch (attr) {
105 		case INAT_MAKE_PREFIX(INAT_PFX_CS):
106 			idx = INAT_SEG_REG_CS;
107 			num_overrides++;
108 			break;
109 		case INAT_MAKE_PREFIX(INAT_PFX_SS):
110 			idx = INAT_SEG_REG_SS;
111 			num_overrides++;
112 			break;
113 		case INAT_MAKE_PREFIX(INAT_PFX_DS):
114 			idx = INAT_SEG_REG_DS;
115 			num_overrides++;
116 			break;
117 		case INAT_MAKE_PREFIX(INAT_PFX_ES):
118 			idx = INAT_SEG_REG_ES;
119 			num_overrides++;
120 			break;
121 		case INAT_MAKE_PREFIX(INAT_PFX_FS):
122 			idx = INAT_SEG_REG_FS;
123 			num_overrides++;
124 			break;
125 		case INAT_MAKE_PREFIX(INAT_PFX_GS):
126 			idx = INAT_SEG_REG_GS;
127 			num_overrides++;
128 			break;
129 		/* No default action needed. */
130 		}
131 	}
132 
133 	/* More than one segment override prefix leads to undefined behavior. */
134 	if (num_overrides > 1)
135 		return -EINVAL;
136 
137 	return idx;
138 }
139 
140 /**
141  * check_seg_overrides() - check if segment override prefixes are allowed
142  * @insn:	Valid instruction with segment override prefixes
143  * @regoff:	Operand offset, in pt_regs, for which the check is performed
144  *
145  * For a particular register used in register-indirect addressing, determine if
146  * segment override prefixes can be used. Specifically, no overrides are allowed
147  * for rDI if used with a string instruction.
148  *
149  * Returns:
150  *
151  * True if segment override prefixes can be used with the register indicated
152  * in @regoff. False if otherwise.
153  */
154 static bool check_seg_overrides(struct insn *insn, int regoff)
155 {
156 	if (regoff == offsetof(struct pt_regs, di) && is_string_insn(insn))
157 		return false;
158 
159 	return true;
160 }
161 
162 /**
163  * resolve_default_seg() - resolve default segment register index for an operand
164  * @insn:	Instruction with opcode and address size. Must be valid.
165  * @regs:	Register values as seen when entering kernel mode
166  * @off:	Operand offset, in pt_regs, for which resolution is needed
167  *
168  * Resolve the default segment register index associated with the instruction
169  * operand register indicated by @off. Such index is resolved based on defaults
170  * described in the Intel Software Development Manual.
171  *
172  * Returns:
173  *
174  * If in protected mode, a constant identifying the segment register to use,
175  * among CS, SS, ES or DS. If in long mode, INAT_SEG_REG_IGNORE.
176  *
177  * -EINVAL in case of error.
178  */
179 static int resolve_default_seg(struct insn *insn, struct pt_regs *regs, int off)
180 {
181 	if (any_64bit_mode(regs))
182 		return INAT_SEG_REG_IGNORE;
183 	/*
184 	 * Resolve the default segment register as described in Section 3.7.4
185 	 * of the Intel Software Development Manual Vol. 1:
186 	 *
187 	 *  + DS for all references involving r[ABCD]X, and rSI.
188 	 *  + If used in a string instruction, ES for rDI. Otherwise, DS.
189 	 *  + AX, CX and DX are not valid register operands in 16-bit address
190 	 *    encodings but are valid for 32-bit and 64-bit encodings.
191 	 *  + -EDOM is reserved to identify for cases in which no register
192 	 *    is used (i.e., displacement-only addressing). Use DS.
193 	 *  + SS for rSP or rBP.
194 	 *  + CS for rIP.
195 	 */
196 
197 	switch (off) {
198 	case offsetof(struct pt_regs, ax):
199 	case offsetof(struct pt_regs, cx):
200 	case offsetof(struct pt_regs, dx):
201 		/* Need insn to verify address size. */
202 		if (insn->addr_bytes == 2)
203 			return -EINVAL;
204 
205 		fallthrough;
206 
207 	case -EDOM:
208 	case offsetof(struct pt_regs, bx):
209 	case offsetof(struct pt_regs, si):
210 		return INAT_SEG_REG_DS;
211 
212 	case offsetof(struct pt_regs, di):
213 		if (is_string_insn(insn))
214 			return INAT_SEG_REG_ES;
215 		return INAT_SEG_REG_DS;
216 
217 	case offsetof(struct pt_regs, bp):
218 	case offsetof(struct pt_regs, sp):
219 		return INAT_SEG_REG_SS;
220 
221 	case offsetof(struct pt_regs, ip):
222 		return INAT_SEG_REG_CS;
223 
224 	default:
225 		return -EINVAL;
226 	}
227 }
228 
229 /**
230  * resolve_seg_reg() - obtain segment register index
231  * @insn:	Instruction with operands
232  * @regs:	Register values as seen when entering kernel mode
233  * @regoff:	Operand offset, in pt_regs, used to determine segment register
234  *
235  * Determine the segment register associated with the operands and, if
236  * applicable, prefixes and the instruction pointed by @insn.
237  *
238  * The segment register associated to an operand used in register-indirect
239  * addressing depends on:
240  *
241  * a) Whether running in long mode (in such a case segments are ignored, except
242  * if FS or GS are used).
243  *
244  * b) Whether segment override prefixes can be used. Certain instructions and
245  *    registers do not allow override prefixes.
246  *
247  * c) Whether segment overrides prefixes are found in the instruction prefixes.
248  *
249  * d) If there are not segment override prefixes or they cannot be used, the
250  *    default segment register associated with the operand register is used.
251  *
252  * The function checks first if segment override prefixes can be used with the
253  * operand indicated by @regoff. If allowed, obtain such overridden segment
254  * register index. Lastly, if not prefixes were found or cannot be used, resolve
255  * the segment register index to use based on the defaults described in the
256  * Intel documentation. In long mode, all segment register indexes will be
257  * ignored, except if overrides were found for FS or GS. All these operations
258  * are done using helper functions.
259  *
260  * The operand register, @regoff, is represented as the offset from the base of
261  * pt_regs.
262  *
263  * As stated, the main use of this function is to determine the segment register
264  * index based on the instruction, its operands and prefixes. Hence, @insn
265  * must be valid. However, if @regoff indicates rIP, we don't need to inspect
266  * @insn at all as in this case CS is used in all cases. This case is checked
267  * before proceeding further.
268  *
269  * Please note that this function does not return the value in the segment
270  * register (i.e., the segment selector) but our defined index. The segment
271  * selector needs to be obtained using get_segment_selector() and passing the
272  * segment register index resolved by this function.
273  *
274  * Returns:
275  *
276  * An index identifying the segment register to use, among CS, SS, DS,
277  * ES, FS, or GS. INAT_SEG_REG_IGNORE is returned if running in long mode.
278  *
279  * -EINVAL in case of error.
280  */
281 static int resolve_seg_reg(struct insn *insn, struct pt_regs *regs, int regoff)
282 {
283 	int idx;
284 
285 	/*
286 	 * In the unlikely event of having to resolve the segment register
287 	 * index for rIP, do it first. Segment override prefixes should not
288 	 * be used. Hence, it is not necessary to inspect the instruction,
289 	 * which may be invalid at this point.
290 	 */
291 	if (regoff == offsetof(struct pt_regs, ip)) {
292 		if (any_64bit_mode(regs))
293 			return INAT_SEG_REG_IGNORE;
294 		else
295 			return INAT_SEG_REG_CS;
296 	}
297 
298 	if (!insn)
299 		return -EINVAL;
300 
301 	if (!check_seg_overrides(insn, regoff))
302 		return resolve_default_seg(insn, regs, regoff);
303 
304 	idx = get_seg_reg_override_idx(insn);
305 	if (idx < 0)
306 		return idx;
307 
308 	if (idx == INAT_SEG_REG_DEFAULT)
309 		return resolve_default_seg(insn, regs, regoff);
310 
311 	/*
312 	 * In long mode, segment override prefixes are ignored, except for
313 	 * overrides for FS and GS.
314 	 */
315 	if (any_64bit_mode(regs)) {
316 		if (idx != INAT_SEG_REG_FS &&
317 		    idx != INAT_SEG_REG_GS)
318 			idx = INAT_SEG_REG_IGNORE;
319 	}
320 
321 	return idx;
322 }
323 
324 /**
325  * get_segment_selector() - obtain segment selector
326  * @regs:		Register values as seen when entering kernel mode
327  * @seg_reg_idx:	Segment register index to use
328  *
329  * Obtain the segment selector from any of the CS, SS, DS, ES, FS, GS segment
330  * registers. In CONFIG_X86_32, the segment is obtained from either pt_regs or
331  * kernel_vm86_regs as applicable. In CONFIG_X86_64, CS and SS are obtained
332  * from pt_regs. DS, ES, FS and GS are obtained by reading the actual CPU
333  * registers. This done for only for completeness as in CONFIG_X86_64 segment
334  * registers are ignored.
335  *
336  * Returns:
337  *
338  * Value of the segment selector, including null when running in
339  * long mode.
340  *
341  * -EINVAL on error.
342  */
343 static short get_segment_selector(struct pt_regs *regs, int seg_reg_idx)
344 {
345 	unsigned short sel;
346 
347 #ifdef CONFIG_X86_64
348 	switch (seg_reg_idx) {
349 	case INAT_SEG_REG_IGNORE:
350 		return 0;
351 	case INAT_SEG_REG_CS:
352 		return (unsigned short)(regs->cs & 0xffff);
353 	case INAT_SEG_REG_SS:
354 		return (unsigned short)(regs->ss & 0xffff);
355 	case INAT_SEG_REG_DS:
356 		savesegment(ds, sel);
357 		return sel;
358 	case INAT_SEG_REG_ES:
359 		savesegment(es, sel);
360 		return sel;
361 	case INAT_SEG_REG_FS:
362 		savesegment(fs, sel);
363 		return sel;
364 	case INAT_SEG_REG_GS:
365 		savesegment(gs, sel);
366 		return sel;
367 	default:
368 		return -EINVAL;
369 	}
370 #else /* CONFIG_X86_32 */
371 	struct kernel_vm86_regs *vm86regs = (struct kernel_vm86_regs *)regs;
372 
373 	if (v8086_mode(regs)) {
374 		switch (seg_reg_idx) {
375 		case INAT_SEG_REG_CS:
376 			return (unsigned short)(regs->cs & 0xffff);
377 		case INAT_SEG_REG_SS:
378 			return (unsigned short)(regs->ss & 0xffff);
379 		case INAT_SEG_REG_DS:
380 			return vm86regs->ds;
381 		case INAT_SEG_REG_ES:
382 			return vm86regs->es;
383 		case INAT_SEG_REG_FS:
384 			return vm86regs->fs;
385 		case INAT_SEG_REG_GS:
386 			return vm86regs->gs;
387 		case INAT_SEG_REG_IGNORE:
388 		default:
389 			return -EINVAL;
390 		}
391 	}
392 
393 	switch (seg_reg_idx) {
394 	case INAT_SEG_REG_CS:
395 		return (unsigned short)(regs->cs & 0xffff);
396 	case INAT_SEG_REG_SS:
397 		return (unsigned short)(regs->ss & 0xffff);
398 	case INAT_SEG_REG_DS:
399 		return (unsigned short)(regs->ds & 0xffff);
400 	case INAT_SEG_REG_ES:
401 		return (unsigned short)(regs->es & 0xffff);
402 	case INAT_SEG_REG_FS:
403 		return (unsigned short)(regs->fs & 0xffff);
404 	case INAT_SEG_REG_GS:
405 		savesegment(gs, sel);
406 		return sel;
407 	case INAT_SEG_REG_IGNORE:
408 	default:
409 		return -EINVAL;
410 	}
411 #endif /* CONFIG_X86_64 */
412 }
413 
414 static const int pt_regoff[] = {
415 	offsetof(struct pt_regs, ax),
416 	offsetof(struct pt_regs, cx),
417 	offsetof(struct pt_regs, dx),
418 	offsetof(struct pt_regs, bx),
419 	offsetof(struct pt_regs, sp),
420 	offsetof(struct pt_regs, bp),
421 	offsetof(struct pt_regs, si),
422 	offsetof(struct pt_regs, di),
423 #ifdef CONFIG_X86_64
424 	offsetof(struct pt_regs, r8),
425 	offsetof(struct pt_regs, r9),
426 	offsetof(struct pt_regs, r10),
427 	offsetof(struct pt_regs, r11),
428 	offsetof(struct pt_regs, r12),
429 	offsetof(struct pt_regs, r13),
430 	offsetof(struct pt_regs, r14),
431 	offsetof(struct pt_regs, r15),
432 #else
433 	offsetof(struct pt_regs, ds),
434 	offsetof(struct pt_regs, es),
435 	offsetof(struct pt_regs, fs),
436 	offsetof(struct pt_regs, gs),
437 #endif
438 };
439 
440 int pt_regs_offset(struct pt_regs *regs, int regno)
441 {
442 	if ((unsigned)regno < ARRAY_SIZE(pt_regoff))
443 		return pt_regoff[regno];
444 	return -EDOM;
445 }
446 
447 static int get_regno(struct insn *insn, enum reg_type type)
448 {
449 	int nr_registers = ARRAY_SIZE(pt_regoff);
450 	int regno = 0;
451 
452 	/*
453 	 * Don't possibly decode a 32-bit instructions as
454 	 * reading a 64-bit-only register.
455 	 */
456 	if (IS_ENABLED(CONFIG_X86_64) && !insn->x86_64)
457 		nr_registers -= 8;
458 
459 	switch (type) {
460 	case REG_TYPE_RM:
461 		regno = X86_MODRM_RM(insn->modrm.value);
462 
463 		/*
464 		 * ModRM.mod == 0 and ModRM.rm == 5 means a 32-bit displacement
465 		 * follows the ModRM byte.
466 		 */
467 		if (!X86_MODRM_MOD(insn->modrm.value) && regno == 5)
468 			return -EDOM;
469 
470 		if (X86_REX_B(insn->rex_prefix.value))
471 			regno += 8;
472 		break;
473 
474 	case REG_TYPE_REG:
475 		regno = X86_MODRM_REG(insn->modrm.value);
476 
477 		if (X86_REX_R(insn->rex_prefix.value))
478 			regno += 8;
479 		break;
480 
481 	case REG_TYPE_INDEX:
482 		regno = X86_SIB_INDEX(insn->sib.value);
483 		if (X86_REX_X(insn->rex_prefix.value))
484 			regno += 8;
485 
486 		/*
487 		 * If ModRM.mod != 3 and SIB.index = 4 the scale*index
488 		 * portion of the address computation is null. This is
489 		 * true only if REX.X is 0. In such a case, the SIB index
490 		 * is used in the address computation.
491 		 */
492 		if (X86_MODRM_MOD(insn->modrm.value) != 3 && regno == 4)
493 			return -EDOM;
494 		break;
495 
496 	case REG_TYPE_BASE:
497 		regno = X86_SIB_BASE(insn->sib.value);
498 		/*
499 		 * If ModRM.mod is 0 and SIB.base == 5, the base of the
500 		 * register-indirect addressing is 0. In this case, a
501 		 * 32-bit displacement follows the SIB byte.
502 		 */
503 		if (!X86_MODRM_MOD(insn->modrm.value) && regno == 5)
504 			return -EDOM;
505 
506 		if (X86_REX_B(insn->rex_prefix.value))
507 			regno += 8;
508 		break;
509 
510 	default:
511 		pr_err_ratelimited("invalid register type: %d\n", type);
512 		return -EINVAL;
513 	}
514 
515 	if (regno >= nr_registers) {
516 		WARN_ONCE(1, "decoded an instruction with an invalid register");
517 		return -EINVAL;
518 	}
519 	return regno;
520 }
521 
522 static int get_reg_offset(struct insn *insn, struct pt_regs *regs,
523 			  enum reg_type type)
524 {
525 	int regno = get_regno(insn, type);
526 
527 	if (regno < 0)
528 		return regno;
529 
530 	return pt_regs_offset(regs, regno);
531 }
532 
533 /**
534  * get_reg_offset_16() - Obtain offset of register indicated by instruction
535  * @insn:	Instruction containing ModRM byte
536  * @regs:	Register values as seen when entering kernel mode
537  * @offs1:	Offset of the first operand register
538  * @offs2:	Offset of the second operand register, if applicable
539  *
540  * Obtain the offset, in pt_regs, of the registers indicated by the ModRM byte
541  * in @insn. This function is to be used with 16-bit address encodings. The
542  * @offs1 and @offs2 will be written with the offset of the two registers
543  * indicated by the instruction. In cases where any of the registers is not
544  * referenced by the instruction, the value will be set to -EDOM.
545  *
546  * Returns:
547  *
548  * 0 on success, -EINVAL on error.
549  */
550 static int get_reg_offset_16(struct insn *insn, struct pt_regs *regs,
551 			     int *offs1, int *offs2)
552 {
553 	/*
554 	 * 16-bit addressing can use one or two registers. Specifics of
555 	 * encodings are given in Table 2-1. "16-Bit Addressing Forms with the
556 	 * ModR/M Byte" of the Intel Software Development Manual.
557 	 */
558 	static const int regoff1[] = {
559 		offsetof(struct pt_regs, bx),
560 		offsetof(struct pt_regs, bx),
561 		offsetof(struct pt_regs, bp),
562 		offsetof(struct pt_regs, bp),
563 		offsetof(struct pt_regs, si),
564 		offsetof(struct pt_regs, di),
565 		offsetof(struct pt_regs, bp),
566 		offsetof(struct pt_regs, bx),
567 	};
568 
569 	static const int regoff2[] = {
570 		offsetof(struct pt_regs, si),
571 		offsetof(struct pt_regs, di),
572 		offsetof(struct pt_regs, si),
573 		offsetof(struct pt_regs, di),
574 		-EDOM,
575 		-EDOM,
576 		-EDOM,
577 		-EDOM,
578 	};
579 
580 	if (!offs1 || !offs2)
581 		return -EINVAL;
582 
583 	/* Operand is a register, use the generic function. */
584 	if (X86_MODRM_MOD(insn->modrm.value) == 3) {
585 		*offs1 = insn_get_modrm_rm_off(insn, regs);
586 		*offs2 = -EDOM;
587 		return 0;
588 	}
589 
590 	*offs1 = regoff1[X86_MODRM_RM(insn->modrm.value)];
591 	*offs2 = regoff2[X86_MODRM_RM(insn->modrm.value)];
592 
593 	/*
594 	 * If ModRM.mod is 0 and ModRM.rm is 110b, then we use displacement-
595 	 * only addressing. This means that no registers are involved in
596 	 * computing the effective address. Thus, ensure that the first
597 	 * register offset is invalid. The second register offset is already
598 	 * invalid under the aforementioned conditions.
599 	 */
600 	if ((X86_MODRM_MOD(insn->modrm.value) == 0) &&
601 	    (X86_MODRM_RM(insn->modrm.value) == 6))
602 		*offs1 = -EDOM;
603 
604 	return 0;
605 }
606 
607 /**
608  * get_desc() - Obtain contents of a segment descriptor
609  * @out:	Segment descriptor contents on success
610  * @sel:	Segment selector
611  *
612  * Given a segment selector, obtain a pointer to the segment descriptor.
613  * Both global and local descriptor tables are supported.
614  *
615  * Returns:
616  *
617  * True on success, false on failure.
618  *
619  * NULL on error.
620  */
621 static bool get_desc(struct desc_struct *out, unsigned short sel)
622 {
623 	struct desc_ptr gdt_desc = {0, 0};
624 	unsigned long desc_base;
625 
626 #ifdef CONFIG_MODIFY_LDT_SYSCALL
627 	if ((sel & SEGMENT_TI_MASK) == SEGMENT_LDT) {
628 		bool success = false;
629 		struct ldt_struct *ldt;
630 
631 		/* Bits [15:3] contain the index of the desired entry. */
632 		sel >>= 3;
633 
634 		mutex_lock(&current->active_mm->context.lock);
635 		ldt = current->active_mm->context.ldt;
636 		if (ldt && sel < ldt->nr_entries) {
637 			*out = ldt->entries[sel];
638 			success = true;
639 		}
640 
641 		mutex_unlock(&current->active_mm->context.lock);
642 
643 		return success;
644 	}
645 #endif
646 	native_store_gdt(&gdt_desc);
647 
648 	/*
649 	 * Segment descriptors have a size of 8 bytes. Thus, the index is
650 	 * multiplied by 8 to obtain the memory offset of the desired descriptor
651 	 * from the base of the GDT. As bits [15:3] of the segment selector
652 	 * contain the index, it can be regarded as multiplied by 8 already.
653 	 * All that remains is to clear bits [2:0].
654 	 */
655 	desc_base = sel & ~(SEGMENT_RPL_MASK | SEGMENT_TI_MASK);
656 
657 	if (desc_base > gdt_desc.size)
658 		return false;
659 
660 	*out = *(struct desc_struct *)(gdt_desc.address + desc_base);
661 	return true;
662 }
663 
664 /**
665  * insn_get_seg_base() - Obtain base address of segment descriptor.
666  * @regs:		Register values as seen when entering kernel mode
667  * @seg_reg_idx:	Index of the segment register pointing to seg descriptor
668  *
669  * Obtain the base address of the segment as indicated by the segment descriptor
670  * pointed by the segment selector. The segment selector is obtained from the
671  * input segment register index @seg_reg_idx.
672  *
673  * Returns:
674  *
675  * In protected mode, base address of the segment. Zero in long mode,
676  * except when FS or GS are used. In virtual-8086 mode, the segment
677  * selector shifted 4 bits to the right.
678  *
679  * -1L in case of error.
680  */
681 unsigned long insn_get_seg_base(struct pt_regs *regs, int seg_reg_idx)
682 {
683 	struct desc_struct desc;
684 	short sel;
685 
686 	sel = get_segment_selector(regs, seg_reg_idx);
687 	if (sel < 0)
688 		return -1L;
689 
690 	if (v8086_mode(regs))
691 		/*
692 		 * Base is simply the segment selector shifted 4
693 		 * bits to the right.
694 		 */
695 		return (unsigned long)(sel << 4);
696 
697 	if (any_64bit_mode(regs)) {
698 		/*
699 		 * Only FS or GS will have a base address, the rest of
700 		 * the segments' bases are forced to 0.
701 		 */
702 		unsigned long base;
703 
704 		if (seg_reg_idx == INAT_SEG_REG_FS) {
705 			rdmsrl(MSR_FS_BASE, base);
706 		} else if (seg_reg_idx == INAT_SEG_REG_GS) {
707 			/*
708 			 * swapgs was called at the kernel entry point. Thus,
709 			 * MSR_KERNEL_GS_BASE will have the user-space GS base.
710 			 */
711 			if (user_mode(regs))
712 				rdmsrl(MSR_KERNEL_GS_BASE, base);
713 			else
714 				rdmsrl(MSR_GS_BASE, base);
715 		} else {
716 			base = 0;
717 		}
718 		return base;
719 	}
720 
721 	/* In protected mode the segment selector cannot be null. */
722 	if (!sel)
723 		return -1L;
724 
725 	if (!get_desc(&desc, sel))
726 		return -1L;
727 
728 	return get_desc_base(&desc);
729 }
730 
731 /**
732  * get_seg_limit() - Obtain the limit of a segment descriptor
733  * @regs:		Register values as seen when entering kernel mode
734  * @seg_reg_idx:	Index of the segment register pointing to seg descriptor
735  *
736  * Obtain the limit of the segment as indicated by the segment descriptor
737  * pointed by the segment selector. The segment selector is obtained from the
738  * input segment register index @seg_reg_idx.
739  *
740  * Returns:
741  *
742  * In protected mode, the limit of the segment descriptor in bytes.
743  * In long mode and virtual-8086 mode, segment limits are not enforced. Thus,
744  * limit is returned as -1L to imply a limit-less segment.
745  *
746  * Zero is returned on error.
747  */
748 static unsigned long get_seg_limit(struct pt_regs *regs, int seg_reg_idx)
749 {
750 	struct desc_struct desc;
751 	unsigned long limit;
752 	short sel;
753 
754 	sel = get_segment_selector(regs, seg_reg_idx);
755 	if (sel < 0)
756 		return 0;
757 
758 	if (any_64bit_mode(regs) || v8086_mode(regs))
759 		return -1L;
760 
761 	if (!sel)
762 		return 0;
763 
764 	if (!get_desc(&desc, sel))
765 		return 0;
766 
767 	/*
768 	 * If the granularity bit is set, the limit is given in multiples
769 	 * of 4096. This also means that the 12 least significant bits are
770 	 * not tested when checking the segment limits. In practice,
771 	 * this means that the segment ends in (limit << 12) + 0xfff.
772 	 */
773 	limit = get_desc_limit(&desc);
774 	if (desc.g)
775 		limit = (limit << 12) + 0xfff;
776 
777 	return limit;
778 }
779 
780 /**
781  * insn_get_code_seg_params() - Obtain code segment parameters
782  * @regs:	Structure with register values as seen when entering kernel mode
783  *
784  * Obtain address and operand sizes of the code segment. It is obtained from the
785  * selector contained in the CS register in regs. In protected mode, the default
786  * address is determined by inspecting the L and D bits of the segment
787  * descriptor. In virtual-8086 mode, the default is always two bytes for both
788  * address and operand sizes.
789  *
790  * Returns:
791  *
792  * An int containing ORed-in default parameters on success.
793  *
794  * -EINVAL on error.
795  */
796 int insn_get_code_seg_params(struct pt_regs *regs)
797 {
798 	struct desc_struct desc;
799 	short sel;
800 
801 	if (v8086_mode(regs))
802 		/* Address and operand size are both 16-bit. */
803 		return INSN_CODE_SEG_PARAMS(2, 2);
804 
805 	sel = get_segment_selector(regs, INAT_SEG_REG_CS);
806 	if (sel < 0)
807 		return sel;
808 
809 	if (!get_desc(&desc, sel))
810 		return -EINVAL;
811 
812 	/*
813 	 * The most significant byte of the Type field of the segment descriptor
814 	 * determines whether a segment contains data or code. If this is a data
815 	 * segment, return error.
816 	 */
817 	if (!(desc.type & BIT(3)))
818 		return -EINVAL;
819 
820 	switch ((desc.l << 1) | desc.d) {
821 	case 0: /*
822 		 * Legacy mode. CS.L=0, CS.D=0. Address and operand size are
823 		 * both 16-bit.
824 		 */
825 		return INSN_CODE_SEG_PARAMS(2, 2);
826 	case 1: /*
827 		 * Legacy mode. CS.L=0, CS.D=1. Address and operand size are
828 		 * both 32-bit.
829 		 */
830 		return INSN_CODE_SEG_PARAMS(4, 4);
831 	case 2: /*
832 		 * IA-32e 64-bit mode. CS.L=1, CS.D=0. Address size is 64-bit;
833 		 * operand size is 32-bit.
834 		 */
835 		return INSN_CODE_SEG_PARAMS(4, 8);
836 	case 3: /* Invalid setting. CS.L=1, CS.D=1 */
837 		fallthrough;
838 	default:
839 		return -EINVAL;
840 	}
841 }
842 
843 /**
844  * insn_get_modrm_rm_off() - Obtain register in r/m part of the ModRM byte
845  * @insn:	Instruction containing the ModRM byte
846  * @regs:	Register values as seen when entering kernel mode
847  *
848  * Returns:
849  *
850  * The register indicated by the r/m part of the ModRM byte. The
851  * register is obtained as an offset from the base of pt_regs. In specific
852  * cases, the returned value can be -EDOM to indicate that the particular value
853  * of ModRM does not refer to a register and shall be ignored.
854  */
855 int insn_get_modrm_rm_off(struct insn *insn, struct pt_regs *regs)
856 {
857 	return get_reg_offset(insn, regs, REG_TYPE_RM);
858 }
859 
860 /**
861  * insn_get_modrm_reg_off() - Obtain register in reg part of the ModRM byte
862  * @insn:	Instruction containing the ModRM byte
863  * @regs:	Register values as seen when entering kernel mode
864  *
865  * Returns:
866  *
867  * The register indicated by the reg part of the ModRM byte. The
868  * register is obtained as an offset from the base of pt_regs.
869  */
870 int insn_get_modrm_reg_off(struct insn *insn, struct pt_regs *regs)
871 {
872 	return get_reg_offset(insn, regs, REG_TYPE_REG);
873 }
874 
875 /**
876  * insn_get_modrm_reg_ptr() - Obtain register pointer based on ModRM byte
877  * @insn:	Instruction containing the ModRM byte
878  * @regs:	Register values as seen when entering kernel mode
879  *
880  * Returns:
881  *
882  * The register indicated by the reg part of the ModRM byte.
883  * The register is obtained as a pointer within pt_regs.
884  */
885 unsigned long *insn_get_modrm_reg_ptr(struct insn *insn, struct pt_regs *regs)
886 {
887 	int offset;
888 
889 	offset = insn_get_modrm_reg_off(insn, regs);
890 	if (offset < 0)
891 		return NULL;
892 	return (void *)regs + offset;
893 }
894 
895 /**
896  * get_seg_base_limit() - obtain base address and limit of a segment
897  * @insn:	Instruction. Must be valid.
898  * @regs:	Register values as seen when entering kernel mode
899  * @regoff:	Operand offset, in pt_regs, used to resolve segment descriptor
900  * @base:	Obtained segment base
901  * @limit:	Obtained segment limit
902  *
903  * Obtain the base address and limit of the segment associated with the operand
904  * @regoff and, if any or allowed, override prefixes in @insn. This function is
905  * different from insn_get_seg_base() as the latter does not resolve the segment
906  * associated with the instruction operand. If a limit is not needed (e.g.,
907  * when running in long mode), @limit can be NULL.
908  *
909  * Returns:
910  *
911  * 0 on success. @base and @limit will contain the base address and of the
912  * resolved segment, respectively.
913  *
914  * -EINVAL on error.
915  */
916 static int get_seg_base_limit(struct insn *insn, struct pt_regs *regs,
917 			      int regoff, unsigned long *base,
918 			      unsigned long *limit)
919 {
920 	int seg_reg_idx;
921 
922 	if (!base)
923 		return -EINVAL;
924 
925 	seg_reg_idx = resolve_seg_reg(insn, regs, regoff);
926 	if (seg_reg_idx < 0)
927 		return seg_reg_idx;
928 
929 	*base = insn_get_seg_base(regs, seg_reg_idx);
930 	if (*base == -1L)
931 		return -EINVAL;
932 
933 	if (!limit)
934 		return 0;
935 
936 	*limit = get_seg_limit(regs, seg_reg_idx);
937 	if (!(*limit))
938 		return -EINVAL;
939 
940 	return 0;
941 }
942 
943 /**
944  * get_eff_addr_reg() - Obtain effective address from register operand
945  * @insn:	Instruction. Must be valid.
946  * @regs:	Register values as seen when entering kernel mode
947  * @regoff:	Obtained operand offset, in pt_regs, with the effective address
948  * @eff_addr:	Obtained effective address
949  *
950  * Obtain the effective address stored in the register operand as indicated by
951  * the ModRM byte. This function is to be used only with register addressing
952  * (i.e.,  ModRM.mod is 3). The effective address is saved in @eff_addr. The
953  * register operand, as an offset from the base of pt_regs, is saved in @regoff;
954  * such offset can then be used to resolve the segment associated with the
955  * operand. This function can be used with any of the supported address sizes
956  * in x86.
957  *
958  * Returns:
959  *
960  * 0 on success. @eff_addr will have the effective address stored in the
961  * operand indicated by ModRM. @regoff will have such operand as an offset from
962  * the base of pt_regs.
963  *
964  * -EINVAL on error.
965  */
966 static int get_eff_addr_reg(struct insn *insn, struct pt_regs *regs,
967 			    int *regoff, long *eff_addr)
968 {
969 	int ret;
970 
971 	ret = insn_get_modrm(insn);
972 	if (ret)
973 		return ret;
974 
975 	if (X86_MODRM_MOD(insn->modrm.value) != 3)
976 		return -EINVAL;
977 
978 	*regoff = get_reg_offset(insn, regs, REG_TYPE_RM);
979 	if (*regoff < 0)
980 		return -EINVAL;
981 
982 	/* Ignore bytes that are outside the address size. */
983 	if (insn->addr_bytes == 2)
984 		*eff_addr = regs_get_register(regs, *regoff) & 0xffff;
985 	else if (insn->addr_bytes == 4)
986 		*eff_addr = regs_get_register(regs, *regoff) & 0xffffffff;
987 	else /* 64-bit address */
988 		*eff_addr = regs_get_register(regs, *regoff);
989 
990 	return 0;
991 }
992 
993 /**
994  * get_eff_addr_modrm() - Obtain referenced effective address via ModRM
995  * @insn:	Instruction. Must be valid.
996  * @regs:	Register values as seen when entering kernel mode
997  * @regoff:	Obtained operand offset, in pt_regs, associated with segment
998  * @eff_addr:	Obtained effective address
999  *
1000  * Obtain the effective address referenced by the ModRM byte of @insn. After
1001  * identifying the registers involved in the register-indirect memory reference,
1002  * its value is obtained from the operands in @regs. The computed address is
1003  * stored @eff_addr. Also, the register operand that indicates the associated
1004  * segment is stored in @regoff, this parameter can later be used to determine
1005  * such segment.
1006  *
1007  * Returns:
1008  *
1009  * 0 on success. @eff_addr will have the referenced effective address. @regoff
1010  * will have a register, as an offset from the base of pt_regs, that can be used
1011  * to resolve the associated segment.
1012  *
1013  * -EINVAL on error.
1014  */
1015 static int get_eff_addr_modrm(struct insn *insn, struct pt_regs *regs,
1016 			      int *regoff, long *eff_addr)
1017 {
1018 	long tmp;
1019 	int ret;
1020 
1021 	if (insn->addr_bytes != 8 && insn->addr_bytes != 4)
1022 		return -EINVAL;
1023 
1024 	ret = insn_get_modrm(insn);
1025 	if (ret)
1026 		return ret;
1027 
1028 	if (X86_MODRM_MOD(insn->modrm.value) > 2)
1029 		return -EINVAL;
1030 
1031 	*regoff = get_reg_offset(insn, regs, REG_TYPE_RM);
1032 
1033 	/*
1034 	 * -EDOM means that we must ignore the address_offset. In such a case,
1035 	 * in 64-bit mode the effective address relative to the rIP of the
1036 	 * following instruction.
1037 	 */
1038 	if (*regoff == -EDOM) {
1039 		if (any_64bit_mode(regs))
1040 			tmp = regs->ip + insn->length;
1041 		else
1042 			tmp = 0;
1043 	} else if (*regoff < 0) {
1044 		return -EINVAL;
1045 	} else {
1046 		tmp = regs_get_register(regs, *regoff);
1047 	}
1048 
1049 	if (insn->addr_bytes == 4) {
1050 		int addr32 = (int)(tmp & 0xffffffff) + insn->displacement.value;
1051 
1052 		*eff_addr = addr32 & 0xffffffff;
1053 	} else {
1054 		*eff_addr = tmp + insn->displacement.value;
1055 	}
1056 
1057 	return 0;
1058 }
1059 
1060 /**
1061  * get_eff_addr_modrm_16() - Obtain referenced effective address via ModRM
1062  * @insn:	Instruction. Must be valid.
1063  * @regs:	Register values as seen when entering kernel mode
1064  * @regoff:	Obtained operand offset, in pt_regs, associated with segment
1065  * @eff_addr:	Obtained effective address
1066  *
1067  * Obtain the 16-bit effective address referenced by the ModRM byte of @insn.
1068  * After identifying the registers involved in the register-indirect memory
1069  * reference, its value is obtained from the operands in @regs. The computed
1070  * address is stored @eff_addr. Also, the register operand that indicates
1071  * the associated segment is stored in @regoff, this parameter can later be used
1072  * to determine such segment.
1073  *
1074  * Returns:
1075  *
1076  * 0 on success. @eff_addr will have the referenced effective address. @regoff
1077  * will have a register, as an offset from the base of pt_regs, that can be used
1078  * to resolve the associated segment.
1079  *
1080  * -EINVAL on error.
1081  */
1082 static int get_eff_addr_modrm_16(struct insn *insn, struct pt_regs *regs,
1083 				 int *regoff, short *eff_addr)
1084 {
1085 	int addr_offset1, addr_offset2, ret;
1086 	short addr1 = 0, addr2 = 0, displacement;
1087 
1088 	if (insn->addr_bytes != 2)
1089 		return -EINVAL;
1090 
1091 	insn_get_modrm(insn);
1092 
1093 	if (!insn->modrm.nbytes)
1094 		return -EINVAL;
1095 
1096 	if (X86_MODRM_MOD(insn->modrm.value) > 2)
1097 		return -EINVAL;
1098 
1099 	ret = get_reg_offset_16(insn, regs, &addr_offset1, &addr_offset2);
1100 	if (ret < 0)
1101 		return -EINVAL;
1102 
1103 	/*
1104 	 * Don't fail on invalid offset values. They might be invalid because
1105 	 * they cannot be used for this particular value of ModRM. Instead, use
1106 	 * them in the computation only if they contain a valid value.
1107 	 */
1108 	if (addr_offset1 != -EDOM)
1109 		addr1 = regs_get_register(regs, addr_offset1) & 0xffff;
1110 
1111 	if (addr_offset2 != -EDOM)
1112 		addr2 = regs_get_register(regs, addr_offset2) & 0xffff;
1113 
1114 	displacement = insn->displacement.value & 0xffff;
1115 	*eff_addr = addr1 + addr2 + displacement;
1116 
1117 	/*
1118 	 * The first operand register could indicate to use of either SS or DS
1119 	 * registers to obtain the segment selector.  The second operand
1120 	 * register can only indicate the use of DS. Thus, the first operand
1121 	 * will be used to obtain the segment selector.
1122 	 */
1123 	*regoff = addr_offset1;
1124 
1125 	return 0;
1126 }
1127 
1128 /**
1129  * get_eff_addr_sib() - Obtain referenced effective address via SIB
1130  * @insn:	Instruction. Must be valid.
1131  * @regs:	Register values as seen when entering kernel mode
1132  * @base_offset: Obtained operand offset, in pt_regs, associated with segment
1133  * @eff_addr:	Obtained effective address
1134  *
1135  * Obtain the effective address referenced by the SIB byte of @insn. After
1136  * identifying the registers involved in the indexed, register-indirect memory
1137  * reference, its value is obtained from the operands in @regs. The computed
1138  * address is stored @eff_addr. Also, the register operand that indicates the
1139  * associated segment is stored in @base_offset; this parameter can later be
1140  * used to determine such segment.
1141  *
1142  * Returns:
1143  *
1144  * 0 on success. @eff_addr will have the referenced effective address.
1145  * @base_offset will have a register, as an offset from the base of pt_regs,
1146  * that can be used to resolve the associated segment.
1147  *
1148  * Negative value on error.
1149  */
1150 static int get_eff_addr_sib(struct insn *insn, struct pt_regs *regs,
1151 			    int *base_offset, long *eff_addr)
1152 {
1153 	long base, indx;
1154 	int indx_offset;
1155 	int ret;
1156 
1157 	if (insn->addr_bytes != 8 && insn->addr_bytes != 4)
1158 		return -EINVAL;
1159 
1160 	ret = insn_get_modrm(insn);
1161 	if (ret)
1162 		return ret;
1163 
1164 	if (!insn->modrm.nbytes)
1165 		return -EINVAL;
1166 
1167 	if (X86_MODRM_MOD(insn->modrm.value) > 2)
1168 		return -EINVAL;
1169 
1170 	ret = insn_get_sib(insn);
1171 	if (ret)
1172 		return ret;
1173 
1174 	if (!insn->sib.nbytes)
1175 		return -EINVAL;
1176 
1177 	*base_offset = get_reg_offset(insn, regs, REG_TYPE_BASE);
1178 	indx_offset = get_reg_offset(insn, regs, REG_TYPE_INDEX);
1179 
1180 	/*
1181 	 * Negative values in the base and index offset means an error when
1182 	 * decoding the SIB byte. Except -EDOM, which means that the registers
1183 	 * should not be used in the address computation.
1184 	 */
1185 	if (*base_offset == -EDOM)
1186 		base = 0;
1187 	else if (*base_offset < 0)
1188 		return -EINVAL;
1189 	else
1190 		base = regs_get_register(regs, *base_offset);
1191 
1192 	if (indx_offset == -EDOM)
1193 		indx = 0;
1194 	else if (indx_offset < 0)
1195 		return -EINVAL;
1196 	else
1197 		indx = regs_get_register(regs, indx_offset);
1198 
1199 	if (insn->addr_bytes == 4) {
1200 		int addr32, base32, idx32;
1201 
1202 		base32 = base & 0xffffffff;
1203 		idx32 = indx & 0xffffffff;
1204 
1205 		addr32 = base32 + idx32 * (1 << X86_SIB_SCALE(insn->sib.value));
1206 		addr32 += insn->displacement.value;
1207 
1208 		*eff_addr = addr32 & 0xffffffff;
1209 	} else {
1210 		*eff_addr = base + indx * (1 << X86_SIB_SCALE(insn->sib.value));
1211 		*eff_addr += insn->displacement.value;
1212 	}
1213 
1214 	return 0;
1215 }
1216 
1217 /**
1218  * get_addr_ref_16() - Obtain the 16-bit address referred by instruction
1219  * @insn:	Instruction containing ModRM byte and displacement
1220  * @regs:	Register values as seen when entering kernel mode
1221  *
1222  * This function is to be used with 16-bit address encodings. Obtain the memory
1223  * address referred by the instruction's ModRM and displacement bytes. Also, the
1224  * segment used as base is determined by either any segment override prefixes in
1225  * @insn or the default segment of the registers involved in the address
1226  * computation. In protected mode, segment limits are enforced.
1227  *
1228  * Returns:
1229  *
1230  * Linear address referenced by the instruction operands on success.
1231  *
1232  * -1L on error.
1233  */
1234 static void __user *get_addr_ref_16(struct insn *insn, struct pt_regs *regs)
1235 {
1236 	unsigned long linear_addr = -1L, seg_base, seg_limit;
1237 	int ret, regoff;
1238 	short eff_addr;
1239 	long tmp;
1240 
1241 	if (insn_get_displacement(insn))
1242 		goto out;
1243 
1244 	if (insn->addr_bytes != 2)
1245 		goto out;
1246 
1247 	if (X86_MODRM_MOD(insn->modrm.value) == 3) {
1248 		ret = get_eff_addr_reg(insn, regs, &regoff, &tmp);
1249 		if (ret)
1250 			goto out;
1251 
1252 		eff_addr = tmp;
1253 	} else {
1254 		ret = get_eff_addr_modrm_16(insn, regs, &regoff, &eff_addr);
1255 		if (ret)
1256 			goto out;
1257 	}
1258 
1259 	ret = get_seg_base_limit(insn, regs, regoff, &seg_base, &seg_limit);
1260 	if (ret)
1261 		goto out;
1262 
1263 	/*
1264 	 * Before computing the linear address, make sure the effective address
1265 	 * is within the limits of the segment. In virtual-8086 mode, segment
1266 	 * limits are not enforced. In such a case, the segment limit is -1L to
1267 	 * reflect this fact.
1268 	 */
1269 	if ((unsigned long)(eff_addr & 0xffff) > seg_limit)
1270 		goto out;
1271 
1272 	linear_addr = (unsigned long)(eff_addr & 0xffff) + seg_base;
1273 
1274 	/* Limit linear address to 20 bits */
1275 	if (v8086_mode(regs))
1276 		linear_addr &= 0xfffff;
1277 
1278 out:
1279 	return (void __user *)linear_addr;
1280 }
1281 
1282 /**
1283  * get_addr_ref_32() - Obtain a 32-bit linear address
1284  * @insn:	Instruction with ModRM, SIB bytes and displacement
1285  * @regs:	Register values as seen when entering kernel mode
1286  *
1287  * This function is to be used with 32-bit address encodings to obtain the
1288  * linear memory address referred by the instruction's ModRM, SIB,
1289  * displacement bytes and segment base address, as applicable. If in protected
1290  * mode, segment limits are enforced.
1291  *
1292  * Returns:
1293  *
1294  * Linear address referenced by instruction and registers on success.
1295  *
1296  * -1L on error.
1297  */
1298 static void __user *get_addr_ref_32(struct insn *insn, struct pt_regs *regs)
1299 {
1300 	unsigned long linear_addr = -1L, seg_base, seg_limit;
1301 	int eff_addr, regoff;
1302 	long tmp;
1303 	int ret;
1304 
1305 	if (insn->addr_bytes != 4)
1306 		goto out;
1307 
1308 	if (X86_MODRM_MOD(insn->modrm.value) == 3) {
1309 		ret = get_eff_addr_reg(insn, regs, &regoff, &tmp);
1310 		if (ret)
1311 			goto out;
1312 
1313 		eff_addr = tmp;
1314 
1315 	} else {
1316 		if (insn->sib.nbytes) {
1317 			ret = get_eff_addr_sib(insn, regs, &regoff, &tmp);
1318 			if (ret)
1319 				goto out;
1320 
1321 			eff_addr = tmp;
1322 		} else {
1323 			ret = get_eff_addr_modrm(insn, regs, &regoff, &tmp);
1324 			if (ret)
1325 				goto out;
1326 
1327 			eff_addr = tmp;
1328 		}
1329 	}
1330 
1331 	ret = get_seg_base_limit(insn, regs, regoff, &seg_base, &seg_limit);
1332 	if (ret)
1333 		goto out;
1334 
1335 	/*
1336 	 * In protected mode, before computing the linear address, make sure
1337 	 * the effective address is within the limits of the segment.
1338 	 * 32-bit addresses can be used in long and virtual-8086 modes if an
1339 	 * address override prefix is used. In such cases, segment limits are
1340 	 * not enforced. When in virtual-8086 mode, the segment limit is -1L
1341 	 * to reflect this situation.
1342 	 *
1343 	 * After computed, the effective address is treated as an unsigned
1344 	 * quantity.
1345 	 */
1346 	if (!any_64bit_mode(regs) && ((unsigned int)eff_addr > seg_limit))
1347 		goto out;
1348 
1349 	/*
1350 	 * Even though 32-bit address encodings are allowed in virtual-8086
1351 	 * mode, the address range is still limited to [0x-0xffff].
1352 	 */
1353 	if (v8086_mode(regs) && (eff_addr & ~0xffff))
1354 		goto out;
1355 
1356 	/*
1357 	 * Data type long could be 64 bits in size. Ensure that our 32-bit
1358 	 * effective address is not sign-extended when computing the linear
1359 	 * address.
1360 	 */
1361 	linear_addr = (unsigned long)(eff_addr & 0xffffffff) + seg_base;
1362 
1363 	/* Limit linear address to 20 bits */
1364 	if (v8086_mode(regs))
1365 		linear_addr &= 0xfffff;
1366 
1367 out:
1368 	return (void __user *)linear_addr;
1369 }
1370 
1371 /**
1372  * get_addr_ref_64() - Obtain a 64-bit linear address
1373  * @insn:	Instruction struct with ModRM and SIB bytes and displacement
1374  * @regs:	Structure with register values as seen when entering kernel mode
1375  *
1376  * This function is to be used with 64-bit address encodings to obtain the
1377  * linear memory address referred by the instruction's ModRM, SIB,
1378  * displacement bytes and segment base address, as applicable.
1379  *
1380  * Returns:
1381  *
1382  * Linear address referenced by instruction and registers on success.
1383  *
1384  * -1L on error.
1385  */
1386 #ifndef CONFIG_X86_64
1387 static void __user *get_addr_ref_64(struct insn *insn, struct pt_regs *regs)
1388 {
1389 	return (void __user *)-1L;
1390 }
1391 #else
1392 static void __user *get_addr_ref_64(struct insn *insn, struct pt_regs *regs)
1393 {
1394 	unsigned long linear_addr = -1L, seg_base;
1395 	int regoff, ret;
1396 	long eff_addr;
1397 
1398 	if (insn->addr_bytes != 8)
1399 		goto out;
1400 
1401 	if (X86_MODRM_MOD(insn->modrm.value) == 3) {
1402 		ret = get_eff_addr_reg(insn, regs, &regoff, &eff_addr);
1403 		if (ret)
1404 			goto out;
1405 
1406 	} else {
1407 		if (insn->sib.nbytes) {
1408 			ret = get_eff_addr_sib(insn, regs, &regoff, &eff_addr);
1409 			if (ret)
1410 				goto out;
1411 		} else {
1412 			ret = get_eff_addr_modrm(insn, regs, &regoff, &eff_addr);
1413 			if (ret)
1414 				goto out;
1415 		}
1416 
1417 	}
1418 
1419 	ret = get_seg_base_limit(insn, regs, regoff, &seg_base, NULL);
1420 	if (ret)
1421 		goto out;
1422 
1423 	linear_addr = (unsigned long)eff_addr + seg_base;
1424 
1425 out:
1426 	return (void __user *)linear_addr;
1427 }
1428 #endif /* CONFIG_X86_64 */
1429 
1430 /**
1431  * insn_get_addr_ref() - Obtain the linear address referred by instruction
1432  * @insn:	Instruction structure containing ModRM byte and displacement
1433  * @regs:	Structure with register values as seen when entering kernel mode
1434  *
1435  * Obtain the linear address referred by the instruction's ModRM, SIB and
1436  * displacement bytes, and segment base, as applicable. In protected mode,
1437  * segment limits are enforced.
1438  *
1439  * Returns:
1440  *
1441  * Linear address referenced by instruction and registers on success.
1442  *
1443  * -1L on error.
1444  */
1445 void __user *insn_get_addr_ref(struct insn *insn, struct pt_regs *regs)
1446 {
1447 	if (!insn || !regs)
1448 		return (void __user *)-1L;
1449 
1450 	if (insn_get_opcode(insn))
1451 		return (void __user *)-1L;
1452 
1453 	switch (insn->addr_bytes) {
1454 	case 2:
1455 		return get_addr_ref_16(insn, regs);
1456 	case 4:
1457 		return get_addr_ref_32(insn, regs);
1458 	case 8:
1459 		return get_addr_ref_64(insn, regs);
1460 	default:
1461 		return (void __user *)-1L;
1462 	}
1463 }
1464 
1465 int insn_get_effective_ip(struct pt_regs *regs, unsigned long *ip)
1466 {
1467 	unsigned long seg_base = 0;
1468 
1469 	/*
1470 	 * If not in user-space long mode, a custom code segment could be in
1471 	 * use. This is true in protected mode (if the process defined a local
1472 	 * descriptor table), or virtual-8086 mode. In most of the cases
1473 	 * seg_base will be zero as in USER_CS.
1474 	 */
1475 	if (!user_64bit_mode(regs)) {
1476 		seg_base = insn_get_seg_base(regs, INAT_SEG_REG_CS);
1477 		if (seg_base == -1L)
1478 			return -EINVAL;
1479 	}
1480 
1481 	*ip = seg_base + regs->ip;
1482 
1483 	return 0;
1484 }
1485 
1486 /**
1487  * insn_fetch_from_user() - Copy instruction bytes from user-space memory
1488  * @regs:	Structure with register values as seen when entering kernel mode
1489  * @buf:	Array to store the fetched instruction
1490  *
1491  * Gets the linear address of the instruction and copies the instruction bytes
1492  * to the buf.
1493  *
1494  * Returns:
1495  *
1496  * - number of instruction bytes copied.
1497  * - 0 if nothing was copied.
1498  * - -EINVAL if the linear address of the instruction could not be calculated
1499  */
1500 int insn_fetch_from_user(struct pt_regs *regs, unsigned char buf[MAX_INSN_SIZE])
1501 {
1502 	unsigned long ip;
1503 	int not_copied;
1504 
1505 	if (insn_get_effective_ip(regs, &ip))
1506 		return -EINVAL;
1507 
1508 	not_copied = copy_from_user(buf, (void __user *)ip, MAX_INSN_SIZE);
1509 
1510 	return MAX_INSN_SIZE - not_copied;
1511 }
1512 
1513 /**
1514  * insn_fetch_from_user_inatomic() - Copy instruction bytes from user-space memory
1515  *                                   while in atomic code
1516  * @regs:	Structure with register values as seen when entering kernel mode
1517  * @buf:	Array to store the fetched instruction
1518  *
1519  * Gets the linear address of the instruction and copies the instruction bytes
1520  * to the buf. This function must be used in atomic context.
1521  *
1522  * Returns:
1523  *
1524  *  - number of instruction bytes copied.
1525  *  - 0 if nothing was copied.
1526  *  - -EINVAL if the linear address of the instruction could not be calculated.
1527  */
1528 int insn_fetch_from_user_inatomic(struct pt_regs *regs, unsigned char buf[MAX_INSN_SIZE])
1529 {
1530 	unsigned long ip;
1531 	int not_copied;
1532 
1533 	if (insn_get_effective_ip(regs, &ip))
1534 		return -EINVAL;
1535 
1536 	not_copied = __copy_from_user_inatomic(buf, (void __user *)ip, MAX_INSN_SIZE);
1537 
1538 	return MAX_INSN_SIZE - not_copied;
1539 }
1540 
1541 /**
1542  * insn_decode_from_regs() - Decode an instruction
1543  * @insn:	Structure to store decoded instruction
1544  * @regs:	Structure with register values as seen when entering kernel mode
1545  * @buf:	Buffer containing the instruction bytes
1546  * @buf_size:   Number of instruction bytes available in buf
1547  *
1548  * Decodes the instruction provided in buf and stores the decoding results in
1549  * insn. Also determines the correct address and operand sizes.
1550  *
1551  * Returns:
1552  *
1553  * True if instruction was decoded, False otherwise.
1554  */
1555 bool insn_decode_from_regs(struct insn *insn, struct pt_regs *regs,
1556 			   unsigned char buf[MAX_INSN_SIZE], int buf_size)
1557 {
1558 	int seg_defs;
1559 
1560 	insn_init(insn, buf, buf_size, user_64bit_mode(regs));
1561 
1562 	/*
1563 	 * Override the default operand and address sizes with what is specified
1564 	 * in the code segment descriptor. The instruction decoder only sets
1565 	 * the address size it to either 4 or 8 address bytes and does nothing
1566 	 * for the operand bytes. This OK for most of the cases, but we could
1567 	 * have special cases where, for instance, a 16-bit code segment
1568 	 * descriptor is used.
1569 	 * If there is an address override prefix, the instruction decoder
1570 	 * correctly updates these values, even for 16-bit defaults.
1571 	 */
1572 	seg_defs = insn_get_code_seg_params(regs);
1573 	if (seg_defs == -EINVAL)
1574 		return false;
1575 
1576 	insn->addr_bytes = INSN_CODE_SEG_ADDR_SZ(seg_defs);
1577 	insn->opnd_bytes = INSN_CODE_SEG_OPND_SZ(seg_defs);
1578 
1579 	if (insn_get_length(insn))
1580 		return false;
1581 
1582 	if (buf_size < insn->length)
1583 		return false;
1584 
1585 	return true;
1586 }
1587 
1588 /**
1589  * insn_decode_mmio() - Decode a MMIO instruction
1590  * @insn:	Structure to store decoded instruction
1591  * @bytes:	Returns size of memory operand
1592  *
1593  * Decodes instruction that used for Memory-mapped I/O.
1594  *
1595  * Returns:
1596  *
1597  * Type of the instruction. Size of the memory operand is stored in
1598  * @bytes. If decode failed, INSN_MMIO_DECODE_FAILED returned.
1599  */
1600 enum insn_mmio_type insn_decode_mmio(struct insn *insn, int *bytes)
1601 {
1602 	enum insn_mmio_type type = INSN_MMIO_DECODE_FAILED;
1603 
1604 	*bytes = 0;
1605 
1606 	if (insn_get_opcode(insn))
1607 		return INSN_MMIO_DECODE_FAILED;
1608 
1609 	switch (insn->opcode.bytes[0]) {
1610 	case 0x88: /* MOV m8,r8 */
1611 		*bytes = 1;
1612 		fallthrough;
1613 	case 0x89: /* MOV m16/m32/m64, r16/m32/m64 */
1614 		if (!*bytes)
1615 			*bytes = insn->opnd_bytes;
1616 		type = INSN_MMIO_WRITE;
1617 		break;
1618 
1619 	case 0xc6: /* MOV m8, imm8 */
1620 		*bytes = 1;
1621 		fallthrough;
1622 	case 0xc7: /* MOV m16/m32/m64, imm16/imm32/imm64 */
1623 		if (!*bytes)
1624 			*bytes = insn->opnd_bytes;
1625 		type = INSN_MMIO_WRITE_IMM;
1626 		break;
1627 
1628 	case 0x8a: /* MOV r8, m8 */
1629 		*bytes = 1;
1630 		fallthrough;
1631 	case 0x8b: /* MOV r16/r32/r64, m16/m32/m64 */
1632 		if (!*bytes)
1633 			*bytes = insn->opnd_bytes;
1634 		type = INSN_MMIO_READ;
1635 		break;
1636 
1637 	case 0xa4: /* MOVS m8, m8 */
1638 		*bytes = 1;
1639 		fallthrough;
1640 	case 0xa5: /* MOVS m16/m32/m64, m16/m32/m64 */
1641 		if (!*bytes)
1642 			*bytes = insn->opnd_bytes;
1643 		type = INSN_MMIO_MOVS;
1644 		break;
1645 
1646 	case 0x0f: /* Two-byte instruction */
1647 		switch (insn->opcode.bytes[1]) {
1648 		case 0xb6: /* MOVZX r16/r32/r64, m8 */
1649 			*bytes = 1;
1650 			fallthrough;
1651 		case 0xb7: /* MOVZX r32/r64, m16 */
1652 			if (!*bytes)
1653 				*bytes = 2;
1654 			type = INSN_MMIO_READ_ZERO_EXTEND;
1655 			break;
1656 
1657 		case 0xbe: /* MOVSX r16/r32/r64, m8 */
1658 			*bytes = 1;
1659 			fallthrough;
1660 		case 0xbf: /* MOVSX r32/r64, m16 */
1661 			if (!*bytes)
1662 				*bytes = 2;
1663 			type = INSN_MMIO_READ_SIGN_EXTEND;
1664 			break;
1665 		}
1666 		break;
1667 	}
1668 
1669 	return type;
1670 }
1671